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I. Wstęp

Atomy i cząsteczki oddziałując mogą tworzyć nowe cząsteczki, ale mogą też formować

kompleksy, w których zachowana jest ich integralność. W tym drugim przypadku nie do-

chodzi do zrywania istniejących wiązań ani tworzenia nowych wiązań kowalencyjnych [1–3].

Oddziaływania tego typu określamy mianem międzycząsteczkowych (międzymolekularnych,

van der Waalsa). To właśnie one decydują o właściwościach gazów i fazy skondensowanej,

w tym kryształów molekularnych czy układów o znaczeniu biologicznym. Zrozumienie isto-

ty oddziaływań międzymolekularnych pozwala na jakościowe wyjaśnienie różnych zjawisk

i właściwości materii, natomiast umiejętność precyzyjnego opisu tych oddziaływań otwie-

ra możliwość ilościowego charakteryzowania tych właściwości. Podczas gdy jeszcze 30-40

lat temu możliwy był głównie opis tylko jakościowo zgodny z eksperymentem, to obecnie

możliwe jest obliczanie różnych wielkości z dokładnością ilościową. Co więcej, w niektórych

przypadkach dokładność wyników teoretycznych jest tak wysoka, że można je wykorzystać

do interpretacji danych eksperymentalnych albo uzupełnić takie dane, gdy są niedostęp-

ne [4–7]. Użyteczność wyników teoretycznych związanych z oddziaływaniami świetnie widać

w zastosowaniach w astrofizyce i astrochemii. We Wszechświecie mamy olbrzymie spektrum

warunków, skrajne rozpiętości temperatur, ciśnienia i gęstości, dla których potrzebne są da-

ne opisujące właściwości cząsteczek, w tym parametrów związanych z ich zderzeniami [8].

Często warunki takie są niemożliwe do odtworzenia w laboratorium, albo jest to trudne,

czasochłonne i kosztowne. Wtedy w sukurs przychodzą wyniki rozważań teoretycznych. Za-

zwyczaj procedura opisu danego procesu jest testowana poprzez konfrontację z dostępnymi

albo specjalnie otrzymanymi wynikami eksperymentu, a potem, po stwierdzeniu stopnia jej

wiarygodności, jest wykorzystywana do obliczeń odpowiadających innym warunkom.

Duża część dokładnych zastosowań teoretycznego opisu oddziaływań międzymolekular-

nych opiera się na dwustopniowym schemacie postępowania: najpierw opracowywana jest

powierzchnia energii oddziaływania, która opisuje zależność energii oddziaływania od geo-

metrii kompleksu, a następnie powierzchnia ta jest wykorzystywana w obliczeniach pożą-

danej właściwości fizyko-chemicznej. Jeśli cząsteczka składa się z N atomów, to jej geo-

metrię możemy opisać używając 3N−6 współrzędnych (3N−5 dla cząsteczek liniowych).

Taka sama relacja obowiązuje dla kompleksów. Powierzchnię energii oddziaływania, która

zależy od wszystkich stopni swobody (i współrzędnych) kompleksu, nazywamy powierzchnią

pełnowymiarową. Dysponując taką powierzchnią możemy obliczać właściwości korzystając
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również z metod pełnowymiarowych, albo z metod przybliżonych. Niestety, otrzymywanie

powierzchni pełnowymiarowych, a potem ich wykorzystanie również w tym wariancie, jest

złożone, a koszty rosną bardzo szybko wraz ze zwiększaniem układu. Na przykład, obecny

limit wielkości kompleksu molekularnego przy otrzymywaniu widm oscylacyjno-rotacyjnych,

które możemy uznać za ilościowo poprawne, to 6 atomów, a przykładem takich obliczeń są

widma dla dimeru wody [9]. Dla większych układów pełny opis kwantowy ich dynamiki sta-

je się właściwie niemożliwy, ale również obliczanie pełnowymiarowych powierzchni energii

oddziaływania związane jest z koniecznością obniżenia jej dokładności. Ograniczenia te są

przejawem tzw. „przekleństwa” wymiaru problemu (dimensionality „curse”). Na szczęście w

przypadku oddziaływań międzymolekularnych jest nadzieja na sensowne złagodzenie powyż-

szego problemu.

W tej pracy będziemy zajmować się kompleksami dwóch cząsteczek, ograniczmy się więc

w dalszych rozważaniach do tak zwanych oddziaływań dwuciałowymi. Istotą takich oddzia-

ływań jest obecność dwóch cząsteczek, dla których energie wiązań są typowo 2-3 rzędy wiel-

kości większe niż energia oddziaływania między nimi. Jądra atomowy drgają więc „szybko”

w cząsteczkach, a cząsteczki wykonują znacznie wolniejsze ruchy w kompleksie. Taki ob-

raz w naturalny sposób prowadzi do podziału współrzędnych na wewnątrzcząsteczkowe i

międzycząsteczkowe, co pozwala na zastosowanie metod przybliżonych w opisie dynamiki

kompleksu. Najlepiej znana metoda to przybliżenie sztywnych rotatorów, gdy cząsteczki

(współrzędne wewnątrzcząsteczkowe) traktujemy jako zamrożone. Jeśli zamrozimy wszyst-

kie wewnątrzmolekularne stopnie swobody, to do opisu geometrii kompleksu potrzeba co

najwyżej 6 współrzędnych międzymolekularnych, nawet dla dużych molekuł. Nie wszystkie

efekty pojawiające się w badaniu dynamiki kompleksów da się opisać w ramach takiego przy-

bliżenia, ale wiele podstawowych tak, a poza tym często nie mamy alternatywy. Jednak jeśli

nawet zdecydujemy się na przybliżenie sztywnych rotatorów, to powierzchnia energii oddzia-

ływania zależna tylko od współrzędnych międzymolekularnych może być wybrana na wiele

sposobów, a wartości właściwości obliczanych z różnych powierzchni mogą się różnić w sposób

znaczący [10]. Dlatego ważne są badania w kierunku optymalnego wyboru powierzchni, który

zapewniłby wysoką skuteczność przewidywań spektroskopowych, stanowiących wymagający

test dla teorii. Co istotne, nawet jeśli testy przeprowadzane są dla niewielkich cząsteczek, to

wyniki takich badań mogą mieć kluczowe znaczenie dla możliwości wiarygodnych obliczeń

dla znacznie większych układów.

W tytule rozprawy pojawia się zapowiedź, że badania w niej opisane prowadzą do ob-
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liczania widm kompleksów ze spektroskopową dokładnością. Brzmi to nieco obrazoburczo,

ponieważ pomiary spektroskopowe, które zresztą wykonywane są w różnych zakresach fal

i z wykorzystaniem różnych technik, należą do najdokładniejszych w fizyce i chemii. Stąd

są one wykorzystywane, oprócz standardowych zastosowań, do bardzo subtelnych testów

modeli fizycznych czy poszukiwania nowych zjawisk. Na przykład, ewentualne rozbieżno-

ści pomiędzy hiperdokładnymi obliczeniami dla prostych cząsteczek i równie dokładnymi

wynikami eksperymentów, mogą wskazywać na istnienie „piątej siły” fundamentalnej [11].

Także w spektroskopii kompleksów van der Waalsa, która jest przedmiotem zainteresowa-

nia tej pracy, możemy dokonywać pomiarów z niezwykłą dokładnością. Na przykład, grupa

z Kolonii, dysponująca aparaturą do pomiarów w zakresie fal milimetrowych, była w sta-

nie zmierzyć pozycje linii odpowiadających przejściom oscylacyjno-rotacyjnym w kompleksie

paraH2–CO z dokładnością 10−6 cm−1 [12, 13]. Problemem jest jednak niekiedy zrozumienie,

jaki jest charakter stanów kwantowych, pomiędzy którymi zachodzi zaobserwowane przejście.

W przypadku cytowanych prac o paraH2–CO konieczna była informacja z mniej dokładnych

(5 · 10−4 cm−1) pomiarów wykonanych w podczerwieni [14], aby móc zinterpretować ten

bardziej dokładny pomiar. Analogiczne pomiary w zakresie milimetrowym dla kompleksu

ortoH2–CO nie otrzymały takiej pomocy z pomiarów w podczerwieni, gdyż te, chociaż eks-

peryment został wykonany, nie zostały zinterpretowane. Dopiero wsparcie ze strony teorii

pozwoliło w dużym stopniu zrozumieć wyniki obu eksperymentów [15, 16]. Co ciekawe, średni

błąd położenia linii w widmie teoretycznym w porównaniu do ich odpowiedników w widmie

eksperymentalnym, wynosi 0.017 cm−1 [16], czyli jest o dwa rzędy wielkości większy, niż sza-

cowana dokładność eksperymentu w podczerwieni i aż cztery rzędy wielkości od dokładności

pomiarów w zakresie milimetrowym. Zatem położenia teoretycznych linii widmowych posia-

dały istotne niedokładności, ale nie przeszkodziło to w ich skutecznym użyciu do interpretacji

bardziej dokładnych widm eksperymentalnych, które bez wsparcia teoretycznego pozostały-

by bezużyteczne. W ten sposób doszliśmy do miejsca, w którym możemy, dla potrzeb tej

pracy, określić, że będziemy uważać, że widmo teoretyczne ma spektroskopową dokładność

jeśli może być efektywnie wykorzystane do interpretacji widma doświadczalnego.

W trakcie realizacji moich badań na studiach doktoranckich starałem się osiągnąć kilka

celów, które pojawiały się sukcesywnie. Pierwszym z nich było pełne wyjaśnienie widma do-

świadczalnego kompleksu ortoH2–CO [14, 15]. Warto podkreślić w tym miejscu, że kompleks

H2–CO zajmuje bardzo wysoką pozycję na liście zainteresowań astrofizyków i astrochemików.

Wynika to z faktu, że cząsteczki H2 są najpowszechniej obecnymi w przestrzeni kosmicznej,
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a wśród pozostałych najwięcej jest cząsteczek CO. Te ostatnie występują często w towarzy-

stwie H2, a ich spektroskopowa obserwacja pozwala na pośrednie szacowanie ilości wodoru

w chmurach molekularnych. Z kolei zderzenia z udziałem H2 i CO prowadzą do schładzania

takich chmur. Stąd od kilku dziesięcioleci prowadzone są badania doświadczalne i teore-

tyczne układów H2 z CO, więc widmo ortoH2–CO, zarejestrowane w 1998 roku [14] i dotąd

niewyjaśnione, stanowiło poważne wyzwanie.

Wcześniejsze badania ortoH2–CO, opublikowane w pracach [15, 16], pokazały, że w wid-

mach zmierzonych w podczerwieni dla tego kompleksu, istnieje wiele linii, które powstają w

przejściach gdy przynajmniej jeden ze stanów, pomiędzy którymi takie przejście zachodzi,

jest kwazizwiązany. Linii takich jest na tyle dużo i często są tak intensywne, że ich uwzględ-

nienie w widmie teoretycznym jest konieczne by znaleźć relację z widmem doświadczalnym.

We wspomnianych pracach rezonanse znajdowane były metodą stabilizacji. Używając ją bar-

dzo trudno jest wyznaczyć precyzyjnie energię rezonansu i jego szerokość. Aby rozwiązać ten

problem, użyłem metod rozproszeniowych, które wcześniej nie były stosowane w zespole, w

którym pracowałem, ale również tylko sporadycznie były wykorzystywane w literaturze w

kontekście widm kompleksów.

Energie rezonansów dla ortoH2–CO wraz z energiami stanów związanych otrzymanych z

obliczeń, użyliśmy do obliczenia widma teoretycznego odpowiadającego widmu doświadczal-

nemu z pracy [15]. W pracy tej opublikowane było również widmo teoretyczne otrzymane

na nieco niższym poziomie metod teoretycznych, co pozwoliło w pewnym stopniu zrozu-

mieć widmo eksperymentalne. Niestety, nie został wtedy osiągnięty główny cel, jakim było

znalezienie układu eksperymentalnych poziomów energetycznych, choć udało się to dużo

wcześniej dla prostszego przypadku paraH2–CO. Postanowiłem więc podjąć to wyzwanie i

znaleźć układ poziomów energetycznych dla ortoH2–CO. Okazało się, że aby osiągnąć ten cel

należy rozwiązać szereg szczegółowych problemów. Badania w tym kierunku zostaną opisane

w kolejnych rozdziałach.

Powszechna obecność wodoru we wszechświecie oznacza także obecność jego izotopu 2H,

czyli deuteru, przy czym stosunek ilości deuteru do izotopu 1H, oznaczany D/H, który na

Ziemi wynosi 1.5576 · 10−4, może być znacznie większy i np. wynosić 10−2–10−1 w chłod-

nych chmurach molekularnych [17]. Stąd izotopologi kompleksu H2–CO są również wnikli-

wie badane. Naturalnym krokiem było więc wykorzystanie doświadczenia zdobytego przy

badaniu rezonansów dla ortoH2–CO i realizacja kolejnego celu, czyli znalezienie niskoenerge-

tycznych rezonansów dla innych izotopologów i odmian spinowych, mianowicie paraH2–CO,
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ortoD2–CO, paraD2–CO i HD–CO.

Podczas prac nad rozwikłaniem widma ortoH2–CO powstały procedury, które mogą być

wykorzystane do interpretacji innych widm. Moim celem stał się kompleks ortoD2–CO, któ-

rego widmo zostało zmierzone i w pewnym stopniu zinterpretowane już w roku 2000 [18].

Zdecydowałem zbadać poprawność tamtych wyników w oparciu o aktualne dane teoretyczne

i surowe widma uzyskane od autora, a także, w miarę możliwości, znaleźć nowe poziomy

energetyczne z tych starych danych doświadczalnych.

W obliczeniach oscylacyjno-rotacyjnych poziomów energetycznych, które wykonywałem,

korzystałem z metod przybliżonych traktujących cząsteczki jako sztywne rotatory. Okazuje

się, że jeśli zastosujemy odpowiednio przygotowaną powierzchnię uśrednioną po drganiach

cząsteczek [19], to widma teoretyczne są prawie dokładnie zgodne z widmami uzyskanymi

ze znacznie bardziej czasochłonnych i wymagających sprzętowo obliczeń pełnowymiarowych.

Postanowiliśmy więc sprawdzić, czy tak świetna zgodność będzie zachowana dla innych ukła-

dów. Wybraliśmy kompleks o znacząco innej charakterystyce, HF–HF, przejawiającej się

znacznie silniejszym i bardziej anizotropowym oddziaływaniem. Okazało się, że dokładność

stosowanego przez nas przybliżenia nie była już tak wysoka jak dla H2–CO. Wobec tego za-

proponowaliśmy i przetestowaliśmy inne podejście, które jest bardziej zaawansowaną wersją

poprzedniego, i które okazało się znacznie skuteczniejsze w opisie widm HF–HF. Wyniki tych

badań również opisałem w niniejszej pracy.
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II. Informacje wstępne

II.A. Uwagi formalne

W pracy pojawi się wiele tabel i rysunków, część z nich jest bardzo obszerna i rozciąga

się na kilka kolejnych stron. Chciałbym, aby tekst z ich dyskusją znajdował się w ich bez-

pośrednim sąsiedztwie, ale taki cel jest bardzo trudny do osiągnięcia i mógłby doprowadzić

do powstania przerw w tekście. Zastosowałem więc rozwiązanie kompromisowe, polegające

na umieszczeniu dużych tabel i rysunków na końcu każdego rozdziału, w którym są po raz

pierwszy dyskutowane.

W niniejszej pracy będę używał kropki jako separatora w liczbie dziesiętnej. Jest to nota-

cja anglosaska, która obowiązuje w informatyce i jest standardowo używana do zapisu liczb

rzeczywistych w programach komputerowych. Zamiana wszystkich liczb w tabelach i w tek-

ście na takie z separatorem w postaci przecinka byłoby oczywiście możliwa, ale wydaje się

niepotrzebna.

Niektóre symbole nawiązują do angielskich nazw wielkości czy pojęć, których dotyczą. Sto-

suję więc oznaczenie 4D czy 6D w nawiązaniu do angielskiego określenia „four-dimensional”

czy „six-dimensional”. Podobnie wielkości otrzymane z danych eksperymentalnych oznaczone

są jako „expt”, a otrzymane z obliczeń teoretycznych jako „theo”. Z kolei wielkości związa-

ne z uśrednianiem oznaczone są indeksem „av”, a z uśrednianiem adiabatycznym indeksem

„ad”. Energia graniczna (progowa), która się pojawi, będzie oznaczona przez „thr”. Przy opi-

sie widm zmierzonych w podczerwieni często będę posługiwał się skrótem „IR” (infrared).

W pracy będę dyskutował potencjały energii oddziaływania oparte na rozwinięciu w szereg

Taylora (Taylor expansion), więc wielkości z nim związane oznaczone będą przez „TE”.

Wielokrotnie zachodzić też będzie potrzeba podania wartości błędu średniokwadratowego.

Będziemy korzystać wtedy ze skrótu RMSE (od ang. root mean square error).

II.B. Odmiany spinowe cząsteczki wodoru

W niniejszej pracy przedstawione zostaną badania widm teoretycznych (z porównaniem

do doświadczalnych) dla kompleksu H2–CO, ale z różnymi podstawieniami izotopowymi w

cząsteczce H2. Rozważać więc będziemy kompleksy H2–CO, HD–CO oraz D2–CO. Jednak

liczba niezależnie rozpatrywanych przypadków jest w praktyce większa. Z podstaw spek-

troskopii wiemy, że dla cząsteczek dwuatomowych homojądrowych, gdy jądra budujące czą-
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steczkę mają niezerowy spin jądrowy, widma rotacyjne cząsteczki mogą zależeć od wzajemnej

orientacji tych spinów. W tym kontekście pojawia się pojęcie odmian spinowych cząsteczek

dwuatomowych. Cząsteczki H2 i D2, które są elementami rozważanych przez nas kompleksów,

występują w różnych odmianach spinowych, gdyż spiny jąder wodoru i deuteru są niezerowe.

Co więcej, widma oscylacyjno-rotacyjne kompleksów zawierających te cząsteczki, w bardzo

istotny sposób zależą od tego, która odmiana jest obecna w kompleksie. Stąd właściwe zro-

zumienie odmian izotopowych H2 i D2 jest niezbędne dla właściwego zrozumienia widm

zawierających je kompleksów. Pojęcia związane z odmianami izotopowymi są powszechnie

używane, ale rozpoczynając przygodę z nimi miałem problem ze znalezieniem źródeł, które

w sposób przekonujący wyjaśniałyby ten problem. Dlatego usystematyzowałem podstawowe

wiadomości i prezentuję je w niniejszym podrozdziale.

Najprostszym i jednocześnie najważniejszym przykładem cząsteczki homojądrowej po-

siadającej odmiany spinowe, jest cząsteczka wodoru. Najpowszechniejszy izotop 1H posiada

spin jądrowy połówkowy, I = 1/2, jest więc fermionem. Kolejny izotop wodoru: 2H (deu-

ter, dalej oznaczany jako D), charakteryzuje się spinem jądrowym całkowitym, I = 1, czyli

jest bozonem. Aby przeprowadzić formalną analizę, wykorzystamy standardowe przybliżenie

polegające na zaniedbaniu sprzężeń pomiędzy stopniami swobody o różnym charakterze, ta-

kimi jak ruch elektronów, oscylacje, rotacje i spiny jąder. W efekcie można zapisać całkowitą

funkcję falową cząsteczki w postaci iloczynu niezależnych czynników [20]:

Ψ = ψel · ψvib · ψrot · ψns, (1)

gdzie kolejno odpowiadają one za: ruch elektronów, drgania jąder, rotacje cząsteczki oraz

konfigurację spinów jądrowych. Wiadome jest, że całkowita funkcja falowa cząsteczki musi

spełniać określone warunki symetrii względem zamiany identycznych jąder. Dla fermionów

jest ona antysymetryczna, a dla bozonów symetryczna. Wprowadzając operator P̂12, którego

działanie powoduje wspomnianą zamianę, możemy zapisać:

P̂12Ψferm = −Ψferm, P̂12Ψbos = +Ψbos. (2)

Rozróżnienie odmian orto i para definiuje się na podstawie części spinowej, ψns, całkowitej

funkcji falowej Ψ. Oznaczenie orto odpowiada stanom o spinie jądrowym symetrycznym ze

względu na działanie P̂12, a para – antysymetrycznym:

P̂12ψns =


+ψns orto

−ψns para
(3)
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W przypadku stanu podstawowego dwuatomowych cząsteczek homojądrowych, część elektro-

nowa ψel jest symetryczna ze względu na zamianę jąder, podobnie jak część oscylacyjna ψvib,

która zależy wyłącznie od odległości między jądrami. Z większą uwagą należy potraktować

część rotacyjną ψrot, której parzystość zależy od wartości liczby kwantowej jrot momentu

pędu stanu rotacyjnego, P̂12ψrot = (−1)jrotψrot. Oznacza to, że w przypadku parzystych

(nieparzystych) wartości momentu pędu jrot, część ta jest symetryczna (antysymetryczna).

Relację tę można otrzymać bezpośrednio z analizy harmonik sferycznych tworzących część

rotacyjną ψrot:

P̂12Y
m
jrot(θ, ϕ) =Y

m
jrot(π − θ, π + ϕ) ∝ Pmjrot(cos(π − θ))e

im(π+ϕ)

=Pmjrot(− cos θ)e
imπeimϕ

=(−1)jrot−mPmjrot(cos θ)(−1)
meimϕ

=(−1)jrotPmjrot(cos θ)e
imϕ ∝ (−1)jrotY mjrot(θ, ϕ),

(4)

gdzie Y mj to harmonika sferyczna, a Pmj to stowarzyszone wielomiany Legendre’a.

Przeanalizujmy teraz symetrie części funkcji Ψ związanej ze spinem jąder, czyli ψns. W wielu

opracowaniach temat ten pojawia się jedynie w formie skrótowej, najczęściej na przykła-

dzie H2. Tutaj przedstawię go w nieco pełniejszej wersji, tak aby w sposób jawny pokazać

reguły symetrii wynikające z dodawania spinów.

Podczas tworzenia się cząsteczki dwuatomowej, spiny jąder sumują się zgodnie z regułami

algebry momentu pędu. Przyjmujemy standardowe oznaczenia: |jimi⟩ (i = 1, 2) dla stanów,

które są sprzęgane, natomiast stan wypadkowy oznaczamy jako |JM⟩. Można go wyrazić w

bazie pierwotnych momentów pędów w postaci

|JM⟩ =
∑
m1,m2

m1+m2=M

|j1m1, j2m2⟩ ⟨j1m1, j2m2|JM⟩

=
∑
m1,m2

m1+m2=M

CJMj1m1,j2m2 |j1m1, j2m2⟩ ,
(5)

gdzie |j1− j2| ¬ J ¬ j1+j2, M = m1+m2, a CJMj1m1,j2m2 = ⟨j1m1, j2m2|JM⟩ to współczynniki

Clebscha–Gordana (CG).

W przypadku H2 funkcja falowa opisująca spiny jąder powstaje w wyniku dodania dwóch

spinów o wartościach j1 = j2 = 12 . Wprowadźmy oznaczenia:∣∣∣12 12〉 ≡ |↑⟩ ,∣∣∣12 − 12〉 ≡ |↓⟩ , (6)
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co prowadzi do czterech możliwych kombinacji w bazie niesprzężonej (uncoupled represen-

tation [21]):

∣∣∣12 ± 12 , 12 ± 12〉 =



|↑, ↑⟩

|↑, ↓⟩

|↓, ↑⟩

|↓, ↓⟩

(7)

Wypadkowy moment pędu może przyjmować wartości J = 0 lub J = 1, z odpowiednimi

rzutami M = 0 oraz M ∈ {−1, 0, 1}. Zgodnie z równaniem (5) można zapisać:

|JM⟩ = CJM↑,↑ |↑, ↑⟩+ CJM↑,↓ |↑, ↓⟩+ CJM↓,↑ |↓, ↑⟩+ CJM↓,↓ |↓, ↓⟩ . (8)

Rozważmy najprostszy przypadek, tj. stan |00⟩. Korzystając z tablic współczynników CG

otrzymujemy:

|00⟩ = 1√
2
(|↑, ↓⟩ − |↓, ↑⟩) . (9)

Aby zbadać symetrię tego stanu względem zamiany jąder, działamy operatorem P̂12:

P̂12 |00⟩ =
1√
2

(
P̂12 |↑, ↓⟩ − P̂12 |↓, ↑⟩

)
=
1√
2
(|↓, ↑⟩ − |↑, ↓⟩) = − |00⟩ . (10)

Wynika stąd, że stan |00⟩ dla H2 jest stanem para (antysymetryczny).

Analogiczne rozumowanie można przeprowadzić dla stanów |1M⟩, a w dalszej kolejno-

ści także dla bardziej skomplikowanego D2. Alternatywnym podejściem jest wykorzystanie

relacji łączących współczynniki CG z symbolami 3–j Wignera, wzór (11a), które posiadają

szereg własności użytecznych w tego typu analizach [21], np. tę podaną we wzorze (11b):

CJMj1m1,j2m2 = (−1)
j1−j2+M

√
2J + 1

 j1 j2 J

m1 m2 −M

 , (11a)

 j2 j1 J

m2 m1 −M

 = (−1)j1+j2+J
 j1 j2 J

m1 m2 −M

 . (11b)

Dla dwuatomowych cząsteczek homojądrowych j1 = j2, co można wykorzystać i wprowadzić

oznaczenie j = j1 = j2. Ogólne wyrażenie na stan |JM⟩ przyjmuje wówczas postać:

|JM⟩ =
∑
m1,m2

m1+m2=M

CJMjm1,jm2 |jm1, jm2⟩ = (−1)
M
√
2J + 1

∑
m1,m2

m1+m2=M

 j j J

m1 m2 −M

 |jm1, jm2⟩ ,
(12)
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gdzie skorzystaliśmy z relacji (11a). Działając teraz operatorem P̂12 otrzymujemy:

P̂12 |JM⟩ = P̂12

 ∑
m1,m2

m1+m2=M

CJMjm1,jm2 |jm1, jm2⟩

 = ∑
m1,m2

m1+m2=M

CJMjm1,jm2 |jm2, jm1⟩

=
∑
m1,m2

m1+m2=M

CJMjm2,jm1 |jm1, jm2⟩

=(−1)M
√
2J + 1

∑
m1,m2

m1+m2=M

 j j J

m2 m1 −M

 |jm1, jm2⟩

=(−1)2j+J(−1)M
√
2J + 1

∑
m1,m2

m1+m2=M

 j j J

m1 m2 −M

 |jm1, jm2⟩
=(−1)2j+J |JM⟩ .

(13)

W drugiej linii przemianowano indeksy m1 ↔ m2, w trzeciej wykorzystano zależność (11a),

a w czwartej relację (11b). W ostatecznej redukcji, przy przejściu od wyrażenia z linii przed-

ostatniej do ostatecznego wzoru w (13), skorzystano z zależności (12).

Z równania (13) wynika wprost, że symetria względem zamiany jąder nie zależy od war-

tości rzutu M momentu pędu J , a wraz ze wzrostem J stany symetryczne i antysymetryczne

występują naprzemiennie. Wystarczy więc przeanalizować symetrię stanu |00⟩, aby ustalić

ogólną regułę.

Dla fermionów j = k − 12 , k = 1, 2, . . .. Wynika stąd, że stan |00⟩ferm jest antysymetrycz-

ny (spr.: P̂12 |00⟩ferm = (−1)2k−1 |00⟩ferm = − |00⟩ferm), czyli odpowiada odmianie para. W

dalszej kolejności stany |1M⟩ferm należą do odmiany orto, a ten wzorzec powtarza się aż do

|2k − 1M⟩ferm. Najważniejsza obserwacja jest taka, że stany o parzystym (nieparzystym) J

odpowiadają odmianie para (orto). Sprzężenie dwóch spinów może być wykonane na (2k)2

sposobów, spośród których
(
2k+1
2

)
stanów należą do odmiany orto, a

(
2k
2

)
do para, co daje

stosunek orto:para równy (2k + 1):(2k − 1).

W przypadku bozonów j = k, k = 1, 2, . . . (pomijając trywialne j = 0). Tym razem

stan |00⟩bos jest symetryczny, (spr.: P̂12 |00⟩bos = (−1)2k |00⟩bos = + |00⟩bos), więc odpowiada

odmianie orto. Widzimy tu przyporządkowanie odwrotne niż dla fermionów: stany o parzy-

stym (nieparzystym) J należą do odmiany orto (para). Analogiczna analiza jak w przypadku

fermionowym wykazuje, że spośród (2k+1)2 stanów
(
2k+2
2

)
należy do odmiany orto, a

(
2k+1
2

)
do para, więc stosunek orto:para wynosi (k + 1):(k).

Zbierając powyższe informacje dla fermionów i bozonów, oraz używając j do określenia

wartości spinu, można zauważyć, że w obu przypadkach ze sprzęgania spinów otrzymujemy
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(2j + 1)2 stanów, z czego
(
2j+2
2

)
należy do odmiany orto, a

(
2j+1
2

)
do odmiany para, więc

stosunek liczby stanów orto:para (j + 1) : (j). Przełóżmy teraz te dość ogólne rozważania

dotyczące odmian orto i para, na przypadki cząsteczek H2 i D2.

Przypadek H2:

j = 12 , J ∈ {0, 1},

dla J = 0, (−1)2j+J = −1 (zgodne z wyprowadzeniem „wprost” (10)), jedna funkcja paraH2,

dla J = 1, (−1)2j+J = +1, zestaw trzech funkcji |1M⟩, M ∈ {−1, 0, 1}, ortoH2,

stosunek orto:para równy 3 : 1.

Przypadek D2:

j = 1, J ∈ {0, 1, 2},

dla J = 0, (−1)2j+J = +1, jedna funkcja ortoD2,

dla J = 1, (−1)2j+J = −1, zestaw trzech funkcji |1M⟩, M ∈ {−1, 0, 1}, paraD2,

dla J = 2, (−1)2j+J = +1, zestaw pięciu funkcji |2M⟩, M ∈ {−2,−1, 0, 1, 2}, ortoD2,

stosunek orto:para równy 2 : 1.

Po ustaleniu parzystości poszczególnych komponentów całkowitej funkcji falowej Ψ pod

wpływem działania operatora zamiany jąder P̂12, możemy przeprowadzić jej pełną analizę.

Części elektronowa i oscylacyjna są zawsze symetryczne. Część rotacyjna wnosi czynnik

(−1)jrot (równanie (4)), natomiast część spinowa czynnik (−1)2jns+Jns (równanie (13)). Należy

przy tym pamiętać, że w przypadku fermionów stany o parzystym Jns odpowiadają odmianie

para, a o nieparzystym Jns odmianie orto. Dla bozonów sytuacja jest odwrotna: parzysty Jns

to odmiana orto, a nieparzysty – para. Wykorzystujemy też fakt, że całkowita funkcja falowa

musi być antysymetryczna dla fermionów oraz symetryczna dla bozonów względem zamiany

identycznych jąder. Ostatecznie otrzymujemy:

P̂12Ψferm = (−1)jrot+2k+1+JnsΨferm = −Ψferm

⇒ jrot + Jns ∈ parzyste:


jrot = 0, 2, . . . para

jrot = 1, 3, . . . orto

(14)

P̂12Ψbos = (−1)jrot+2k+JnsΨbos = Ψbos

⇒ jrot + Jns ∈ parzyste:


jrot = 0, 2, . . . orto

jrot = 1, 3, . . . para

(15)
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W temperaturze pokojowej wodór H2, tzw. wodór normalny, stanowi mieszaninę około

75% ortoH2 i 25% paraH2, co odpowiada stosunkowi degeneracji spinowej 3 : 1 pomiędzy

odmianami orto- i paraH2. W miarę obniżania temperatury równowaga przesuwa się jednak

w stronę parawodoru, ponieważ to właśnie jemu odpowiada najniższy stan rotacyjny j = 0.

W temperaturze skraplania (ok. 20.4 K) niemal wszystkie cząsteczki reprezentują odmianę

para. Konwersja orto–para w warunkach gazowych i ciekłych zachodzi bardzo powoli, co ma

związek z faktem, że w izolowanej cząsteczce przejście to jest zabronione i może występo-

wać jedynie dzięki niezwykle subtelnym efektom, co zostało wykazane w pracy [22]. Proces

konwersji można jednak znacząco przyspieszyć używając katalizatorów, co pozwala w prak-

tyce otrzymać parawodór o wysokiej czystości (wykorzystany m.in. w eksperymencie [14]).

Otrzymanie czystego ortowodoru nie jest możliwe, gdyż zawsze współistnieje on z frakcją

para. W badaniu widma ortoH2–CO [15], problem ten rozwiązano zastosowaniem przez od-

jęcie od widma zarejestrowanego dla wodoru normalnego widma zmierzone dla paraH2. Tak

uzyskany sygnał odpowiadał z dobrym przybliżeniem wyłącznie kompleksowi ortoH2–CO

i umożliwił jego dokładną analizę. W temperaturze pokojowej cząsteczki D2 również wy-

stępują w postaci mieszaniny odmian orto i para, jednak w tym przypadku proporcje są

odmienne niż dla H2, gdyż ortoD2 stanowi około dwie trzecie całej populacji cząsteczek. Ze

względu na to, że najniższy stan rotacyjny jrot = 0 występuje dla odmiany orto, to wraz z

obniżaniem temperatury przewaga cząsteczek należących do odmiany orto rośnie. W bardzo

niskich temperaturach niemal wszystkie cząsteczki D2 reprezentują więc odmianę orto.

II.C. Parametryzacja geometrii kompleksu

Geometrię kompleksu H2–CO można opisać przy użyciu współrzędnych Jacobiego, któ-

re uwzględniają fizyczną rozdzielność podukładów. Taki wybór jest naturalny w przypadku

słabo związanych układów molekularnych i jest powszechnie wykorzystywany w obliczeniach

dynamicznych zarówno dla stanów związanych, jak też rozproszeniowych. Schematyczną de-

finicję tych współrzędnych dla kompleksu H2–CO przedstawiono na rysunku 1.
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Rysunek 1: Współrzędne Jacobiego w układzie H2–CO.

Geometrię kompleksu H2–CO charakteryzujemy przez odległości R, r1, r2 oraz kąty θ1, θ2

i ϕ. Nawiasem mówiąc, w dalszej części pracy wszystkie wielkości związane z cząsteczką H2

będą oznaczane indeksem dolnym 1, a z cząsteczką CO, indeksem dolnym 2. Parametr R

oznacza odległość między środkami mas H2 i CO, r1 i r2 są to odległości międzyatomowe w

podukładach, odpowiednio H2 i CO. Aby zdefiniować kąty θ1, θ2 i ϕ należy wyobrazić sobie oś

z poprowadzoną od środka masy H2 do środka masy CO. Kąty pomiędzy osią z a wektorami

poprowadzonymi od środka masy H2 do atomu H oraz od środka masy CO do atomu C

oznaczono odpowiednio jako θ1 i θ2, natomiast ϕ jest to odpowiedni kąt dwuścienny. Zgodnie

z nomenklaturą obowiązującą dla słabo związanych kompleksów, których przykładem jest

H2–CO, współrzędne R, θ1, θ2 i ϕ nazywamy współrzędnymi międzymolekularnymi, a r1 i

r2 wewnątrzmolekularnymi.

W pracy rozważamy różne izotopologi kompleksu H2–CO. W przypadku D2–CO, śro-

dek masy cząsteczki D2 leży nadal w środku wiązania D–D, więc definicja współrzędnych

Jacobiego nie zmienia się i wyglądają one jak na rys. 1. W przypadku kompleksu HD–CO,

znaczenie r1 i r2 się nie zmieni, nadal będą opisywać odległości między atomami odpowiednio

w pierwszej i drugiej cząsteczce, ale środek masy w cząsteczce HD przesuwa się w stronę ją-

dra deuteru. Dlatego ten sam zestaw wartości (R, θ1, θ2, ϕ) w układzie HD–CO, opisuje inne

położenie jąder w przestrzeni niż w układzie H2–CO. Programy do obliczeń dynamicznych,
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których używamy, wymagają zadania powierzchni energii oddziaływania w odpowiednich dla

rozważanego układu współrzędnych Jacobiego. Tymczasem potencjał energii oddziaływania,

którego będziemy używać w obliczeniach dynamicznych, V23 [23], zdefiniowany jest we współ-

rzędnych Jacobiego dla H2–CO. Dlatego jeśli korzystamy z niego do obliczeń dla HD–CO,

wartości (R, θ1, θ2, ϕ), dla których program wymaga potencjału, musimy „przetłumaczyć” na

odpowiedni zestaw (R′, θ′1, θ′2, ϕ′), z którym zawołamy procedurę generującą wartości ener-

gii oddziaływania z potencjału V23. Procedura takiej transformacji zmiennych jest znana

w literaturze [24, 25], ale w niektórych źródłach opisana jest z błędami [24]. W związku z

tym, na użytek tej pracy, wyprowadzone zostały stosowne wzory, co zostało przedstawione

w następnym podrozdziale.

II.D. Transformacja potencjału energii oddziaływania dla HD–CO

Wyprowadźmy wzory definiujące przekształcenie współrzędnych Jacobiego parametry-

zujących kompleks HD–CO, do układu odniesienia (Jacobiego) właściwego dla komplek-

su H2–CO, w którym zdefiniowana jest powierzchnia energii oddziaływania. Zakładamy, że

punktem wyjścia są współrzędne Jacobiego (R, θ1, θ2, ϕ) zdefiniowane dla układu HD–CO

i że celem jest wyznaczenie odpowiadających im współrzędnych (R′, θ′1, θ′2, ϕ′) w układzie

H2–CO. Rozważamy konfigurację, w której środek masy (SM) cząsteczki CO znajduje się

w początku układu współrzędnych, a SM cząsteczki HD znajduje się na osi z, w odległości

R od początku układu współrzędnych. Zakładamy, że HD leży w płaszczyźnie xz, którą na

rysunku 2 zaznaczono kolorem żółtym. Wektor r⃗ opisujący położenie CO w tym układzie

możemy zapisać we współrzędnych sferycznych jako:

r⃗ = (r sin θ cosϕ) · x̂+ (r sin θ sinϕ) · ŷ + (r cos θ) · ẑ,

gdzie x̂, ŷ, ẑ oznaczają wersory układu współrzędnych. Rzut wersora r̂ = r⃗
r

na oś z pozwala

wyznaczyć cos θ:

cos θ = r̂ · ẑ,

natomiast rzut r̂ na płaszczyznę xy, oznaczony p̂xy, a następnie na oś x, prowadzi do wyra-

żenia na cosϕ:

p̂xy =
r̂ − (r̂ · ẑ)ẑ
sin θ

, p̂xy · x̂ =
r̂ · x̂− cos θ(ẑ · x̂)

sin θ
=
r̂ · x̂
sin θ
= cosϕ.
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Rysunek 2: Układ odniesienia związany ze środkiem masy HD–CO.

W kolejnym kroku wykonujemy obrót układu współrzędnych o kąt η wokół osi y, rys. 3,

tak, aby uzyskać układ odniesienia związany ze środkiem masy H2. Wersory nowego układu

(x̂′, ŷ′, ẑ′) uzyskujemy przez działanie macierzą obrotu Ry(η) na wersory układu pierwotnego:

R̂y(η) =


cos η 0 sin η

0 1 0

− sin η 0 cos η

 . (16)

Zatem otrzymujemy:

x̂′ =


cos η 0 sin η

0 1 0

− sin η 0 cos η




1

0

0

 =

cos η

0

− sin η

 ,

ŷ′ =


cos η 0 sin η

0 1 0

− sin η 0 cos η




0

1

0

 =

0

1

0

 ,

ẑ′ =


cos η 0 sin η

0 1 0

− sin η 0 cos η




0

0

1

 =

sin η

0

cos η

 .

(17)
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Rysunek 3: Układ odniesienia związany ze środkiem masy H2–CO (kolor niebieski) oraz

związany ze środkiem masy HD–CO (kolor czarny).

W nowym układzie współrzędnych wyznaczamy:

cos θ′ =r̂ · ẑ′ = sin θ cosϕ sin η + cos θ cos η,

cosϕ′ =
r̂ · x̂′

sin θ′
=
sin θ cosϕ cos η − cos θ sin η

sin θ′
.

(18)

Ponieważ obrót wykonujemy wokół osi y, więc składowa y wersora r̂ nie ulega zmianie. Zatem

zachodzi równość:

sin θ sinϕ = sin θ′ sinϕ′, (19)

co pozwala wyeliminować zmienną θ′ z równania (18):

cosϕ′ =
(sin θ cosϕ cos η − cos θ sin η) sinϕ′

sin θ sinϕ
,

ctgϕ′ =ctgϕ cos η − ctgθ sin η
sinϕ

.

(20)

Aby powiązać powyższe wyrażenia ze współrzędnymi stosowanymi w naszym opisie ukła-

du, przywołajmy rysunek 1 przedstawiający współrzędne Jacobiego dla H2–CO. Jeśli przyj-

miemy, że wektor r⃗ wskazuje atom węgla, to zachodzi związek θ = π − θ2 (odpowiednio

θ′ = π− θ′2). Mamy również kąt θ1 (i θ′1), który nie został wcześniej zaznaczony na rysunku.
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Rysunek 4: Układy odniesienia z rys. 3 z zaznaczonymi kątami θ1 (θ′1)

Z trójkąta O–SM(H2)–SM(HD), gdzie SM oznacza środek masy danej cząsteczki, odczy-

tujemy zależność:

(π − θ′1) + η + θ1 = π ⇒ θ′1 = θ1 + η. (21)

Oznaczając długość przesunięcia środka masy jako ∆, otrzymujemy z twierdzenia cosinusów:

R′ =
√
R2 +∆2 − 2R∆cos θ1, (22)

natomiast z twierdzenia sinusów:

∆
sin η

=
R

sin(π − θ′1)
=

R

sin θ′1
=

R

sin(θ1 + η)
sin(θ1 + η)
sin η

=
sin θ1 cos η + sin η cos θ1

sin η
=
R

∆

⇒ tg η =
∆sin θ1

R−∆cos θ1
.

(23)

Otrzymana wartość kąta η pozwala wyznaczyć θ′1 na podstawie równania (21), co dopełnia

zbiór wielkości potrzebnych do wykonania transformacji.

Podsumowując, gdy chcemy znać energię oddziaływania w kompleksie HD–CO dla geome-

trii określonej przez wartości współrzędnych Jacobiego (R, θ1, θ2, ϕ) zdefiniowanych dla tego

20



kompleksu, a procedura obliczająca energię oddziaływania dla H2–CO sparametryzowana

jest współrzędnymi Jacobiego właściwymi dla H2–CO, to musimy ją zawołać dla parame-

trów (R′, θ′1, θ′2, ϕ′) zdefiniowanych w następujący sposób:

R′ =
√
R2 +∆2 − 2R∆cos θ1,

θ′1 = θ1 + η, gdzie η = arctg
(
∆sin θ1

R−∆cos θ1

)
,

θ′2 = arc cos (cos θ2 cos η − sin θ2 cosϕ sin η) ,

ϕ′ = arcctg
(
ctgϕ cos η + ctg θ2 +

sin η
sinϕ

)
.

(24)

II.E. Powierzchnie energii oddziaływania o zredukowanym wymiarze

Obliczenia dynamiczne dla różnych izotopologów i odmian spinowych kompleksu H2–CO

zostały w tej pracy wykonane z wykorzystaniem nowej, pełnowymiarowej powierzchni energii

oddziaływania V23 [23], która jest obecnie najdokładniejszą powierzchnią w literaturze. Po-

wierzchnia ta sparametryzowana jest sześcioma współrzędnymi Jacobiego (R, θ1, θ2, ϕ, r1, r2)

zdefiniowanymi w rozdziale II.C. Dysponując taką powierzchnią można przeprowadzić obli-

czenia pełnowymiarowe (6D), ale są one bardzo czasochłonne. W niniejszej pracy skorzysta-

my, w części dotyczącej analizy widm dla ortoH2–CO przeprowadzonej w rozdziałach V i VI,

z wyników takich obliczeń wykonanych przez współpracujących z naszą grupą naukowców z

Kanady, o czym więcej informacji podane zostanie w rozdziale V.

Alternatywą dla pełnowymiarowych obliczeń dynamiki kompleksów van der Waalsa jest

metoda sztywnych rotatorów, w której zakłada się, ze cząsteczki są sztywne. W przepadku

H2–CO obliczenia takie zależą tylko od zmiennych (R, θ1, θ2, ϕ), czyli są czterowymiarowe

(4D). Potencjał używany w takich obliczeniach również musi być 4D, ale można go wybrać na

szereg sposobów. Prace prowadzone w ostatnich latach pokazały, że jeśli użyjemy powierzch-

ni, która powstaje z uśrednienia powierzchni pełnowymiarowej po drganiach jej cząsteczek

[10, 19, 23, 26–28], to otrzymane poziomy oscylacyjno-rotacyjne są bardzo bliskie swoim od-

powiednikom z obliczeń pełnowymiarowych. Tak wysoka zgodność jest prawdziwa zarówno

dla obliczeń stanów związanych [19, 23, 28], jak też dla rozproszeniowych [27]. Postanowi-

liśmy więc wykorzystać przybliżenie sztywnych rotatorów w obliczeniach dla kompleksów,

dla których nie dysponujemy wynikami 6D. Stąd wszystkie obliczenia związane z poszukiwa-

niem rezonansów dla paraH2–CO, ortoH2–CO, HD–CO, ortoD2–CO i paraD2–CO, opisane
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w rozdziale III, oraz obliczenia stanów związanych dla kompleksu ortoD2–CO, przedsta-

wione w rozdziale VII, zostały wykonane w przybliżeniu sztywnych rotatorów z uśrednioną

powierzchnią energii oddziaływania.

W obliczeniach zastosowaliśmy jeszcze jedno przybliżenie. Powierzchnia uśredniona była

obliczana nie bezpośrednio, z wykorzystaniem oscylacyjnych funkcji falowych dla cząsteczek

H2 i CO, ale w ramach przybliżenia Taylora [26]. Jest ono w szczegółach opisane w nieco

szerszym kontekście w rozdziale VIII, ale poniżej przytoczymy jego postać i praktyczne

wzory, których użyliśmy w obliczeniach w obecnej pracy.

Zapiszmy pełnowymiarową powierzchnię energii oddziaływania w postaci V (Q, r1, r2),

gdzie Q reprezentuje współrzędne międzymolekularne {R, θ1, θ2, ϕ}. Wtedy powierzchnia

uśredniona po drganiach cząsteczek, otrzymana z rozwinięcia w szereg Taylora ze względu na

współrzędne wewnątrzmolekularne r1 i r2, do wyrazów drugiego rzędu włącznie, ma postać:

V TEav,v1v2(Q) = V
00(Q) + V10(Q)(⟨r1⟩v1 − r1c) + V 01(Q)(⟨r2⟩v2 − r2c)

+V11(Q)(⟨r1⟩v1 − r1c)(⟨r2⟩v2 − r2c) (25)

+
1
2
V20(Q)(⟨r21⟩v1 − 2r1c⟨r1⟩v1 + r21c) +

1
2
V02(Q)(⟨r22⟩v2 − 2r2c⟨r2⟩v2 + r22c),

gdzie uśrednienie następuje po stanach wibracyjnych odpowiadającym liczbom kwantowym

v1 i v2 odpowiednio dla cząsteczek H2 i CO, a r1c i r2c wskazują geometrie cząsteczek,

wokół których następuje rozwinięcie. Symbole V ij(Q) oznaczają pochodne cząstkowe rzędu

i oraz j funkcji V (Q, r1, r2), odpowiednio względem zmiennych r1 i r2 w punkcie (r1c, r2c) dla

geometrii międzymolekularnej określonej przezQ. Pochodna V00(Q) jest równa V (Q, r1c, r2c),

natomiast pochodne dla i+ j ­ 1 obliczane były w niniejszej pracy z następujących wzorów:

V10(Q) = V (Q, r1c + h1, r2c)− V (Q, r1c − h1, r2c)
2h1

,

V01(Q) = V (Q, r1c, r2c + h2)− V (Q, r1c, r2c − h2)
2h2

,

V20(Q) = V (Q, r1c + h1, r2c)− 2V (Q, r1c, r2c) + V (Q, r1c − h1, r2c)
h21

, (26)

V02(Q) = V (Q, r1c, r2c + h2)− 2V (Q, r2c, r2c) + V (Q, r1c, r2c − h2)
h22

,

V11(Q) = V (Q, r1c+h1, r2c+h2)− V (Q, r1c+h1, r2c)− V (Q, r1c, r2c+h2) + V (Q, r1c, r2c)
h1h2

,

gdzie h1 i h2 oznaczają krok odpowiednio w zmiennych r1 i r2. Aby obliczyć wartość wyra-

żenia (25) musimy znać wartości średnie potęg r1 i r2, gdzie ⟨rni ⟩vi ≡ ⟨χvi |rni |χvi⟩, i = 1, 2,
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a χvi(ri) jest oscylacyjną funkcją falową dla i-tej cząsteczki odpowiadającą stanowi kwanto-

wemu vi.

Wartości tych średnich używane w obecnej pracy zebrane są w tabeli I. W tabeli uwzględ-

nione są tylko stany wibracyjne v1 = 0 oraz v2 = 0 i 1, ponieważ potrzebne były tylko dwie

powierzchnie uśrednione (i) V TEav,00(Q) oraz (ii) V TEav,01(Q), które odpowiadają kompleksowi gdy

(i) obie cząsteczki są w podstawowych stanach wibracyjnych albo (ii) cząsteczka H2 jest w

stanie wibracyjnym podstawowym, a CO pierwszym wzbudzonym. Wartości odległości ric,

i = 1, 2, przyjęliśmy równe ⟨ri⟩vi dla rozważanego przypadku.

W tabeli I pojawiają się różne wartości ⟨rn1 ⟩v1 dla tych samych izotopów wodoru, ale

różniących się odmianą spinową, czyli dla paraH2 i ortoH2, i analogicznie dla paraD2 i

ortoD2. Wyjaśnijmy te różnice na przykładzie pierwszej z tych par. Jak dyskutowaliśmy

w rozdziale II.B, dla paraH2 cząsteczka musi mieć parzystą rotacyjną liczbę kwantową j1,

czego konsekwencją jest fakt, który będzie bliżej opisany w kolejnych rozdziałach, że w opisie

tej cząsteczki w kompleksie używamy funkcji kątowych odpowiadających takiej parzystości,

przy czym zdecydowanie dominujący jest wkład z j1 = 0. Stąd wybór funkcji wibracyjnej

χv1(r1) obliczonej dla cząsteczki H2, która nie rotuje, jest naturalny dla przypadku z paraH2.

Użyliśmy więc funkcji χv1(r1) otrzymanej dla v1 = 0 i j1 = 0. Z kolei dla ortoH2 wartości j1

są nieparzyste, a największe znaczenie w obliczeniach dla kompleksu mają wkłady z j1 = 1.

Stąd w obliczeniach oscylacyjno-rotacyjnych dla ortoH2–CO używaliśmy funkcji wibracyjnej

χv1(r1) obliczonej dla v1 = 0 i j1 = 1. Różnice w otrzymanych powierzchniach V TEav,v1v2 , a w

efekcie w energiach oscylacyjno-rotacyjnych, są subtelne, ale zauważalne [19, 27].

Należy podkreślić, że testy powierzchni otrzymanej z uśrednienia po drganiach cząsteczek

z wykorzystaniem rozwinięcia w szereg Taylora, przeprowadzone dla kompleksów paraH2–

CO i ortoH2–CO pokazały, że wyniki są równie dokładne jak te otrzymane przy pełnym

uśrednianiu [19, 28].

Dzięki temu, że dysponujemy powierzchnią pełnowymiarową V23 [23], to w obliczeniach 4D

przeprowadzonych w ramach tej pracy, mogliśmy wartości potencjałów V TEav,0v2(Q), v2 = 0, 1,

obliczać w locie, tzn. dla konkretnych wartości Q = (R, θ1, θ2, ϕ) obliczane były wartości

pochodnych V ij(Q) ze wzorów (26), a następnie V TEav,0v2(Q) ze wzoru (25).
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Tabela I: Wartości ⟨r1⟩ i ⟨r21⟩ dla różnych izotopologów i odmian spinowych cząsteczki H2 oraz ⟨r2⟩
i ⟨r22⟩ dla różnych wzbudzeń wibracyjnych cząsteczki CO, użyte w konstrukcji powierzchni V TEav,00 i

V TEav,01 według wzoru (25). Jednostką długości jest bohr.

⟨r1⟩ ⟨r21⟩
H2 (para) 1.44874a 2.12705a

H2 (orto) 1.45092b 2.13342b

HD 1.44223b 2.10432b

D2 (orto) 1.43456b 2.07767b

D2 (para) 1.43564b 2.08080b

⟨r2⟩ ⟨r22⟩
CO (v2 = 0) 2.13989c 4.58320c

CO (v2 = 1) 2.15543c 4.65817c

a wartości z pracy [29]
b obliczone z potencjału z pracy [30]
c obliczone z potencjału z pracy [31]
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III. Niskoenergetyczne rezonanse w zderzeniach H2 i CO

Analiza teoretyczna kompleksu ortoH2–CO opublikowana w pracy [15] pokazała, że w wid-

mie obserwowanym w podczerwieni w temperaturze 49 K, jest wiele bardzo intensywnych

linii, które powstają na skutek przejść pomiędzy oscylacyjno-rotacyjnymi stanami kwanto-

wymi, z których przynajmniej jeden jest rezonansem. Aby zrozumieć jak ważne są te linie,

warto spojrzeć na fragment widma przedstawiony na rysunku 5. Naszym punktem odnie-

sienia jest oczywiście widmo doświadczalne. Jeśli w opisie teoretycznym uwzględnilibyśmy

tylko przejścia pomiędzy stanami związanymi dla kompleksu ortoH2–CO (przejścia b-b), to

powstałe widmo wygląda zupełnie inaczej, niż widmo doświadczalne. Dopiero włączenie do

opisu stanów rezonansowych (przejścia b-r, r-b i r-r) pozwala otrzymać widmo, które jest

bardzo podobne do eksperymentalnego i zawiera większość jego cech charakterystycznych.

Nie ma więc wątpliwości, że uwzględnienie w widmie teoretycznym rezonansów jest kluczowe

dla zrozumienia jego eksperymentalnego odpowiednika.
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Rysunek 5: Fragment widma w podczerwieni dla kompleksu ortoH2–CO. Na najwyższym pasku, linią

niebieską, narysowane jest widmo eksperymentalne. Na pozostałych paskach są widma teoretyczne. Linia

czarna reprezentuje widmo, które otrzymamy uwzględniając tylko przejścia pomiędzy stanami związanymi

(b-b). Linia zielona z kolei pokazuje widmo uwzględniające przejścia pomiędzy stanami, z których przynaj-

mniej jeden jest rezonansem (b-r, r-b, r-r). Na najniższym pasku, linią czerwoną narysowane jest pełne widmo

teoretyczne, uwzględniające wszystkie przejścia, bez względu na charakter stanów, pomiędzy którymi zacho-

dzą. Gwiazdki na widmie eksperymentalnym wskazują linie pochodzące od przejść oscylacyjno-rotacyjnych

w nieoddziałującej cząsteczce CO, dla różnych jej izotopologów.
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Jak wspominaliśmy we wstępie, duże zainteresowanie oddziaływaniem H2 z CO wynika w

głównie z zastosowań astrofizycznych i astrochemicznych. Zachodzi potrzeba modelowania

różnych procesów, np. również wspomnianego schładzania obłoków molekularnych. W wielu

z nich kluczowe znaczenia mają efekty rozproszeniowe. Stąd od lat prowadzone są ekspe-

rymenty i obliczenia dla takich właśnie procesów. W badaniach tych analizowano również

zderzenia niskoenergetyczne, ale nieelastyczne, opisujące wzbudzenia rotacyjne CO na skutek

zderzeń z H2 [32–36].

Pytania, na które w tych i innych pracach starali się odpowiedzieć autorzy, implikowa-

ne przez obliczane właściwości, np. całkowite przekroje czynne lub stałe szybkości reakcji,

niekoniecznie są zbieżne z tymi, które interesują nas. Stąd postanowiliśmy zbadać rezonanse

patrząc na nie jak na stany kwazizwiązane aktywne w spektroskopii, dlatego interesowała

nas dokładna charakterystyka poszczególnych rezonansów, czyli ich położenie oraz szerokość.

We wcześniejszych pracach, w których uwzględniano obecność przejść angażujących sta-

ny rezonansowe [15, 16], stosowano do ich znajdowania metodę stabilizacji, która będzie

omówiona później. Niestety, posiada ona pewne ograniczenia i informacje o położeniu re-

zonansów były w niektórych przypadkach mało precyzyjne. Co więcej, trudno było na ich

podstawie oszacować szerokości tych rezonansów. Postanowiliśmy więc do opisu interesują-

cych nas rezonansów użyć metod typowo rozproszeniowych, które zostaną przedstawione w

dalszej części tego rozdziału.

Badania rezonansów w kontekście widm kompleksów nie są prowadzone rutynowo. Według

naszej wiedzy, jedynym w zasadzie kompleksem o zbliżonym stopniu złożoności do H2–CO,

dla którego prowadzono podobne rozważania, jest kompleks H2–H2 [37–40]. Wynika to z fak-

tu, że w przepadku tego dimeru i jego izotopologów jest bardzo niewiele stanów związanych,

a w widmie jest wiele sygnałów od przejść angażujących stany kwazizwiązane.

W związku z tym, że w naszej grupie badawczej rozważamy widma różnych izotopo-

logów i odmian spinowych kompleksu H2–CO, badania rezonansów wykonałem dla pięciu

przypadków: paraH2–CO, ortoH2–CO, ortoD2–CO, paraD2–CO i HD–CO. W rozdziale IV

przedstawimy otrzymane wyniki, w tym przede wszystkim energie znalezionych rezonansów

oraz ich szerokości, ale także omówimy w szczegółach różne pojawiające się w obliczeniach

problemy. Postaramy się także zwrócić uwagę na ewentualne cechy wspólne zależności prze-

krojów czynnych od energii zderzeń dla rozważanych przypadków. Informacje o rezonansach

dla ortoH2–CO i ortoD2–CO wykorzystaliśmy do skutecznych analiz widm dla tych kom-

pleksów i zostaną zaprezentowane w rozdziałach VI i VII.
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III.A. Zderzenia - teoria

Większość wyników obliczeń oscylacyjno-rotacyjnych przedstawionych w tej pracy uzyska-

no w przybliżeniu sztywnych rotatorów, w którym zmienne opisujące rozciąganie cząsteczek

H2 i CO są zamrożone. Oznacza to, że długości ich wiązań nie zmieniają się w trakcie ruchu, a

dynamika układu sprowadza się do obrotów monomerów oraz ruchu względnego ich środków

mas. W takim przypadku do opisu dynamiki układu wystarczają zmienne (R, θ1, θ2, ϕ) i pro-

blem dynamiczny redukuje się do czterech wymiarów. Odpowiednie równanie Schrödingera

jest dzięki temu znacznie prostsze. Jeśli w dalszej części pracy odnosić się będziemy do wyni-

ków obliczeń pełnowymiarowych, zostanie to wyraźnie zaznaczone przez dodanie oznaczenia

6D.

Teoria zderzeń cząsteczek w ramach przybliżenia sztywnych rotatorów jest dość obszernie

przedstawiona w literaturze, np. [41–46], przypomnijmy jednak poniżej w sposób syntetyczny

kluczowe zagadnienia, wprowadzając jednocześnie najważniejsze terminy przydatne w póź-

niejszej dyskusji obliczeń i ich wyników. Potencjał opisujący ruch w przybliżeniu sztywnych

rotatorów zadany jest przez powierzchnię energii oddziaływania. Hamiltonian dla ruchu jąder

kompleksu przyjmuje postać:

Ĥ = − ℏ2

2µR
∂2

∂R2
R +

l2

2µR2
+Bv11 j

2
1 +B

v2
2 j
2
2 + V (R, θ1, θ2, ϕ)

= − ℏ2

2µR
∂2

∂R2
R +

l2

2µR2
+ ĥ1 + ĥ2 + V (R, θ1, θ2, ϕ),

(27)

gdzie µ to masa zredukowana kompleksu, j1 i j2 są operatorami momentu pędu odpowiednio

dla H2 i CO, a Bv11 oraz Bv22 to odpowiadające im stałe rotacji w stanach oscylacyjnych v1 i

v2. Operator l opisuje moment pędu związany z obrotem wokół osi prostopadłej do prostej

łączącej środki mas oddziałujących cząsteczek, poprowadzonej przez środek masy całego

kompleksu (z ang. end-over-end angular momentum).

Pierwszy człon w równaniu (27) odpowiada za ruch radialny podukładów względem siebie,

drugi za rotację kompleksu jako całości, a kolejne dwa za obroty poszczególnych cząsteczek.

Potencjał V (R, θ1, θ2, ϕ) zależy jedynie od współrzędnych międzymolekularnych. Z punktu

widzenia formalizmu teorii zderzeń warto wprowadzić oznaczenie ĥi, operatora energii we-

wnętrznej monomeru i. W omawianym modelu sztywnych rotatorów mamy ĥi = Bvii j
2
i , a
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jego wartości własne oznaczamy dalej jako Ei = Bvii ji(ji + 1). Oczywiście, energie te zależą

od rozważanego stanu vi, ale chwilowo pomińmy ten indeks w oznaczeniu Ei.

Celem teorii zderzeń jest rozwiązanie równania własnego

ĤΨ = EΨ, (28)

gdzie E to energia całkowita układu, będąca sumą energii wewnętrznej monomerów oraz

energii kinetycznej zderzenia Ecol (collision):

E = Ecol + E1 + E2.

W przeciwieństwie do zagadnienia dla stanów związanych, w którym celem jest wyznaczenie

dyskretnych wartości własnych E, obliczenia rozproszeniowe przeprowadza się dla zadanej

wartości energii całkowitej.

Niech R̂1 i R̂2 będą wersorami opisującymi orientację przestrzenną cząsteczek H2 i CO.

Jeśli oznaczymy przez R wektor łączący środki mas tych dwóch cząsteczek, a przez R = |R|

jego długość, to możemy wprowadzić wersor R̂ = R/R. Funkcję falową układu można wów-

czas zapisać w postaci:

Ψ(R̂1, R̂2,R) = R−1
∑
Λ

fΛ(R) IΛ(R̂1, R̂2, R̂), (29)

gdzie Λ ≡ {JMj1j2j12l} oznacza zbiór indeksów definiujących funkcje bazy kątowej IΛ.

Wielkości J i M to odpowiednio wartość całkowitego momentu pędu i jego rzut na oś z,

natomiast j1, j2, j12 oraz l to wartości własne operatorów j1, j2, j1 + j2 oraz l. Funkcje IΛ

skonstruowane są z posprzęganych harmonik sferycznych i mają postać:

IΛ(R̂1, R̂2, R̂) =
∑
m12,m

⟨j12m12, lm|JM⟩ Ylm(R̂)

×
∑
m1,m2

⟨j1m1, j2m2|j12m12⟩ Yj1m1(R̂1)Yj2m2(R̂2),
(30)

gdzie m, m1, m2 i m12 to liczby kwantowe rzutów odpowiednich operatorów momentu pędu,

a ⟨l1m1, l2m2|lm⟩ są współczynnikami Clebscha–Gordana.

Tak skonstruowane funkcje bazowe spełniają warunek ortonormalności:∫
dΩ I∗Λ(R̂1, R̂2, R̂) IΛ′(R̂1, R̂2, R̂) = δJJ ′δMM ′δj1j′1δj2j′2δj12j′12δll′ , (31)

co dla uproszczenia zapisu oznaczamy dalej jako δΛΛ′ . Podstawienie powyższej postaci funkcji

falowej oraz hamiltonianu (27) do równania Schrödingera prowadzi do układu sprzężonych

równań różniczkowych względem R, których niewiadomymi są funkcje fΛ(R) numerowane
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zbiorami indeksów Λ. W praktyce funkcje fΛ(R) wyznaczano na siatce punktów w zmiennej

radialnej R metodą sprzężonych kanałów (coupled-channels method).

W tym miejscu warto uczynić pewną uwagę związaną z terminologią. W literaturze z

zakresu teorii zderzeń pojęcie kanał najczęściej odnosi się do asymptotycznego stanu zde-

rzających się cząsteczek, czyli konfiguracji określonej przez ich wewnętrzne stany kwantowe

(tutaj j1 i j2). W metodzie sprzężonych kanałów natomiast kanał definiowany jest przez

pełny zbiór indeksów Λ, obejmujący również liczby wynikające ze sprzęgania momentów

pędu. Z tego względu warto odróżniać kanał asymptotyczny, związany jednoznacznie z ener-

gią wewnętrzną monomerów, od kanału sprzężonego, który opisuje funkcje bazy kątowej w

rozwinięciu funkcji falowej układu. W dalszej części omawiania problemów zderzeniowych,

będziemy używać terminu otwarcie nowego kanału (asymptotycznego), zdefiniowanego przez

(j1, j2). Rozumiemy przez to, że energia jest wystarczająco duża, aby taki kanał był energe-

tycznie dostępny (dyskusja w rozdziale IV.B).

Po wstawieniu rozwinięcia funkcji falowej (29) do równania Schrödingera z hamiltonianem

zdefiniowanym w (27), przemnożeniu z prawej strony przez I∗Λ(R̂1, R̂2, R̂) oraz całkowaniu

po zmiennych kątowych Ω, otrzymujemy układ sprzężonych równań różniczkowych postaci[
d2

dR2
− l(l + 1)

R2
+ Ecol

]
fΛ(R) =

∑
Λ′
VΛΛ′fΛ′(R), (32)

gdzie Ecol =
2µ
ℏ2
Ecol, a VΛΛ′(R) są elementami potencjału sprzęgającymi kanały IΛ.

VΛΛ′(R) =
2µ
ℏ2
∫
dΩ I∗Λ(R̂1, R̂2, R̂) [V (R, θ1, θ2, ϕ)] IΛ′(R̂1, R̂2, R̂). (33)

Równanie (32) można zapisać w postaci macierzowej jako

Hf = Vf , (34)

gdzie f to wektor rozwiązań fΛ(R), a elementy macierzy H oraz V dane są wzorami

(H)ΛΛ′ =
[
d2

dR2
− l(l + 1)

R2
+ Ecol

]
δΛΛ′ , (35)

(V)ΛΛ′ = VΛΛ′(R). (36)

Jeśli rozwinięcie funkcji falowej Ψ zawiera N wyrazów o różnych wartościach Λ, to nałożenie

warunku brzegowego f(R→ 0) = 0 prowadzi do N liniowo niezależnych rozwiązań, które

można zorganizować w macierz rozwiązań F(R). Wówczas układ równań można zapisać w

postaci

HF = VF. (37)
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W granicy R → ∞, gdzie potencjał oddziaływania staje się zaniedbywalnie mały, układ

równań przyjmuje postać opisującą cząstkę swobodną. Rozwiązanie asymptotyczne można

wyrazić jako kombinację funkcji Ricattiego-Bessela:

F(R) = J(R) +N(R)K, (38)

gdzie J(R) oraz N(R) to diagonalne macierze zawierające odpowiednio funkcje Ricattiego-

Bessela pierwszego i drugiego rodzaju:

(J)ΛΛ′ = ĵl(kΛR)δΛΛ′ , (39)

(N)ΛΛ′ = n̂l(kΛR)δΛΛ′ , (40)

a k2Λ = Ecol to asymptotyczny wektor falowy w kanale Λ.

Macierz K zawiera współczynniki względnych amplitud funkcji ĵl i n̂l w asymptotyce. Jej

znajomość pozwala wyznaczyć macierz rozpraszania S za pomocą transformacji

S = (I+ iK)−1(I− iK), (41)

gdzie I to macierz jednostkowa. Macierz S koduje amplitudy przejść pomiędzy kanałami

asymptotycznymi i stanowi główny wynik obliczeń w metodzie kanałów sprzężonych. Nazwa

metody sprzężonych kanałów wynika z faktu, że pojawiają się w niej elementy macierzowe

VΛΛ′ .

Okazuje się, że te elementy macierzowe VΛΛ′ znikają, jeśli IΛ′ i IΛ różnią się liczbą

kwantową całkowitego momentu pędu J lub wartością parzystości spektroskopowej P =

(−1)J+j1+j2+l. Stąd sprzężone są tylko te równania różniczkowe (32), dla których Λ i Λ′ mają

te same wartości J i P , więc cały problem podzielony jest na bloki symetrii o ustalonych

wartościach J i P , co często zapisujemy JP . Każdy podukład sprzężonych równań różniczko-

wych, odpowiadający blokowi symetrii, jednoznacznie charakteryzowany przez wartość JP ,

można rozwiązywać niezależnie. W związku z tym, każda funkcja falowa ma jednoznacznie

ustalone wartości J i P , więc można je uznać za liczby kwantowe.

Warto zwrócić uwagę, że parzystość spektroskopowa P , której wartości w literaturze ozna-

czane są e (dla P = +1) lub f (dla P = −1), różni się od terminu parzystości stosowanej w

fizyce, oznaczanej jako p, która opisuje zachowanie się funkcji falowej, gdy transformujemy

zmienne przestrzenne q⃗ → −q⃗. W wyniku tej operacji stany mogą nie zmieniać znaku i wów-

czas mówimy, że są parzyste (even, p = +1), albo mogą zmieniać znak i wtedy nazywamy je

nieparzystymi (odd, p = −1). Wielkości P i p powiązane są równaniem P = (−1)Jp.
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W niniejszej pracy będziemy korzystać z obu tych pojęć, w zależności od wygody czy

tradycji. Na przykład, symetrie funkcji falowych oznaczać będziemy podając wartość P ,

pozostając w zgodzie z konwencją przyjętą w programach do obliczeń dynamicznych MOLSCAT

i BOUND. Z kolei użycie wartości p będzie wygodne przy definiowaniu reguł wyboru.

Wyznaczenie macierzy rozpraszania S umożliwia wyrażenie cząstkowych przekrojów czyn-

nych na przejścia między kanałami asymptotycznymi. Kanały asymptotyczne są identyfi-

kowane przez rotacyjne liczby kwantowe monomerów (j1, j2). Przyczynek do cząstkowego

przekroju czynnego na przejście (j′1, j′2)→ (j1, j2) od fali parcjalnej o całkowitym momencie

pędu J wyraża wzór

σJ(j′1,j′2)→(j1,j2) =
(2J + 1)

(2j′1 + 1)(2j′2 + 1)
π

k2Λ′

∑
Λ

∑
Λ′
|δΛΛ′ − SΛΛ′ |2 , (42)

gdzie suma przebiega po wszystkich kanałach odpowiadających zadanym trójkom (J, j1, j2)

oraz (J, j′1, j′2).

Z punktu widzenia mojej pracy, to właśnie przekroje czynne są najważniejszą wielkością,

z której wydobywam informację o stanach rezonansowych. Będziemy analizować wykresy

prezentujące wartości σJ(j′1,j′2)→(j1,j2) jako funkcję energii dla różnych odmian spinowych i

izotopologów H2–CO. Ograniczymy się tylko do zderzeń elastycznych, gdy (j′1, j′2) = (j1, j2).

Wtedy kanały możemy charakteryzować podając tylko wartości (J, j1, j2).

Najczęściej zresztą, jeśli nie będzie to prowadziło do nieporozumień, będziemy używać

jeszcze krótszej notacji (j1, j2). Ponieważ zazwyczaj na jednym rysunku będą zebrane wy-

kresy dla wielu wartości J oraz różnych kanałów, więc dla przekroju czynnego będziemy

stosować bardzo ogólne oznaczenie σ.

III.B. Stany rezonansowe

Po wyznaczeniu przekrojów czynnych jako funkcji energii, można zidentyfikować stany

rezonansowe kompleksu, które ujawniają się jako ostre piki w tych przekrojach. Fizycznie

odpowiadają one sytuacjom, w których podczas zderzenia cząstki tworzą stan przejściowy,

podobny do stanu związanego, o ograniczonym czasie życia – stan kwazizwiązany.

Z punktu widzenia obliczeń, obecność rezonansu identyfikuje się poprzez analizę przekro-

jów czynnych lub przesunięcia fazowego w funkcji energii. Wynikiem obliczeń zderzeniowych

jest macierz S, która w przypadku rozpraszania jednokanałowego redukuje się do liczby

zespolonej o module równym jeden:

S(E) = e2iδ(E),
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gdzie δ(E) oznacza przesunięcie fazowe (ang. phase shift).

W pobliżu stanu rezonansowego δ(E) zmienia się gwałtownie o około π. Energia, dla

której obserwuje się tę zmianę, odpowiada pozycji rezonansu Eres. Zakres energii, w którym

występuje skok przesunięcia, zależy od szerokości rezonansu Γ. Przebieg δ(E) w otoczeniu

Eres opisuje wzór Breita–Wignera:

δ(E) = δtło(E)− arctg
(
Γ/2

E − Eres

)
, (43)

gdzie δtło(E) oznacza powoli zmieniające się tło.

W dalszych rozważaniach przyjmujemy δtło(E) = δtło, czyli w otoczeniu rezonansu tło

traktowane jest jako stałe. W przypadku rozpraszania wielokanałowego relacja analogiczna

do (43) obowiązuje dla tzw. eigenphase sum [47]

a(E) = atło − arctg
(
Γ/2

E − Eres

)
, (44)

gdzie atło oznacza powoli zmieniające się tło, a

a(E) =
∑
Λ

δΛ(E) (45)

to ślad macierzy A(E) uzyskanej z diagonalizacji unitarnej i symetrycznej macierzy S(E),

zgodnie z równaniem:

S(E) = B(E)A2(E)BT(E). (46)

Macierz A(E) jest diagonalna i ma postać (A)ΛΛ′(E) = eiδΛ(E)δΛΛ′ , a B(E) jest unitarną

macierzą diagonalizacji.

III.C. Identyfikacja stanów rezonansowych na podstawie obliczeń zderzenio-

wych

W celu identyfikacji stanów rezonansowych kompleksu H2–CO przeprowadzona została

szczegółowa analiza przekrojów czynnych dla ustalonych wartości całkowitego momentu pę-

du i parzystości: JP . Wykonano serię obliczeń w zakresie energii od 0 do kilkunastu cm−1

(uszczegółowione w rozdziale IV) na siatce energii z krokiem równym 0.01 cm−1 wykorzystu-

jąc program MOLSCAT [46]. Po uzyskaniu danych przekroje czynne zostały poddane inspekcji

w celu identyfikacji charakterystycznych cech, w szczególności ostrych pików stanowiących o

obecności stanów rezonansowych.

Aby znaleźć dokładne położenie rezonansu i jego szerokość wykorzystano odpowiednią

procedurę zaimplementowaną w programie MOLSCAT [48]. Wymaga ona, aby w miejscach,
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w których zaobserwowano pik znamionujący rezonans, wybrać trzy energie w bezpośred-

nim otoczeniu takiego piku. Punkty te służą jako dane wejściowe do procedury. Algorytm

w pierwszym kroku wykonuje dopasowanie parametrów atło, Γ oraz Eres z równania (44)

przez rozwiązanie układu trzech równań z trzema niewiadomymi. Następnie automatycznie

wyznaczany jest nowy zestaw punktów na osi energii: jeden blisko środka rezonansu, a dwa

pozostałe po przeciwnych stronach i w większej odległości. Dla nowych punktów wykonywane

są kolejne obliczenia zderzeniowe, a uzyskane dane służą do odświeżenia oszacowania pozy-

cji, szerokości i tła rezonansu. Procedura ta pozwala na dokładne wyznaczenie parametrów

rezonansowych bez potrzeby ręcznej interwencji w dobór energii. W większości przypadków,

algorytm działa dobrze, ale ma również pewne bezpośrednie ograniczenia techniczne (zwią-

zane z kodem) i pośrednie (związane z siatką energii), które należy uwzględnić w analizie.

Jednym z problemów jest sytuacja, w której charakteryzowany rezonans znajduje się bli-

sko progu otwarcia nowego kanału (asymptotycznego). W trakcie iteracyjnego wybierania

punktów energetycznych w procedurze, algorytm może przekroczyć ten próg, co wiąże się

z dostępnością większej liczby kanałów, a w efekcie ze zmianą rozmiaru macierzy S(E).

Ponieważ rozmiar macierzy jest przekazywany jako parametr do dalszych części kodu, je-

go zmiana może prowadzić do niezgodności w alokacji pamięci lub w długościach pętli. W

rezultacie istnieje ryzyko przerwania działania programu. W trakcie badań nie wprowadza-

no modyfikacji do kodu tej procedury. Problem omijano przez dobór energii wejściowych

tak, by uniknąć przekroczenia progu zmieniającego liczbę kanałów. Należy w tym miejscu

przyznać, że rozwiązanie to miało charakter tymczasowy i należałoby w przyszłości usunąć

źródło problemu w kodzie, zamiast polegać na obejściu tej wady na poziomie użytkownika i

manipulacji danymi wejściowymi.

Drugie ograniczenie nie jest związane bezpośrednio z algorytmem, lecz raczej z wyborem

punktów startowych. Może się bowiem zdarzyć, że wybrana siatka energii, dla której wyko-

nywane są wstępne obliczenia jest zbyt rzadka i rezonans w całości „przypadnie” pomiędzy

jej punktami. Brak widocznych, charakterystycznych dla rezonansów, śladów w przebiegu

przekrojów czynnych spowoduje, że użytkownik nie zidentyfikuje zakres energii, który powi-

nien zostać poddany dalszej analizie z wykorzystaniem algorytmu. Oczywiście, czas trwania

obliczeń zależy od liczby punktów, więc trzeba znaleźć kompromis pomiędzy ekonomią (cza-

sem) i rozdzielczością (długością kroku energetycznego). Problem ten ma istotne znaczenie

praktyczne w naszym szczególnym przypadku widm kompleksu H2–CO, ponieważ wąskie

stany rezonansowe odgrywają kluczową rolę w interpretacji widm omawianych w kolejnych
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częściach pracy. W celu rozwiązania tego problemu sięgnęliśmy po pomoc w postaci alterna-

tywnej metody identyfikacji stanów kwazizwiązanych − metodę stabilizacji [49].

W naszym przypadku metoda stabilizacji zrealizowana została w następujący sposób. Wy-

korzystaliśmy fakt, że do obliczeń stanów związanych dla H2–CO, wykonanych w przybliżeniu

sztywnych rotatorów, używaliśmy programu BOUND [46], który jest siostrzanym programem

dla programu MOLSCAT. To „pokrewieństwo” wynika z historii powstania, BOUND powstał na

bazie MOLSCATa, ale przede wszystkim z wykorzystaniem podobnego formalizmu. Równania,

które należy rozwiązać w obliczeniach stanów związanych, mają postać analogiczną jak w

przypadku zderzeń, jednak różnią się warunkami brzegowymi. Dla stanów związanych wy-

maga się spełnienia warunku fΛ(R) → 0 zarówno dla R → 0, jak i dla R → ∞. Jeśli

potencjał asymptotycznie dąży do zera, to stany związane mają energie mniejsze od zera. W

praktyce warunki brzegowe nakładane są na Rmin i Rmax, które wybierane są w obszarach

klasycznie niedostępnych. Inne niż w rozpraszaniach jest też to, że funkcję falową propa-

gujemy w kierunku rosnących wartości R startując z Rmin oraz w kierunku malejących R

startując z Rmax, a następnie sprawdzamy warunek zgodności w pewnym punkcie Rmatch,

gdzie Rmin < Rmatch < Rmax, który osiągnięty jest, gdy funkcja próbna, dla której robi-

my propagację, jest funkcją własną. Tak zdefiniowane granice wyznaczają długość pudła w

obliczeniach:

L = Rmax −Rmin. (47)

Jak wspominaliśmy wcześniej, tylko rozwiązania o ujemnej energii reprezentują stany

związane. Nie ma jednak formalnych przeszkód, aby analizować również rozwiązania dla

E > 0. Wśród nich znajdują się zarówno stany z kontinuum, które przypadkowo spełniają

warunki brzegowe (ich funkcje falowe mają charakter oscylacyjny), jak i stany rezonansowe,

które są dla nas interesujące. Aby je od siebie odróżnić, obliczenia wykonuje się kilkukrot-

nie, zmieniając długość pudła L. To właśnie L jest wprowadzanym w metodzie stabilizacji

parametrem pomocniczym, który nie jest fizyczną zmienną układu, ale istotnie wpływa na

proces numerycznego rozwiązywania problemu, np. przez narzucone warunki brzegowe [49].

Wykonując obliczenia, w zakresie energii dodatnich, dla kilku wartości L, można zaobser-

wować dwie grupy rozwiązań: jedną, w której energie znacząco się zmieniają przy zmianie

L, oraz drugą, zawierającą energie, których wartości w niewielkim stopniu zależą od L. Im

mniej zmiana długości pudła L wpływa na energię stanu, tym większe jego podobieństwo do

stanu związanego.

Z punktu widzenia obliczeń zderzeniowych jest to obserwacja bardzo użyteczna. W meto-
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dzie stabilizacji najłatwiej zidentyfikować rezonanse bardzo wąskie, czyli takie, które z du-

żym prawdopodobieństwem mogą być przeoczone w analizie przekrojów czynnych. Z drugiej

strony, przy dużej długości pudła, w rozwiązaniach pojawia się wiele stanów z kontinuum,

co utrudnia identyfikację stanów rezonansowych o większej szerokości. Te są z kolei dobrze

widoczne w przekrojach czynnych, czyli łatwo je znaleźć z obliczeń rozproszeniowych, które

pozwalają również precyzyjnie oszacować szerokość rezonansów. Oznacza to, że obie metody,

jedna oparta na obliczeniach zderzeniowych z analizą przekrojów czynnych, a druga na obli-

czeniach stanów związanych metoda stabilizacji, mają charakter komplementarny i wspólnie

umożliwiają pełny opis struktury rezonansowej.

III.D. Szczegóły obliczeniowe

Wykonując obliczenia rozproszeniowe programem MOLSCAT należy określić szereg para-

metrów numerycznych. Po pierwsze, podaje się masę zredukowaną kompleksu µ. Badaliśmy

kilka izotopologów H2–CO, więc używaliśmy odpowiednie wartości dla każdego przypadku,

podane w tabeli II. W tej tabeli znajdują się też wartości używanych stałych rotacji dla obu

cząsteczek. Od rozważanego izotopologu zależą też stałe rotacji Bv11 cząsteczki H2, natomiast

dla CO mamy dwie stałe rotacji Bv22 , gdyż cząsteczka CO była w jednym z dwóch stanów

oscylacyjnych v2 = 0 lub 1. Oprócz tego konieczny jest wybór wartości Rmin, Rmax oraz kroku

propagacji ∆R, związanych z zakresem rozwiązywania równań. W obliczeniach zastosowano:

Rmin = 2.30 Å, Rmax = 40.00 Å i ∆R = 0.02 Å. Z kolei rozwinięcie funkcji falowej w ba-

zie kątowej (30) wymagało określenia zbioru wartości j1 i j2. Dla kompleksów paraH2–CO i

ortoD2–CO przyjęto j1 = {0, 2}, dla HD–CO: j1 = {0, 1, 2}, a dla ortoH2–CO i paraD2–CO:

j1 = {1, 3}. Zakres j2 był identyczny dla wszystkich układów i wynosił j2 = {0, . . . , 12}.

Ostatnie parametry, które należy zadać, związane są z rozwijaniem potencjału w programie.

Potencjał V (R, θ1, θ2, ϕ) w programie MOLSCAT (podobnie w BOUND) reprezentowany jest w

postaci [41]

V (R, θ1, θ2, ϕ) =
∑
λ1,λ2,λ

vλ1,λ2,λ(R)
min(λ1,λ2)∑

µ=−min(λ1,λ2)
⟨λ1µ, λ2 − µ|λ0⟩

√
2λ+ 1
4π

×Nµλ1N
−µ
λ2
P µλ1(cos θ1)P

−µ
λ2
(cos θ2)eiµϕ,

(48)

gdzie Nml to czynnik normalizacyjny harmoniki sferycznej Y ml , a Pml to stowarzyszone wielo-

miany Legendre’a. Maksymalne wartości λ1 i λ2, wyznaczające długość rozwinięcia, przyjęto

równe 12. Indeks λ związany jest ze sprzęganiem się λ1 i λ2, a stąd wynika ograniczenie na
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jego wartości. Ze względu na symetrię układów zawierających cząsteczkę H2 (lub D2), do-

zwolone są jedynie wartości parzyste λ1. W programie jest to uwzględniane automatycznie,

na podstawie zadanej opcji. W przypadku cząsteczki HD nie obowiązuje symetria względem

wymiany jąder, więc w rozwinięciu występują zarówno nieparzyste jak i parzyste wartości λ1.

W prezentowanych dalej wynikach energie odnoszone są do progu odpowiadającego naj-

niższemu asymptotycznemu kanałowi rozpraszania. Energia kanału dana jest wyrażeniem:

Bv11 j1(j1 + 1) +B
v2
2 j2(j2 + 1). (49)

Dla układów paraH2–CO, HD–CO i ortoD2–CO minimalna wartość tego wyrażenia wynosi

zero, dlatego energia względem progu pokrywa się z całkowitą energią Etot. W przypad-

ku ortoH2–CO i paraD2–CO najniższy kanał ma energię 2Bv11 , dlatego skala energetyczna

stosowana dla tych kompleksów jest przesunięta zgodnie ze wzorem:

Ertot = Etot − 2Bv11 , (50)

gdzie indeks górny w Ertot wskazuje, że jest to energia względna. Aby zmniejszyć czas obli-

czeń, wstępne przeszukanie energii w celu znalezienia rezonansów wykonywano w zredukowa-

nej bazie funkcji kątowych, ponieważ na tym etapie nie była wymagana pełna dokładność.

Zastosowano ten sam zestaw wartości j1, natomiast rozwinięcie względem ograniczono do

przedziału j2 = {0, . . . , 10}, a wartości λ1 i λ2 były ograniczone z góry przez 10. Dodatkowo

zwiększono krok propagacji do ∆R = 0.05 Å. Taka konfiguracja umożliwia szybkie wytypo-

wanie przedziałów energii zawierających potencjalne rezonanse. Na etapie charakterystyki

stanów rezonansowych obliczenia wykonywane były z większą dokładnością, co zostało za-

pewnione poprzez użycie parametrów opisanych wcześniej. Pozwoliło to na precyzyjną analizę

struktury rezonansowej. W tabeli II zebrano informację o kluczowych parametrach użytych

w obliczeniach.

Tabela II: Parametry programów MOLSCAT i BOUND wykorzystywane w obliczeniach dynamicznych

dla wszystkich rozważanych odmian spinowych i izotopologów kompleksu H2–CO.

układ µ [a.u.] B01 [cm−1] B02/B
1
2 [cm−1] baza j1 baza j2

paraH2–CO
1.88027 59.322

1.9225/1.9050

{0, 2}

{0, 1, . . . , 12}

ortoH2–CO {1, 3}

ortoD2–CO
3.52149 29.9037

{0, 2}

paraD2–CO {1, 3}

HD–CO 2.72750 44.662 {0, 1, 2}
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IV. Rezonanse w zderzeniach kompleksów H2–CO

IV.A. Rezonanse w interpretacji widm

Powróćmy na chwilę do rysunku 5 ilustrującego znaczenie stanów rezonansowych dla wid-

ma ortoH2–CO, który był wstępnie omówiony na początku rozdziału III, i przeanalizujmy

go nieco bardziej szczegółowo. Na górnym panelu tego rysunku przedstawiono widmo ekspe-

rymentalne (niebieska linia). Zwróćmy uwagę na cztery obszary zacieniowane na niebiesko

i oznaczone literami od A do D. Drugi panel od góry na rys. 5 zawiera widmo teoretyczne

(linia czarna) wygenerowane z uwzględnieniem tylko przejść pomiędzy stanami związanymi

(typu bound–bound, b-b). Pozycja kilku pików dość dobrze zgadza się z widmem doświad-

czalnym, ale w zaznaczonych obszarach pojawiają się istotne różnice:

− Obszary A i B: w eksperymencie obserwowane są intensywne pojedyncze piki, które są

całkowicie nieobecne w symulacji; widmo jest tam niemal płaskie.

− Obszary C i D: eksperyment wskazuje na obecność kilku pików, natomiast symulacja

odtwarza tylko ich część.

Trzeci panel przedstawia widmo (zielona linia) zawierające przejścia z udziałem przy-

najmniej jednego stanu rezonansowego (bound–resonance, resonance–bound lub resonance–

resonance, symbolicznie b-r, r-b i r-r). Dodatkowa szara linia pokazuje poprzedni wariant

widma typu b-b. W najniższym panelu zaprezentowano pełne widmo teoretyczne, czyli su-

mę sygnałów prezentowanych w dwóch środkowych panelach. Widać, że wcześniej brakujące

struktury zostają skutecznie odtworzone po uwzględnieniu rezonansów.

Warto podkreślić, że w przypadkach takich jak prezentowane w obszarach A lub B na

rys. 5, gdzie w widmie eksperymentalnym pojawia się pojedynczy, wyraźny pik, nie wystę-

pują żadne cechy, które wskazywałyby jednoznacznie na to, że jest on wynikiem przejścia

z udziałem stanu rezonansowego. W szczególności brak jest charakterystycznego poszerze-

nia linii, często kojarzonego ze stanami kwazizwiązanymi. Tego rodzaju sygnały są łudząco

podobne do typowych przejść między stanami związanymi, a to może prowadzić do błędnej

interpretacji widma doświadczalnego. Jedną z konsekwencji kłopotów z rozróżnieniem sygna-

łów pochodzących od rezonansów od tych wynikających tylko ze stanów związanych, może

być np. błędne oszacowanie energii dysocjacji dla kompleksu. Z kolei obserwacje z obszarów

C i D pokazują, że przejścia angażujące rezonanse mogą występować obok przejść typu b-b,

tworząc wspólnie złożoną strukturę linii. W takich przypadkach, gdy różne przejścia nakła-

dają się na siebie, a przejścia rezonansowe nie różnią się wizualnie od związanych, ustalenie
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ich rzeczywistego charakteru staje się wyjątkowo trudne. W przypadku widma teoretyczne-

go posiadamy pełną informację na temat tego, czy dany poziom energetyczny jest związany

czy rezonansowy. W konsekwencji znamy pochodzenie każdego przejścia i możemy tę infor-

mację wykorzystać analizując widmo doświadczalne. Oczywiście, warunkiem takiej pełnej

kontroli ze strony teorii jest użycie bardzo dokładnej powierzchni energii oddziaływania oraz

wykonanie obliczeń dynamicznych z dużą dokładnością, niezależnie czy dotyczy to stanów

związanych, czy rezonansów. Dlatego w moich badaniach włożyłem dużo wysiłku w bardzo

precyzyjną charakteryzację rezonansów, aby informacja o nich była równie dokładna, jak

o stanach związanych. Warunek ten nie był spełniony we wcześniejszych pracach dotyczą-

cych widm kompleksu H2–CO, w których informację o rezonansach otrzymywano z metody

stabilizacji.

Porównując widmo teoretyczne przedstawione w ostatnim panelu rys. 5 z widmem do-

świadczalnym widać, że sensownie odtworzone są nie tylko pozycje przejść, ale także ich

intensywności oraz kształt całego widma, z uwzględnieniem efektów związanych z nakłada-

niem się linii. Tak precyzyjne widmo teoretyczne może być z powodzeniem wykorzystane

jako podstawa do rozwiązania struktury widma doświadczalnego. Wykorzystam ten fakt w

dalszej części pracy.

IV.B. Symetria kanałów zderzeniowych

W niniejszej pracy rozważamy szereg odmian spinowych i izotopologów H2–CO. W każ-

dym przypadku cząsteczka CO jest taka sama, czyli składa się z izotopów 12C oraz 16O, ale

jej partner w oddziaływaniu może mieć różny skład izotopowy. Jeśli rozważamy tylko izotopy

trwałe, H i D, mamy trzy kombinacje, H2, HD i D2. Dodatkowo, H2 i D2 mogą występować

w różnych odmianach spinowych. Jak wcześniej wspominaliśmy, rotacyjna funkcja falowa

paraH2–CO i ortoD2–CO może mieć wartości j1 parzyste, HD–CO dowolne, a ortoH2–CO i

paraD2–CO nieparzyste. W temperaturach, które rozważamy, zdecydowanie największa jest

populacja cząsteczek wodoru z najniższą dozwoloną dla danego przypadku wartością j1. Stąd,

pięć wymienionych kompleksów możemy podzielić na dwie grupy ze względu na wartość j1

kanału asymptotycznego. Do pierwszej należą układy paraH2–CO, ortoD2–CO oraz HD–CO,

dla których j1 = 0, a do drugiej ortoH2–CO oraz paraD2–CO, gdzie j1 = 1.

Wspominaliśmy również, że obliczenia zderzeniowe prowadzone są niezależnie w blo-

kach symetrii JP , gdzie parzystość spektroskopowa P określana jest przez wyrażenie P =
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(−1)J+j1+j2+l. Gdy wartość P wynosi +1, to parzystość taką oznaczamy e, natomiast gdy

jest równa −1, to oznaczamy ją f . Przyjrzyjmy się teraz wartościom P w zależności od nu-

merowanej przez wartość j1 grupy kompleksów.

Parzystość kanałów dla przypadków z j1 = 0

Dla j1 = 0 wyrażenie na parzystość upraszcza się do:

P = (−1)J+j2+l.

Zakres obliczeń rozproszeniowych obejmował energie Etot < 6Bv22 = 11.535(11.430) cm−1

dla v2 = 0 (v2 = 1). Niewielkie odstępstwa od tej zasady zostaną omówione niezależnie dla

przypadków ortoD2–CO i paraD2–CO. W rezultacie rozważamy dwa kanały: (j1 = 0, j2 = 0)

oraz (j1 = 0, j2 = 1), rys. 6. Pierwszy jest otwarty dla dowolnej energii, a drugi dla energii

powyżej 2Bv22 .

Etot [cm−1]0 2 4 6 8 10

(j1 = 0, j2 = 1)(j1 = 0, j2 = 0)

3.845(3.810)cm−1

1

Rysunek 6: Graficzna reprezentacja otwartych kanałów w zderzeniach z CO cząsteczek

H2, HD i D2 z j1 = 0. Energia 3.845 (3.810) cm−1 obowiązuje dla przypadku v2 = 0 (1)

Dla przypadku (j1 = 0, j2 = 0), wyrażenie określające parzystość przyjmuje postać:

P = (−1)J+l.

Z uwagi na to, że j1 = j2 = 0 ⇒ j12 = 0, otrzymujemy J = l, co prowadzi do

P = (−1)2J = +1, czyli do progu 2Bv22 pojawiać się mogą tylko stany o symetrii e.

Dla przypadku (j1 = 0, j2 = 1) mamy j12 = 1, więc możliwe wartości całkowitego momentu

pędu to |l − 1| ¬ J ¬ l + 1. Ponieważ interesuje nas analiza względem J , wygodniej jest

odwrócić tę zależność. Dla ustalonej wartości J dopuszczalne są:

l ∈ {J − 1, J, J + 1}, dla J > 0.

Wyrażenie na parzystość upraszcza się w tym przypadku do:

P = (−1)J+j1+j2+l = (−1)J+1+l,
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J + 1 + l =


J + 1 + (J − 1) =2J (parzystość e)

J + 1 + J =2J + 1 (parzystość f)

J + 1 + (J + 1) =2J + 2 (parzystość e).

(51)

Oznacza to, że dla każdego J > 0 istnieją dokładnie trzy wkłady l, spośród których dwa

dają parzystość e, a jeden parzystość f . Dla J = 0 możliwe jest tylko l = 1, co daje

P = (−1)0+1+1 = +1, czyli wyłącznie parzystość e.

Parzystość kanałów dla przypadków z j1 = 1

Dla dyskutowanych kompleksów, rozważany zakres energii również był ograniczony z góry

przez ∼11.5 cm−1, ale tym razem liczone względem energii kanału (j1 = 1, j2 = 0). Ponownie

rozważamy dwa przypadki: (j1 = 1, j2 = 0) i (j1 = 1, j2 = 1).

Przypadek (j1 = 1, j2 = 0) jest strukturalnie identyczny z (j1 = 0, j2 = 1), ponieważ

wyrażenie na P jest symetryczne względem zamiany j1 ↔ j2. Dlatego również tutaj dla

J > 0 możliwe są symetrie e i f , natomiast dla J = 0 tylko e.

Dla przypadku (j1 = 1, j2 = 1) możliwe są wartości sprzężonego momentu pędu j12 ∈ {0, 1, 2}.

Każda z tych konfiguracji prowadzi do innego zbioru dozwolonych wartości l.

• Dla j12 = 0 mamy J = l, a parzystość redukuje się do

P = (−1)J+j1+j2+l = (−1)2J+2 = +1,

czyli dozwolona jest wyłącznie parzystość e.

• Dla j12 = 1 mamy znaną już sytuację, zakres możliwych l jest analogiczny do przypad-

ków (j1 = 1, j2 = 0) i (j1 = 0, j2 = 1). Różnica polega na tym, że parzystość wyraża

się teraz jako:

P = (−1)J+j1+j2+l = (−1)J+2+l,

więc dla trzech możliwych wartości l:

J + 2 + l =


J + 2 + (J − 1) =2J + 1 (parzystość f)

J + 2 + J =2J + 2 (parzystość e)

J + 2 + (J + 1) =2J + 3 (parzystość f),

(52)

co oznacza, że dla każdego J > 0 w tej konfiguracji występuje przewaga kanałów o

parzystości f w stosunku 2:1 względem e.

Dla J = 0 jedyna możliwa wartość to l = 1, co daje P = (−1)0+1+1+1 = −1, czyli

parzystość f .
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• Dla j12 = 2 sprzężenie z l daje zakres |l − 2| ¬ J ¬ l + 2, co po odwróceniu prowadzi,

dla ustalonego J > 1, do:

l ∈ {J − 2, J − 1, J, J + 1, J + 2}.

Parzystość w tym przypadku dana jest przez wyrażenie P = (−1)J+j1+j2+l = (−1)J+2+l,

co prowadzi do:

J + 2 + l =



J + 2 + (J − 2) =2J (parzystość e)

J + 2 + (J − 1) =2J + 1 (parzystość f)

J + 2 + J =2J + 2 (parzystość e)

J + 2 + (J + 1) =2J + 3 (parzystość f)

J + 2 + (J + 2) =2J + 4 (parzystość e) ,

(53)

czyli ponownie możliwe jest występowanie zarówno parzystości spektroskopowej e, jak

i f , tym razem w stosunku 3:2.

Pozostają jeszcze dwa wyjątki: J = 0 i J = 1. Dla J = 0 dopuszczalne jest l = 2, co

daje P = (−1)0+1+1+2 = +1, czyli e. Dla J = 1 dopuszczalne są l = 1, 2, 3, co prowadzi

odpowiednio do parzystości e, f i e.

Najważniejsze informacje wynikające z powyższych rozważań znajdują się w tabeli III.

Tabela III: Dopuszczalne parzystości spektroskopowe P stanów rezonansowych dla wybranych

konfiguracji kanałów (j1, j2). Kanały (0, j2), j2 = 0, 1, odpowiadają kompleksom paraH2–CO,

ortoD2–CO i HD–CO, a kanały (1, j2) odpowiadają ortoH2–CO i paraD2–CO. Ograniczenie ener-

gii uwzględnianych w obliczeniach rozproszeniowych określone jest przez próg energetyczny †Ethr,

liczony względem energii kanału o najmniejszej energii.

kanał (j1, j2) †Ethr P uwagi

(0, 0) 0 e brak

(0, 1) 2Bv22 e, f dla J = 0, tylko e

(1, 0) 0 e, f dla J = 0, tylko e

(1, 1) 2Bv22 e, f brak
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IV.C. Rezonanse w układzie paraH2–CO

Układ paraH2–CO charakteryzuje się najprostszą strukturą rezonansową spośród wszyst-

kich analizowanych kompleksów H2–CO. Z tego względu stanowi on naturalny punkt wyjścia

do analizy niskoenergetycznych stanów rezonansowych. Opiera się ona na obliczeniach zde-

rzeniowych wykonanych programem MOLSCAT [46], ale w niektórych przypadkach wspomaga-

na jest dodatkowo metodą stabilizacji wykorzystującą program BOUND, opisaną w rozdziale

III.C. Obliczenia przeprowadzono w zakresie energii Etot ∈ [0.01, 10.00] cm−1. Dla tak ni-

skich energii nie jest możliwe wzbudzenie rotacyjne cząsteczki H2, ze względu na jej dużą

stałą rotacji, B01 = 59.322 cm−1. W tym przedziale energii dostępne są jedynie dwa otwarte

kanały, co znacząco upraszcza analizę przekrojów czynnych.
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Rysunek 7: Przykład przekroju czynnego σ na zderzenia paraH2 z CO(v2 = 0) o całkowitym

momencie pędu J = 2. Czerwona linia reprezentuje rozwiązania z bloku symetrii f , a linie

niebieska i granatowa − z bloku o symetrii e. Pionowa linia przerywana wskazuje energię

Ecol = 3.845 cm−1 (2B02), przy której otwiera się kanał (j1 = 0, j2 = 1).

Przykład ilustrujący obecność rezonansu przedstawiono na rysunku 7, gdzie zaprezento-

wano przekrój czynny rozpraszania elastycznego dla J = 2. Obliczenia wykonano na siatce
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1000 punktów w zakresie energii Etot ∈ [0.01, 10.00] cm−1 z krokiem 0.01 cm−1. Dla ener-

gii poniżej 3.845 cm−1 otwarty jest wyłącznie kanał (j1 = 0, j2 = 0), powyżej tej wartości

otwiera się dodatkowo kanał (j1 = 0, j2 = 1) (patrz tab. III). Przekroje czynne pozostają

gładkie w całym zakresie z wyjątkiem wąskiego piku przy energii około 3.6 cm−1. Tego ro-

dzaju struktura jest typowa dla obecności stanu rezonansowego. Aby go scharakteryzować

zastosowano procedurę opisaną w [48], opartą na dopasowaniu parametrów rezonansu (po-

zycji i szerokości) na podstawie trzech punktów w pobliżu piku. Wybór wstępnych punktów

oraz uzyskane parametry rezonansu przedstawiono na rysunku 8.
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Rysunek 8: Powiększony fragment rysunku 7, który prezentuje sposób pełnego charakte-

ryzowania stanu rezonansowego, czyli wyznaczania jego energii oraz szerokości. Czerwone

punkty na lewym panelu wskazują trzy energie (Etot = 3.56, 3.58, 3.62 cm−1) wykorzystane

w początkowym etapie algorytmu [48]. Na prawym panelu czerwoną przerywaną linią zazna-

czona została energia rezonansu, a szerokość obszaru zacieniowanego na fioletowo odpowiada

szerokości Γ rezonansu.

Dla układu paraH2–CO obliczenia przeprowadzono dla wartości całkowitego momentu

pędu określonych przez J ∈ [0, 8]. Górną granicę wyznaczono na podstawie wcześniejszych

obliczeń dla stanów związanych, w których stan o najwyższej wartości momentu pędu po-

jawia się w bloku symetrii JP = 6e. W celu zapewnienia kompletności analizy zwiększano

wartość J aż do momentu, gdy w rozważanym zakresie energii nie obserwowano już żadnych

struktur charakterystycznych dla rezonansów.

Na rysunku 9, umieszczonym na końcu niniejszego podrozdziału, przedstawiono przekro-

je czynne zderzeń elastycznych dla układu paraH2–CO w stanie podstawowym drgań CO,
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v2 = 0, w blokach symetrii Jf . Zgodnie z informacjami zawartymi w tabeli III, zderzenia

dopuszczające symetrię f są dozwolone jedynie w kanale (j1 = 0, j2 = 1), czyli poczyna-

jąc od energii 2B02 = 3.845 cm−1 i całkowitego momentu pędu J > 0. Dla J = 1, 2, 3 nie

zaobserwowano żadnych struktur świadczących o istnieniu rezonansów, przekroje czynne są

gładkie, bez gwałtownych zmian. Pierwsze wyraźne charakterystyczne piki pojawiają się do-

piero od J = 4. Ich szerokości przekraczają 10−2 cm−1, co umożliwia ich łatwe wykrycie

przy zastosowanej siatce w domenie energii o rozdzielczości 0.01 cm−1. Dla J = 6 występują

dwa znacznie węższe piki. W panelu odpowiadającym tej wartości J możemy zaobserwować

typowe trudności związane z identyfikacją bardzo wąskich rezonansów na podstawie stan-

dardowych obliczeń zderzeniowych. Ponieważ obliczenia wykonywane są na siatce energii z

pewnym skończonym krokiem, więc możliwe jest całkowite pominięcie rezonansu, jeśli jego

wpływ na przekroje czynne ma miejsce dla energii pomiędzy punktami siatki. W miarę po-

jawiania się coraz węższych rezonansów (co obserwujemy dla kolejnych układów), ryzyko ich

pominięcia będzie wzrastać. Dla J = 7 oraz J = 8 nie zidentyfikowano żadnych rezonansów

w analizowanym zakresie energii, co potwierdzono też obliczeniami metodą stabilizacji.

Dla każdego scharakteryzowanego rezonansu na wykresie 9, w pozycji jego energii Eres,

umieszczana jest przerywana pionowa linia. Dodatkowo zacieniowano obszary w przedziałach

Eres±Γ/2, gdzie Γ to szerokość stanu kwazizwiązanego. Dla rezonansów bardzo wąskich, któ-

rych nie widać wyraźnie w przebiegu przekroju, przerywana linia jest szczególnie pomocna.

Jeżeli szerokość rezonansu jest mniejsza niż 10−2 cm−1, to obok przerywanej linii pojawia

się symbol „∗”. Wyróżnienie rezonansów, których szerokości spełniają ten warunek, wynika z

doświadczenia nabytego podczas analizy widm w podczerwieni dla kompleksów paraH2–CO,

ortoH2–CO i ortoD2–CO. Dla przejść z udziałem rezonansów o szerokościach zbliżonych do

10−2 cm−1 obserwuje się wyraźne rozmycie linii, jednak ich pozycje można jednoznacznie

wyodrębnić w widmie. Zaobserwowanie w analizowanych widmach stanów o wyraźnie więk-

szej szerokości nie powiodło się, więc można uznać wartość 10−2 cm−1 za umowny próg,

który wydzieli stany kwazizwiązane interesujące w kontekście widm w podczerwieni. Z kolei

stany o szerokości Γ < 10−4 cm−1, gdy pojawiają się w widmach, zachowują się praktycznie

jak stany związane. Linie, w których występują, mają kształt zbliżony do linii dla przejść

typu bound–bound i nie wykazują żadnych cech wskazujących na rezonansowe pochodzenie.

Rezonanse o takich szerokościach możemy dla potrzeb tej pracy nazwać wąskimi. Pomimo,

że z perspektywy analizy widm w podczerwieni kompleksów H2–CO, stany o dużej szerokości

mają mniejsze znaczenie, to dla zapewnienia kompletności opisu charakteryzowano wszyst-
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kie przypadki, w których przebieg krzywej przekroju czynnego sugerował możliwą obecność

rezonansu.

Na rysunku 10 prezentujemy przekroje czynne na zderzenia elastyczne kompleksu paraH2–

CO w bloku symetrii e. W tym przypadku J = 0 jest dopuszczalne, a pierwszy otwarty kanał

jest dostępny już przy Etot > 0 cm−1. Niebieską linią zaznaczone są przekroje zderzeń dla

kanału (j1 = 0, j2 = 0), a granatową dla (j1 = 0, j2 = 1). Dla zwiększenia czytelności, dla

energii w której otwiera się nowy kanał (tj. 3.845 cm−1), tło zaznaczono bardziej nasyco-

nym kolorem żółtym. Natychmiast zauważamy dużo większą różnorodność wykresów σ jako

funkcji energii, niż w przypadku symetrii f (rys. 9). Już od J = 0 obserwujemy pierwszy

stan rezonansowy i dla każdej wartości momentu pędu do J = 7 włącznie mamy co najmniej

jeden taki stan. Wykresy dla J = 0 i J = 1 ilustrują drobny problem. W pobliżu energii,

gdzie otwiera się nowy kanał, przekroje czynne wykazują często gwałtowne zmiany i czasami

trudno jednoznacznie stwierdzić, czy obserwowane zachowanie wynika z obecności stanu re-

zonansowego, czy też jest efektem numerycznym. Dodatkowo, tak jak było to wspomniane w

rozdziale III.C, procedura charakteryzowania rezonansów niekiedy zawodzi w pobliżu energii

otwarcia kanału, co jest ograniczeniem związanym z tym, jak zaimplementowany jest algo-

rytm [48] w programie MOLSCAT. Pomimo to, dla J = 0 udało się jednoznacznie wyznaczyć

położenie i szerokość rezonansu, natomiast w przypadku J = 1 zaobserwowane podwyższe-

nie wartości granatowej linii jest wyłącznie efektem otwarcia nowego kanału, a nie obecności

rezonansu. Dla J = 2, 3, 6 i 7 mamy rezonanse węższe niż 10−2 cm−1. Szczególnie ciekawe

są wykresy dla J = 3 i J = 6. Dla J = 3 skok w wykresie przekroju czynnego jest prawie

niezauważalny, dopiero przy dużym powiększeniu widać drobne zaburzenie w jego przebie-

gu. Okazuje się, że jest to najwęższy stan kwazizwiązany dla kompleksu paraH2–CO. Jego

szerokość wynosi Γ = 3.602 · 10−5 cm−1. Ten przypadek jest interesujący również z innego

względu. Dla wszystkich pozostałych rezonansów prezentowanych na tym rysunku, krzywa

obrazująca σ ma wartość bliską 0 dla energii mniejszych od energii rezonansu, tymczasem w

przypadku rezonansu o energii 3.2330 cm−1 dla J = 3, wartość σ w okolicy rezonansu jest

bardzo duża. Jest to efekt, którego źródła nie potrafię w tej chwili wyjaśnić. W przyszłości

warto się zastanowić, czy da się go wytłumaczyć jakimś efektem fizycznym i czy ma on istot-

ne znaczenie. Na wykresie dla J = 4 rezonans o energii 4.7167 cm−1 wydaje się występować

jedynie dla granatowej linii, tj. dla kanału (j1 = 0, j2 = 1), ale po przybliżeniu okazuje się,

że widoczne jest również subtelne załamanie w niebieskiej linii w tym samym miejscu. Sytu-

acja taka występuje w wielu przypadkach i wynika z faktu, że istnienie rezonansu wywiera
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wpływ, choć w różnym stopniu, na wszystkie kanały asymptotyczne. Warto podkreślić, że

szerokość rezonansu Γ uwzględnia ten fakt. Z kolei przyjrzenie się przekrojom czynnym dla

J = 5 pozwala zauważyć nową cechę, której do tej pory nie dyskutowaliśmy. Jeśli spojrzymy

na niebieską linię (kanał (j1 = 0, j2 = 0)), to w okolicy energii 7 cm−1 zauważymy szero-

ką strukturę, której prawdopodobnie nie poddalibyśmy dalszej analizie. Jednak dla kanału

(j1 = 0, j2 = 1) (granatowa linia) widoczne są dwa piki. Ze względu na ich bliskie położenie

i dużą szerokość, algorytm do charakteryzowania rezonansów miał trudność z jednoznacz-

nym rozdzieleniem tych linii, co wskazuje na kolejne ograniczenia tej automatycznej analizy.

Nie ma to jednak znaczenia w naszych zastosowaniach, bo rezonanse te są zbyt szerokie, by

mogły istotnie wpływać na kształt widma.

Rysunek 11 przedstawia porównanie przekrojów czynnych dla układu paraH2–CO w róż-

nych stanach oscylacyjnych CO: v2 = 0 oraz v2 = 1. Lewa część rysunku prezentuje przekroje

dla przypadku v2 = 0, znane już z rysunku 9, a prawa odpowiednie przekroje dla przypadku

v2 = 1. Widać, że odpowiadające sobie przekroje czynne dla v2 = 0 i v2 = 1 są jakościowo

niemal identyczne, chociaż jak można zobaczyć w tabeli IV, położenia i szerokości odpo-

wiednich rezonansów są nieco różne. Podobne relacje pomiędzy przekrojami czynnymi dla

v2 = 0 oraz v2 = 1, ale tym razem dla symetrii e, możemy zobaczyć na rys. 12. Sposób

prezentacji jest nieco inny, gdyż wykresy dla obu przypadków v2 zostały na siebie nałożone,

co pozwala lepiej zauważyć różnice między nimi. Kolory niebieski i granatowy i oznaczają

przekroje czynne dla układu z v2 = 0, jak na rys. 10, natomiast cyjan i czarny dla v2 = 1.

Można zauważyć, że dla wszystkich przypadków, rezonanse w stanie v2 = 1 są przesunięte

w stronę niższych energii. Jest to spowodowane głównie przez wykorzystanie nieco innych

powierzchni energii oddziaływania w obliczeniach dla różnych przypadków v2. Powierzchnie

4D powstają z pełnowymiarowej przez uśrednienie po różnych funkcjach oscylacyjnych dla

CO, gdyż te zależą od wartości v2. Powierzchnia dla v2 = 1 jest nieco głębsza, co powodu-

je, że np., energia oscylacyjno-rotacyjnego stanu podstawowego jest niższa dla przypadku

v2 = 1 niż dla v2 = 0 [28]. Obniżenie energii rezonansów dla v2 = 1, w stosunku do ich

odpowiedników dla v2 = 0, można wytłumaczyć jakościowo przez większą „objętość” studni

potencjału, nad którą tworzą się rezonanse, a to powoduje obniżenie ich energii.

Szerokości rezonansów w obu przypadków są zbliżone, choć dla większości przypadków

z v2 = 1 są nieco mniejsze. Nie jest to jednak reguła, np. dla J = 2 symbol ∗ oznaczający

wąski rezonans pojawia się tylko w przypadku v2 = 0. Podobnie dla J = 3, linia cyjan

(v2 = 1) jest widoczna, podczas gdy linia niebieska (v2 = 0) pozostaje niewidoczna na

46



rysunku o prezentowanej rozdzielczości. Szczegółowe porównanie szerokości można przepro-

wadzić na podstawie tabeli IV. W dalszej części pracy jeśli tylko jeden z rezonansów (dla

v2 = 0 lub v2 = 1) spełnia kryterium szerokości, czyli jest węższy niż 10−2 cm−1, to oba

są klasyfikowane jako spełniające kryterium, pozwala to zachować spójność. Na rysunkach

pozostawiamy gwiazdki tylko tam, gdzie kryterium szerokości jest rzeczywiście spełnione.

Ciekawym przypadkiem jest zachowanie rezonansu dla J = 5 w okolicy Etot = 7 cm−1. Jak

wspomniano wcześniej przy omawianiu rysunku 10, w stanie v2 = 0 struktura rezonansowa

była wyraźniejsza w przekrojach dla kanału (j1 = 0, j2 = 1). W przypadku v2 = 1 sytuacja

ulega zmianie, znacznie silniejsza odpowiedź obserwowana jest w kanale (j1 = 0, j2 = 0), co

sugeruje przesunięcie udziału rezonansu pomiędzy kanałami w zależności od stanu drgań CO.

Pomimo drobnych różnic w przebiegu wykresów przekrojów czynnych dla v2 = 0 i v2 = 1,

ich podobieństwo jest tak duże, że upoważnia nas to do ograniczenia się w dalszej części

pracy do prezentowania tylko wykresów dla v2 = 0. Szczegółowe informacje o rezonansach

dla obu wartości v2 zostały podane w tabeli IV. Zestawiono w niej parametry wszystkich

zidentyfikowanych rezonansów dla układu paraH2–CO. Łącznie odnaleziono 18 rezonansów, z

czego 7 ma szerokość mniejszą niż 10−2 cm−1. W blokach symetrii f zidentyfikowano 5 rezo-

nansów, w tym 2 wąskie. Dla symetrii e występuje 13 rezonansów, z których 5 ma szerokość

poniżej przyjętego progu. Najwęższe rezonanse występują przy JP = 3e oraz J = 6, zarów-

no w symetrii e, jak i f . Spośród nich najwęższe osiągają szerokość rzędu 10−5 cm−1. Dla

potwierdzenia wyników przeprowadzono dodatkowe obliczenia metodą stabilizacji, które nie

wykazały obecności żadnych pominiętych stanów. Pomimo stosunkowo rzadkiej siatki ener-

getycznej (krok 0.01 cm−1), wszystkie rezonanse dla paraH2–CO, w tym również najwęższe,

zostały poprawnie scharakteryzowane.
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Rysunek 9: Przekroje czynne σ na zderzenia elastyczne dla układu paraH2–CO (v2 = 0) w
blokach symetrii Jf , gdzie J ∈ [1, 8]. Czerwoną linią oznaczono zależność przekroju czynnego σ od
energii dla kanału (j1 = 0, j2 = 1). Wyznaczone energie poziomów rezonansowych, Eres, zaznaczone
są niebieską przerywaną linią. Zacieniowany czerwony obszar odpowiada przedziałowi Eres ± Γ/2.
Rezonanse o szerokości Γ < 10−2 cm−1 oznaczone zostały symbolem „∗”.
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Rysunek 10: Przekroje czynne σ na zderzenia elastyczne dla układu paraH2–CO (v2 = 0) w blokach
symetrii Je, gdzie J ∈ [0, 8]. Niebieska linia pokazuje zależność σ od energii dla kanału (j1 = 0 , j2 = 0), a
granatowa dla kanału (j1 = 0, j2 = 1). Wyznaczone energie poziomów rezonansowych, Eres, zaznaczone są
czerwoną przerywaną linią. Zacieniowany niebieski obszar odpowiada przedziałowi Eres ± Γ/2. Rezonanse o
szerokości Γ < 10−2 cm−1 oznaczone zostały symbolem „∗”.
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Rysunek 11: Porównanie przekrojów czynnych na zderzenia elastyczne dla kompleksu

paraH2–CO z CO w stanie wibracyjnym v2 = 0 (lewy panel) i v2 = 1 (prawy panel), dla

bloków symetrii Jf z J ∈ [1, 8]. Oznaczenia jak na rys. 9.
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Rysunek 12: Porównanie przekrojów czynnych na zderzenia elastyczne dla kompleksu
paraH2–CO z CO w stanie wibracyjnym v2 = 0 (kolory niebieski i granatowy) i v2 = 1
(kolory cyjan i czarny), dla bloków symetrii Je z J ∈ [0, 8]. Oznaczenia jak na rys. 10.
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Tabela IV: Energie Ev2res i szerokości Γv2 rezonansów znalezionych dla układu paraH2–CO

z v2 = 0, 1. Notacja (-x) oznacza 10−x, rezonanse węższe niż 10−2 cm−1, które potencjalnie

pozwalają im mieć realny wpływ na widmo, oznaczono „∗”. Liczba wszystkich rezonansów

o parzystości spektroskopowej e (f) wynosi 13 (5), z czego 5 (2) to rezonanse oznaczone ∗.

Energie i szerokości podano w cm−1.

nrJ,P E0res E1res Γ0 Γ1

JP = 0e

1 3.8629 3.8243 8.514(-02) 7.171(-02)

JP = 1e

1 3.3872 3.3036 1.809(-02) 1.844(-02)

JP = 2e

1∗ 3.5887 3.4557 8.467(-03) 1.067(-02)

JP = 3e

1∗ 3.2330 2.8810 3.602(-05) 5.069(-04)

JP = 4f

1 6.2169 5.8501 2.086(-02) 1.147(-02)

2 7.3910 7.1343 1.837(-01) 1.653(-01)

JP = 4e

1 1.9709 1.7254 3.927(-02) 2.415(-02)

2 4.7176 4.3905 5.343(-02) 1.313(-02)

JP = 5f

1 9.5869 9.2189 5.378(-02) 4.627(-02)

JP = 5e

1 5.2349 5.0677 1.088(-01) 1.002(-01)

2 7.1170 6.7837 1.109(-01) 8.309(-02)

JP = 6f

1∗ 5.2459 5.0802 1.498(-04) 8.127(-05)

2∗ 7.3365 7.0846 4.247(-05) 3.048(-05)

JP = 6e

1∗ 1.4972 1.3466 2.123(-04) 1.080(-04)

2∗ 3.0424 2.7972 3.696(-03) 2.529(-03)

JP = 7e

1∗ 5.4420 5.2886 6.725(-03) 5.185(-03)

2 7.5350 7.3394 1.563(-01) 9.569(-02)

3 7.9843 7.7957 2.344(-01) 2.681(-01)
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IV.D. Rezonanse w układzie HD–CO

Kontynuujmy analizę rezonansów, przechodząc kolejnych układów, w których obliczenia

obejmują wyłącznie kanały asymptotyczne z j1 = 0. Poza omówionym wcześniej przypadkiem

paraH2–CO, należą do tej grupy także ortoD2–CO (gdzie dozwolone są jedynie parzyste

wartości j1) oraz HD–CO.

W przypadku HD–CO, choć formalnie możliwe są również nieparzyste wartości j1, to

kanały z j1 = 1 pozostają zamknięte ze względu na dużą stałą rotacji HD (44.662 cm−1)

oraz niski zakres rozważanych energii zderzeń. Oznacza to, że w analizie przekrojów czynnych

występuje wyłącznie wkład z j1 = 0. Struktura kanałów oraz reguły dozwolonych parzystości

dla danego J są identyczne jak w przypadku paraH2–CO. W odróżnieniu od tamtego układu,

w przypadku HD–CO rozszerzono jednak zakres całkowitego momentu pędu do J ∈ [0, 9], a

zakres energii zderzeń do 12 cm−1.

Decyzja ta była podyktowana wcześniejszą analizą stanów związanych oraz przebiegów

przekrojów czynnych. Zakres J zwiększano stopniowo, aż do momentu, w którym w rozważa-

nym przedziale energii przestały pojawiać się struktury wskazujące na obecność rezonansów.

W celu zachowania spójności z poprzednimi rysunkami, prezentujemy ten sam przedział

energii. Niemniej jednak w tabeli V zostały ujęte wszystkie scharakteryzowane stany.

Na rysunku 13 przedstawiono wyniki dla symetrii f . W porównaniu do paraH2–CO ob-

serwuje się tu większą liczbę rezonansów. Scharakteryzowano ich łącznie 11 (8 o energiach

poniżej 10 cm−1), z czego 5 ma szerokości poniżej progu 10−2 cm−1. Dla porównania: w

przypadku paraH2–CO w symetrii f zidentyfikowano 5 rezonansów, z czego tylko 2 wąskie.

Pierwszy rezonans pojawia się dla J = 2, choć nie należy on do wąskich. Pierwsze dwa

stany o szerokości poniżej progu pojawiają się dopiero przy J = 5. Dla J = 7 pojawia się po

raz pierwszy w tej analizie oznaczenie symbolem „!” (wykrzyknik) na wykresie, co wskazuje

na stan, który zostałby pominięty przy standardowej siatce energetycznej, a został ziden-

tyfikowany dopiero przy użyciu metody stabilizacji. Ostatnie dwa rezonanse w tej symetrii

obserwujemy dla J = 8, oba należą do grupy wąskich.

W symetrii e (rysunek 14) zidentyfikowano 24 rezonanse w stanie v2 = 0, z czego 13 ma

szerokości poniżej 10−2 cm−1. W dwóch przypadkach konieczne było użycie metody stabili-

zacji w celu ich znalezienia. Dla każdego J > 0 zidentyfikowano przynajmniej jeden rezonans

oznaczony symbolem ∗. Najwięcej takich stanów, aż trzy, przypada na J = 8. Najwęższy
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rezonans występuje dla J = 7 i ma Eres = 0.4566 cm−1 oraz Γ = 2.069 · 10−9 cm−1. Na

rysunku oznaczono go symbolem !, czyli nie był zauważony w obliczeniach dla standardowej

siatce energii, a został odnaleziony dopiero przy wykorzystaniu metody stabilizacji. Jego

odpowiednik dla v2 = 1 jest jeszcze węższy i aby go scharakteryzować należało bardzo uważ-

nie wybrać punkty startowe przy inicjalizacji algorytmu, co okazało się możliwe dopiero po

wykonaniu dokładnych obliczeń programem BOUND. Ostatecznie jego szerokość wyznaczono

równą Γ = 3.720 · 10−12 cm−1.

Innym przykładem stanu wymagającego szczególnej uwagi jest rezonans oznaczony ! dla

J = 2. Stan ten nie należy do bardzo wąskich, ale został początkowo przeoczony, ponieważ

skan energii w pierwszym podejściu rozpoczynał się od 0.10 cm−1, a pozycja rezonansu

to Eres = 0.0388 cm−1. Dla v2 = 1 sytuacja jest jeszcze bardziej wymagająca, stan ten

pojawia się przy 0.0073 cm−1, czyli poniżej dolnego zakresu nawet przy rozszerzonej siatce

(0.01 cm−1). W tabeli V zestawiono parametry wszystkich zidentyfikowanych rezonansów

dla układu HD–CO.
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Rysunek 13: Przekroje czynne na zderzenia elastyczne HD–CO dla v2 = 0 w blokach symetrii Jf ,
gdzie J ∈ [1, 9]. Czerwona linia oznacza przekrój czynny (j1 = 0, j2 = 1). Wyznaczone energie poziomów
rezonansowych, Eres, zaznaczone są niebieską przerywaną linią. Zacieniowany czerwony obszar odpowiada
przedziałowi Eres ± Γ/2. Rezonanse o szerokości Γ < 10−2 cm−1 oznaczone zostały symbolem „∗”, a wyzna-
czone w oparciu o metodę stabilizacji symbolem „!”.
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Rysunek 14: Przekroje czynne na zderzenia elastyczne HD–CO dla v2 = 0 w blokach symetrii Je,
gdzie J ∈ [0, 9]. Niebieska linia oznacza przekrój czynny (j1 = 0 , j2 = 0), a granatowa (j1 = 0, j2 = 1).
Wyznaczone energie poziomów rezonansowych, Eres, zaznaczone są czerwoną przerywaną linią. Zacieniowany
niebieski obszar odpowiada przedziałowi Eres ± Γ/2. Rezonanse o szerokości Γ < 10−2 cm−1 oznaczone
zostały symbolem „∗”, a wyznaczone w oparciu o metodę stabilizacji symbolem „!”.
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Tabela V: Energie Ev2res i szerokości Γv2 rezonansów znalezionych dla układu HD–CO z
v2 = 0, 1. Notacja (-x) oznacza 10−x, rezonanse węższe niż 10−2 cm−1, które potencjalnie
pozwalają im mieć realny wpływ na widmo, oznaczono „∗”. Wykrzyknik przy wartości ener-
gii oznacza, że dany stan został znaleziony dzięki metodzie stabilizacji. Liczba wszystkich
rezonansów o parzystości spektroskopowej e (f) wynosi 24 (11), z czego 14 (5) to rezonanse
oznaczone ∗. Energie i szerokości podano w cm−1.

nrJ,P E0res E1res Γ0 Γ1

JP = 1e

1 0.7254 0.5098 2.103(-02) 1.576(-02)

2∗ 3.8140 3.7334 2.498(-03) 8.797(-03)

JP = 2f

1 9.9069 9.7387 5.233(-02) 5.462(-02)

JP = 2e

1∗ 0.0388! 0.0073! 2.787(-03) 4.828(-05)

2∗ 0.4997 0.2196 7.479(-03) 4.144(-03)

3 3.3121 3.1141 3.740(-02) 4.346(-02)

4 4.0402 3.9532 1.968(-01) 1.581(-01)

JP = 3f

1 10.7582 10.5894 3.999(-02) 2.505(-02)

JP = 3e

1∗ 1.3773 1.0759 2.485(-03) 1.791(-03)

2 3.9740 3.8870 6.383(-02) 3.375(-02)

JP = 4f

1 11.7960 11.6508 9.364(-02) 7.929(-02)

JP = 4e

1∗ 0.9125 0.5503 2.866(-04) 4.284(-05)

2∗ 3.3704 3.0814 1.010(-02) 4.928(-03)

JP = 5f

1∗ 4.1640 3.9113! 2.303(-06) 4.656(-09)

2∗ 4.2999 3.9322! 1.798(-06) 8.261(-11)

JP = 5e

1∗ 2.6526 2.2953 2.004(-04) 4.144(-04)

nrJ,P E0res E1res Γ0 Γ1

JP = 6f

1 7.4243 7.0564 2.874(-02) 1.535(-02)

2 8.8835 8.6165 2.767(-01) 2.373(-01)

JP = 6e

1∗ 1.4266 1.2425 2.174(-04) 9.375(-05)

2 3.6275 3.3728 5.093(-02) 3.548(-02)

3∗ 4.9966 4.6471 4.338(-03) 8.523(-04)

JP = 7f

1∗ 4.1026! 3.8356! a a

2 11.2321 10.8571 9.321(-02) 7.768(-02)

JP = 7e

1∗ 0.4566 0.1959 2.069(-09) 3.720(-12)

2 6.4034 6.2195 1.206(-01) 1.080(-01)

3 8.0161 7.6756 1.172(-01) 7.647(-02)

4 8.6985 8.4267 1.825(-01) 1.748(-01)

JP = 8f

1∗ 6.7431 6.5686 3.704(-04) 2.504(-04)

2∗ 9.1509 8.8906 2.238(-05) 1.655(-05)

JP = 8e

1∗ 1.5918 1.4185 6.402(-07) 2.259(-07)

2∗ 3.0447 2.8853 5.338(-04) 3.520(-04)

3∗ 4.6863 4.4235 2.657(-03) 1.880(-03)

JP = 9e

1∗ 6.7232 6.5701 7.014(-03) 5.487(-03)

2 8.7944 8.6480 1.568(-01) 1.388(-01)

3 9.5154 9.2552 4.338(-02) 4.405(-02)
a bardzo wąski rezonans, nie udało się

wyznaczyć szerokości
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IV.E. Rezonanse w układzie ortoD2–CO

Ostatnim badanym kompleksem z wkładem ograniczonym do j1 = 0 jest ortoD2–CO,

gdzie, podobnie jak w przypadku paraH2–CO, dozwolone są jedynie parzyste wartości

momentu pędu cząsteczki D2. Stała rotacji dla tego izotopologu jest niższa i wynosi

29.9037 cm−1. Zakres całkowitego momentu pędu rozszerzono do J ∈ [0, 11], a zakres

energii do 14 cm−1.

Na rysunku 15 przedstawiono wykresy przekrojów czynnych dla stanów o parzystości

spektroskopowej f . Zidentyfikowano 16 rezonansów (tabela VI), z czego 12 o energii poni-

żej 10 cm−1 zaprezentowano na rysunku. Pięć rezonansów ma szerokość poniżej przyjętego

progu 10−2 cm−1, w tym 2 zostały znalezione jedynie dzięki metodzie stabilizacji. Dla tej

symetrii stanów nie pojawiły się żadne nowe aspekty zależności σ(Etot) w porównaniu z

omawianymi wcześniej przypadkami. Najwęższy rezonans występuje dla J = 9 i ma energię

Eres = 4.2867 cm−1 oraz szerokość Γ = 3.247 · 10−12 cm−1. Odpowiednik tego rezonansu

dla v2 = 1, który ma energię 4.0998 cm−1, jest jeszcze węższy, ale nie udało się dobrać

parametrów procedury dopasowującej, które pozwoliłyby go scharakteryzować. Jego poło-

żenie znaleziono z wykorzystaniem metody stabilizacji. Ostatni rezonans dla tej omawianej

symetrii pojawia się dla J = 10.

Przechodząc do symetrii e (rysunek 16), obserwujemy 33 rezonansów (z tego 29 z ener-

giami poniżej 10 cm−1), czyli zgodnie z obserwowanym wcześniej dla paraH2–CO i HD–CO

trendem więcej, niż dla bloku symetrii f . Znalezienie dwóch stanów wymagało użycia metody

stabilizacji. Również w tym przypadku nie pojawiają się jakościowo nowe cechy. Rezonan-

se, które mogą mieć znaczenie w interpretacji widm oscylacyjno-rotacyjnych, oznaczone ∗,

pojawiają się począwszy od J = 5 i występują w każdym panelu aż do J = 10. Podob-

nie jak dla parzystości f , najwęższy stan pojawia się dla J = 9 i jest scharakteryzowany

przez Eres = 0.6626 cm−1, Γ0 = 1.474 · 10−10 cm−1. Jego odpowiednik dla v2 = 1 o energii

Eres = 0.4857 cm−1, został pomyślnie wyznaczony pomimo bardzo małej szerokości wyno-

szącej Γ1 = 5.329 · 10−12 cm−1.
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Rysunek 15: Przekroje czynne σ na zderzenia elastyczne ortoD2–CO dla v2 = 0 w blokach symetrii
Jf , gdzie J ∈ [1, 10]. Czerwona linia oznacza zależność σ od energii Etot dla kanału (j1 = 0, j2 = 1).
Wyznaczone energie poziomów rezonansowych, Eres, zaznaczone są niebieską przerywaną linią. Zacieniowany
czerwony obszar odpowiada przedziałowi Eres ± Γ/2. Rezonanse o szerokości Γ < 10−2 cm−1 oznaczone
zostały symbolem „∗”, a wyznaczone w oparciu o metodę stabilizacji symbolem „!”.
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Rysunek 16: Przekroje czynne σ na zderzenia elastyczne ortoD2–CO dla v2 = 0 w blokach symetrii
Je, gdzie J ∈ [0, 11]. Niebieska linia oznacza zależność σ od energii Etot dla kanału (j1 = 0 , j2 = 0), a
granatowa dla kanału (j1 = 0, j2 = 1). Wyznaczone energie poziomów rezonansowych, Eres, zaznaczone
czerwoną przerywaną linią. Zacieniowany niebieski obszar odpowiada przedziałowi Eres ± Γ/2. Rezonanse o
szerokości Γ < 10−2 cm−1 oznaczone zostały symbolem „∗”, a wyznaczone w oparciu o metodę stabilizacji
symbolem „!”. 60



Tabela VI: Energie Ev2res i szerokości Γv2 rezonansów znalezionych dla układu ortoD2–CO
z v2 = 0, 1. Notacja (-x) oznacza 10−x, rezonanse węższe niż 10−2 cm−1, które potencjalnie
pozwalają im mieć realny wpływ na widmo, oznaczono „∗”. Symbol „!” wskazuje poziomy
otrzymane metodą stabilizacji. Liczba wszystkich rezonansów o parzystości spektroskopowej
e (f) wynosi 33 (16), z czego 12 (7) to rezonanse oznaczone ∗. Energie i szerokości podano
w cm−1.

nrJ,P E0res E1res Γ0 Γ1
JP = 0e

1 3.3643 3.2348 3.800(-02) 6.138(-02)
JP = 1e

1 0.2090 0.0252 2.660(-01) 1.501(-02)
2 2.6051 2.4520 8.251(-02) 9.950(-02)
3∗ 3.9633 4.0128 3.499(-01) 9.040(-03)

JP = 2f

1 4.0019 3.9229 1.609(-01) 5.252(-02)
2 7.7794 7.5715 9.563(-02) 9.546(-02)

JP = 2e

1 0.7153 0.3827 5.484(-02) 2.968(-02)
2 1.6884 1.5215 1.801(-01) 1.601(-01)
3 3.0174 2.8576 1.248(-01) 1.570(-01)
4 11.5347 11.4300 a a

JP = 3f

1 8.5510 8.3408 1.163(-01) 1.202(-01)
JP = 3e

1 2.2684 2.0356 8.896(-02) 9.066(-02)
2 3.1801 3.0187 1.982(-01) 1.495(-01)
3 4.0135 3.8867 1.558(-01) 8.678(-02)

JP = 4f

1 4.4497 4.2720 4.386(-02) 1.603(-02)
2 9.7487 9.5200 4.317(-02) 2.078(-02)
3 12.3170 11.8085 7.647(-02) 2.359(-02)

JP = 4e

1 0.8470 0.7976 2.399(-01) 1.912(-01)
2 3.5150 3.3774 5.222(-02) 6.180(-02)

JP = 5f

1∗ 4.5158 4.3134 4.459(-03) 9.264(-04)
2 11.1766 10.9686 1.578(-01) 1.438(-01)

JP = 5e

1∗ 0.8044 0.6615 1.153(-02) 4.053(-03)
2∗ 2.2878 1.9565 4.017(-03) 1.693(-03)
3 4.6428 4.5368 1.926(-01) 1.489(-01)
a szeroki rezonans na otwarciu progu,

nie udało się wyznaczyć szerokości

nrJ,P E0res E1res Γ0 Γ1
JP = 6e

1∗ 1.3672! 1.0058! 3.310(-06) 1.499(-06)
2 4.9581 4.7215 8.199(-02) 4.299(-02)

JP = 7f

1∗ 6.2906 5.9283 2.582(-03) 7.541(-04)
2∗ 6.8678 6.6012 1.195(-02) 7.665(-03)

JP = 7e

1∗ 1.9929 1.7289 6.361(-04) 2.326(-04)
2∗ 3.8081 3.4489 1.806(-04) 1.235(-05)

JP = 8f

1 9.8786 9.5105 8.184(-02) 5.273(-02)
JP = 8e

1∗ 4.0354 3.8482 7.339(-03) 5.286(-03)
2 6.4928 6.2177 9.062(-02) 6.580(-02)
3 6.8229 6.4812 5.584(-02) 4.852(-02)

JP = 9f

1∗ 4.2867! 4.0998! 3.247(-12) b

2∗ 7.1482! 6.8776! 1.178(-06) 6.647(-07)
3 14.0246 13.6447 1.486(-01) 1.285(-01)

JP = 9e

1∗ 0.6626! 0.4857! 1.474(-10) 5.329(-12)
2∗ 3.0489 2.7767 3.366(-05) 1.532(-05)
3 8.8902 8.6876 2.164(-01) 1.951(-01)
4 10.3134 9.9796 1.252(-01) 9.038(-02)
5 11.7240 11.4600 2.157(-01) 2.000(-01)

JP = 10f

1∗ 9.6788 9.5043 4.505(-03) 3.607(-03)
2∗ 12.2361 11.9727 2.755(-04) 2.212(-04)

JP = 10e

1∗ 4.3180 4.1604 1.108(-04) 7.255(-05)
2∗ 6.0234 5.8559 5.689(-03) 4.522(-03)
3∗ 7.4796 7.2059 4.666(-03) 3.568(-03)

JP = 11e

1 9.2269 9.0873 1.932(-02) 1.623(-02)
2 12.3902 12.1181 1.899(-02) 1.598(-02)
b bardzo wąski rezonans, nie udało się

wyznaczyć szerokości
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IV.F. Rezonanse w układach z j1 = 0 – podsumowanie

Po analizie szczegółowych wyników dla układów paraH2–CO, HD–CO i ortoD2–CO, dla

których rozpraszaniu ulega cząsteczka w stanie j1 = 0, możliwe jest wskazanie pewnych regu-

larności dotyczących rozmieszczenia oraz charakteru zidentyfikowanych rezonansów. Poniżej

zestawiono rezonanse pogrupowane ze względu na wartość J , dla której występują, oraz na

ich symetrie spektroskopową P . Informacje te przedstawiono zbiorczo na rysunku 17, na któ-

rym położenie każdego punktu reprezentującego rezonans zależy od jego energii i szerokości.
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Rysunek 17: Szerokości rezonansów Γ (w skali logarytmicznej) w funkcji energii całkowitej Etot dla ukła-

dów paraH2–CO, HD–CO oraz ortoD2–CO, z cząsteczką CO w stanie wibracyjnym v2 = 0. Każdy punkt

odpowiada jednemu scharakteryzowanemu rezonansowi. Kolory punktów określają ich parzystość spektro-

skopową P : czerwony oznacza f , a niebieski e. Pionowe linie w każdym panelu oddzielają grupy rezonansów

z różnymi wartościami całkowitego momentu pędu J i wyznaczają odcinki na osi poziomej, w ramach któ-

rych określić możemy energie odpowiadające każdemu punktowi. Czarna (czerwona) linia w każdym panelu

wyznacza próg Γ wynoszący 10−2 (10−4) cm−1.
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Analiza rysunku 17 potwierdza trzy efekty, o których wstępnie wspominano podczas dys-

kusji kolejnych układów.

−Wzrost ogólnej liczby rezonansów podczas przechodzenia do kolejnych układów w sekwen-

cji paraH2–CO, HD–CO i ortoD2–CO. Jest to spowodowane głównie przez przez malejące

wartości stałych rotacji w tej sekwencji, co z kolei spowodowane jest przede wszystkim przez

malejące masy zredukowane tych cząsteczek.

−Większa liczba rezonansów o symetrii e niż o symetrii f . Dla paraH2–CO zidentyfikowano

13 rezonansów typu e i 5 typu f , dla HD–CO odpowiednio 24 i 11, a dla ortoD2–CO odpo-

wiednio 33 i 16 rezonansów.

−Wzrost liczby rezonansów wraz ze wzrostem wartości J . Najwięcej rezonansów o szerokości

Γ < 10−2 cm−1 obserwuje się dla J = 6 w przypadku paraH2–CO, J = 8 dla HD–CO oraz

J = 10 dla ortoD2–CO.

Podczas analizy rezonansów dla układów paraH2–CO, HD–CO i ortoD2–CO dużo uwagi

poświęciłem analizie najwęższych rezonansów, gdyż znalezienie ich pozycji, a potem szero-

kości, było często sporym wyzwaniem i wymagało indywidualnego traktowania. Przy okazji

zauważyłem pewne regularności w ich pojawianiu się. Aby je usystematyzować, przygotowa-

łem tabelę VII, w której zebrałem informacje o pięciu najwęższych rezonansach dla każdego

z trzech układów. Dla paraH2–CO mamy dwa wąskie stany z bloku o symetrii 6f i dwa z blo-

ku 6e, przy czym rezonans o energii 7.3365 cm−1 z bloku 6f wydaje się mieć swój odpowiednik

o energii 3.0424 cm−1 z bloku 6e, a energii 5.2459 cm−1 z 6f odpowiada 1.49729 cm−1 z blo-

ku 6e. Kryterium doboru w pary jest podobna różnica energii, która wynosi około 3–4 cm−1.

Dla HD–CO parę możemy stworzyć z dwóch najwęższych stanów o energii 4.1026 cm−1 z

bloku 7f i 0.4566 cm−1 z 7e. Różnica energii to znowu ok. 4 cm−1. Z kolei dla ortoD2–CO

można zauważyć dwie pary energii: 4.2867 cm−1 (9f ) i 0.6626 cm−1 (9e), oraz 7.1482 cm−1

(9f ) i 3.0489 cm−1 (9e). Również tym razem różnice energii w parach są podobne do obser-

wowanych dla wcześniejszych par.

Aby sprawdzić, czy jest to jedynie przypadkowa koincydencja, czy też powstawanie re-

zonansów z danej pary wynika może z jakichś systematycznych przyczyn, zbadałem funkcje

falowe dla każdego przypadku. W tym celu sprawdziłem jakie są wkłady poszczególnych

funkcji bazowych IΛ [50] do funkcji falowej (równanie (29)), obliczając wartość wyrażenia

λ(Λ) =
∑
i f
2
Λ(Ri)∑

i

∑
Λ′ f

2
Λ′(Ri)

, (54)

gdzie sumowanie po i przebiega po punktach użytych do propagacji funkcji falowej. Okazało

się, że dla każdego z badanych stanów dominujący był jeden wkład kątowy. Dla rozważanych
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układów, para (j2, l) wystarczy do scharakteryzowania funkcji falowej, ponieważ zawsze ma-

my j1 = 0, co dalej wiąże się z j12 = j2. W tabeli VII znajduje się informacja, która funkcja

kątowa dominuje oraz jaka jest odpowiednia wartość λ(Λ). Widzimy, że w każdym przypadku

λ(Λ) > 0.8.

W tabeli VII literą a oznaczone zostały rezonanse, w których dominujący wkład pochodzi

od kanału z j2 = 2, czyli zamkniętego dla rozważanych energii zderzeń, co wskazuje na to,

że ten stan to rezonans Feshbacha. Pary oznaczone tym symbolem występują w każdym

układzie. Literą b oznaczono rezonanse z dominującym wkładem od funkcji, która opisuje

kanał otwarty. Dodatkowo obserwujemy dla tych stanów największą dopuszczalną wartość

l = J , co wskazuje na to, że są to rezonanse kształtu (shape). Takie pary rezonansów

zaobserwowano w układach paraH2–CO i ortoD2–CO.

Trudno powiedzieć, czy opisane tutaj regularności mają jakieś głębsze (w tym praktyczne)

znaczenie, ale zdecydowałem się umieścić informację na ten temat w celu ewentualnego

późniejszego zbadania tego wątku.

Tabela VII: Lista pięciu najwęższych rezonansów w układach z j1 = 0, wraz z ich energiami

i szerokościami, oraz z informacją o kątowej funkcji bazy, która ma największy udział w funkcji

falowej danego stanu. Dla każdego układu stany podane są w kolejności rosnących wartości Γ.

Funkcja kątowa zdefiniowana jest przez liczby (j2, l), a jej udział w funkcji falowej przez wartość

parametru λ(Λ). Energie i szerokości rezonansów podane są w cm−1.

układ JP Eres Γ (j2, l) λ(Λ)

paraH2–CO

3e 3.2330 3.602(-05) (3, 0) 0.81
6f 7.3365 4.247(-05) (2, 5)a 0.97
6f 5.2459 1.493(-04) (1, 6)b 0.97
6e 1.4972 2.123(-04) (0, 6)b 0.85
6e 3.0424 3.696(-03) (2, 4)a 0.84

HD–CO

7f 4.1026 c (2, 6)a 0.97
7e 0.4566 2.069(-09) (2, 5)a 0.89
8e 1.5918 6.402(-07) (1, 7) 0.89
5f 4.2999 1.798(-06) (3, 3) 0.90
5f 4.1640 2.303(-06) (2, 6) 0.85

ortoD2–CO

9f 4.2867 3.247(-12) (1, 9)b 0.97
9e 0.6626 1.474(-10) (0, 9)b 0.84
9f 7.1482 1.178(-06) (2, 8)a 0.96
6e 1.3672 3.311(-06) (3, 3) 0.81
9e 3.0489 3.366(-05) (2, 7)a 0.89

adominujący wkład do funkcji kątowej pochodzi od (2, J − 1) dla f i (2, J − 2) dla e.
bdominujący wkład do funkcji kątowej pochodzi od (1, J) dla f i (0, J) dla e.
crezonans bardzo wąski, którego szerokości nie udało się wyznaczyć
(prawdopodobnie Γ < 10−12 cm−1).
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IV.G. Rezonanse w układzie ortoH2–CO

Przechodzimy teraz do analizy układów, dla których j1 = 1, czyli ortoH2–CO i paraD2–

CO. W tym przypadku oś energii Ertot przedstawia wartość względną liczoną względem naj-

niższego dopuszczalnego stanu energetycznego:

obecnie: Ertot = Etot − 2Bv11 .

Z rozważań dotyczących symetrii kanałów (rozdział IV.B) wynika, że dla parzystości f kanał

(j1 = 1, j2 = 0) jest otwarty już od 0 cm−1, z wyjątkiem J = 0, gdzie jedynym dopuszczalnym

jest kanał (j1 = 1, j2 = 1) otwierający się przy energii 2Bv22 . Dla parzystości e kanały

są otwarte od takich samych progów energetycznych i nie ma ograniczenia związanego z

wartością J .

Rysunek 18 przedstawia przekroje czynne dla kompleksu ortoH2–CO w symetrii f . Obli-

czenia wykonano dla zakresu J ∈ [0, 9], natomiast ostatnie rezonanse w tej symetrii ziden-

tyfikowano przy J = 7. W porównaniu z kompleksami z j1 = 0, struktura rezonansowa jest

znacznie bogatsza. Zidentyfikowano 23 rezonanse z czego 11 na rys. 18 (15 wg tab. VIII) ma

szerokość poniżej 10−2 cm−1. Już dla J = 1 pojawia się pierwszy z takich stanów. Najwięcej

rezonansów dla pojedynczej wartości momentu pędu pojawia się dla J = 4. Scharakteryzo-

wano tam aż pięć rezonansów, z czego trzy należą do grupy wąskich.

Dla J = 6 pojawia się z kolei rezonans o energii 0.1270 cm−1, którego nie udało się wy-

kryć w standardowej siatce, a jego obecność została stwierdzona dopiero metodą stabilizacji.

Stan ten jest szczególnie interesujący, ponieważ jego odpowiednik dla v2 = 1 jest stanem

związanym. Biorąc pod uwagę wszystkie rozważane do tej pory układy, jest to pierwszy

przypadek, w którym liczba rezonansów w parach v2 = 0 i v2 = 1 nie jest zgodna. Szero-

kość tego rezonansu v2 = 0 wynosi około 10−11 cm−1. Z formalnego punktu widzenia jest

to stan kwazizwiązany, jednak z perspektywy analizy widm jest praktycznie nieodróżnialny

od swojego odpowiednika w kompleksie z v2 = 1, gdzie klasyfikowany jest jako stan związa-

ny. Trudno jednoznacznie stwierdzić, czy obserwowane rozróżnienie ma faktyczny charakter

fizyczny, czy też stanowi efekt niedoskonałości powierzchni potencjału lub zastosowanego

przybliżenia sztywnych monomerów. Na pewno efekt ten jest wart zbadania w przyszłości.

Precyzyjne informacje o położeniach rezonansów oraz ich szerokości znajdują się w tabe-

li VIII. Analizując ją można zauważyć, że dla niektórych par odpowiadających sobie rezo-

nansów dla v2 = 0 i v2 = 1, ich szerokości należą do różnych przyjętych przez nas kategorii.

Na przykład, w bloku symetrii JP = 2f najniżej leżące rezonanse, nrJ,P = 1, o energiach
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3.0082 cm−1 (v2 = 0) i 2.7703 cm−1 (v2 = 1), mają szerokości odpowiednio 1.268 · 10−2 cm−1

i 8.615·10−3 cm−1. Zatem tylko drugi z tej pary spełnia kryterium szerokości, Γ < 10−2 cm−1,

poniżej której rezonans może być widoczny w rozważanych przez nas widmach oscylacyjno-

rotacyjnych. Mimo to, w tabeli oba te rezonanse oznaczone są symbolem ∗, ponieważ kryte-

rium, jak stwierdzono wcześniej ma charakter orientacyjny i może się zdarzyć, że oba będą

widoczne w widmie. Niemniej, pozycje tych rezonansów z pary, które są zbyt szerokie, nie

są oznaczane ∗ na rysunkach.

Rysunek 19 przedstawia przekroje czynne dla parzystości e. Podobnie jak dla kompleksów

z j1 = 0, również tutaj obserwujemy taki sam trend, że struktura rezonansowa jest bardziej

złożona niż w przypadku parzystości f . Rezonanse pojawiają się aż do J = 9, tylko na tym

najwyższym panelu nie zaobserwowano żadnego stanu oznaczonego ∗. Łącznie zidentyfiko-

wano 38 rezonansów (w tym 36 o energiach poniżej 10 cm−1), z czego 19 jest węższych od

10−2 cm−1 (20 wg tab. VIII). Szczególnie interesujący jest przypadek J = 6, dla którego

odnaleziono aż 6 rezonansów, z czego 4 należą do kategorii ∗, a jeden z nich został ziden-

tyfikowany dzięki metodzie stabilizacji. Ten ostatni ma szerokość rzędu 10−8 cm−1 i jest

najwęższym stanem spośród wszystkich odnalezionych dla tej symetrii.
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Rysunek 18: Przekroje czynne σ na zderzenia elastyczne ortoH2–CO dla v2 = 0 w blokach symetrii Jf ,
gdzie J ∈ [0, 9]. Czerwona linia pokazuje zależność σ od energii Ertot dla kanału (j1 = 1, j2 = 0), a bordowa
dla kanału (j1 = 1, j2 = 1). Wyznaczone energie poziomów rezonansowych, Eres, zaznaczone są niebieską
przerywaną linią. Zacieniowany czerwony obszar odpowiada przedziałowi Eres±Γ/2. Rezonanse o szerokości
Γ<10−2 cm−1 oznaczonezostały symbolem „∗”, a wyznaczone w oparciu o metodę stabilizacji symbolem „!”.
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Rysunek 19: Przekroje czynne σ na zderzenia elastyczne ortoH2–CO dla v2 = 0 w blokach symetrii
Je, gdzie J ∈ [0, 9]. Niebieska linia pokazuje zależność σ od energii Ertot dla kanału (j1 = 1, j2 = 0), a
granatowa dla kanału (j1 = 1, j2 = 1). Wyznaczone energie poziomów rezonansowych, Eres, zaznaczone
czerwoną przerywaną linią. Zacieniowany niebieski obszar odpowiada przedziałowi Eres ± Γ/2. Rezonanse o
szerokości Γ < 10−2 cm−1 oznaczone zostały symbolem „∗”, a wyznaczone w oparciu o metodę stabilizacji
symbolem „!”.
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Tabela VIII: Energie Ev2res i szerokości Γv2 rezonansów znalezionych dla układu ortoH2–CO z

v2 = 0, 1. Notacja (-x) oznacza 10−x, rezonanse węższe niż 10−2 cm−1, które potencjalnie pozwalają

im mieć realny wpływ na widmo, oznaczono „∗”. Wykrzyknik przy wartości energii oznacza, że

dany stan został znaleziony dzięki metodzie stabilizacji. Liczba wszystkich rezonansów o parzystości

spektroskopowej e (f) wynosi 38 (23), z czego 20 (15) to rezonanse oznaczone ∗. Energie i szerokości

podano w cm−1.

nrJ,P E0res E1res Γ0 Γ1
JP = 0e

1 0.0313 0.0241 3.653(-02) 2.110(-02)
2∗ 3.0709 2.9713 6.331(-03) 4.606(-03)
3∗ 3.7785 3.7150 7.154(-03) 1.691(-02)

JP = 1f

1∗ 3.2938 3.1944 8.622(-03) 9.126(-03)
JP = 1e

1 3.0584 2.8176 1.677(-02) 2.143(-02)
2∗ 3.5017 3.4318 4.530(-03) 7.557(-03)
3 3.7821 3.7309 4.162(-02) 4.556(-02)

JP = 2f

1∗ 3.0082 2.7703 1.268(-02) 8.615(-03)
2 3.5244 3.3307 1.862(-02) 1.715(-02)
3∗ 3.7642 3.6890 2.594(-03) 6.063(-04)

JP = 2e

1 0.0454 0.0370 7.913(-02) 4.737(-02)
2 1.1047 0.7801 7.642(-02) 5.356(-02)
3 2.2617 1.9658 1.714(-02) 2.167(-02)
4∗ 3.2080 3.0166 1.423(-03) 3.919(-03)
5 3.6797 3.4631 4.579(-02) 4.260(-02)
6 4.1094 4.0407 1.059(-01) 8.348(-02)

JP = 3f

1∗ 0.5685 0.3683 2.990(-02) 6.749(-03)
2∗ 2.5339 2.1701 7.840(-03) 1.079(-02)

JP = 3e

1∗ 0.3677 0.1688 3.875(-03) 1.243(-05)
2 1.9122 1.6363 5.258(-02) 2.932(-02)
3 2.8680 2.5217 3.072(-02) 2.940(-02)
4∗ 3.6114 3.2959 8.422(-03) 1.960(-03)
5∗ 3.7038 3.5395 8.552(-03) 2.923(-02)

JP = 4f

1∗ 0.8950 0.6703 2.030(-03) 5.677(-04)
2∗ 1.7206 1.4810 5.369(-03) 2.193(-03)
3∗ 2.2793 1.9878 3.719(-03) 7.638(-04)
4 2.7585 2.4520 2.165(-02) 1.157(-02)
5∗ 4.3290 3.9944 1.775(-02) 7.881(-03)

JP = 4e

1∗ 2.5849 2.2506 2.289(-03) 1.943(-03)
2∗ 4.0527 3.8710 5.007(-02) 9.515(-03)

nrJ,P E0res E1res Γ0 Γ1
JP = 5f

1∗ 3.6294 3.3901 1.206(-03) 1.394(-03)
2 5.9741 5.6782 5.449(-02) 4.781(-02)
3 6.5770 6.3224 7.593(-02) 4.131(-02)
4 6.9145 6.6122 1.320(-01) 9.094(-02)

JP = 5e

1∗ 0.5918 0.3166 1.102(-06) 9.591(-08)
2∗ 1.5188 1.2609 1.325(-03) 6.880(-04)
3 7.5512 7.1833 1.022(-01) 8.025(-02)
4 8.7466 8.3906 1.394(-01) 1.133(-01)

JP = 6f

1∗ 0.1270! a 1.165(-11) a

2∗ 2.1915 1.9462! 1.189(-04) 6.157(-05)
3∗ 3.5297 3.3274 1.194(-02) 8.954(-03)
4 8.2400 7.9298 4.598(-02) 3.483(-02)

JP = 6e

1∗ 0.4397! 0.2110! 3.390(-08) 3.406(-10)
2∗ 3.1691 3.0037 5.018(-04) 6.371(-04)
3 4.4605 4.2930 3.904(-02) 3.546(-02)
4∗ 4.6523 4.3860 1.793(-03) 2.351(-03)
5∗ 5.6320 5.3874 5.533(-03) 4.333(-03)
6 6.6459 6.3875 2.417(-02) 2.381(-02)

JP = 7f

1∗ 4.6290 4.5341 3.034(-03) 2.452(-03)
2∗ 5.5834 5.4030 2.236(-03) 2.376(-03)
3 6.1421 5.9013 2.593(-02) 1.838(-02)
4 7.4314 7.2037 2.883(-02) 2.530(-02)

JP = 7e

1∗ 0.7538! 0.5119! 1.281(-07) 1.948(-08)
2∗ 0.9815 0.8279 1.654(-05) 5.624(-06)
3∗ 5.3452 5.1073 1.554(-03) 8.998(-04)
4 9.6375 9.4598 7.236(-02) 6.003(-02)
5 10.1192 9.8131 6.282(-02) 5.926(-02)

JP = 8e

1∗ 3.7930 3.7518 8.995(-04) 7.750(-04)
2∗ 6.1120 5.8508 6.785(-04) 9.000(-04)
3 10.6041 10.3459 1.399(-02) 1.131(-02)

JP = 9e

1 9.5170 9.4826 1.080(-01) 1.066(-01)

a odpowiednikiem rezonansu dla v2 = 0
jest stan związany dla v2 = 169



IV.H. Rezonanse w układzie paraD2–CO

Najbardziej złożony z punktu widzenia dynamiki układ spośród izotopologów i odmian

spinowych H2–CO, który był rozważany w niniejszej pracy, to paraD2–CO. W tym przypadku

analizowany zakres energii został poszerzony aż do 14 cm−1.

Na rysunku 20 i w tabeli IX widzimy, że dla symetrii f rezonanse odnajdujemy aż do

wartości J = 11. Zidentyfikowaliśmy łącznie 49 stanów, z czego 28 należy do kategorii ∗, czyli

potencjalnie zauważalnych w widmie w podczerwieni, a cztery zostały wyznaczone dzięki

metodzie stabilizacji. Szczególnie duże zagęszczenie rezonansów obserwuje się dla J = 7 oraz

J = 10, gdzie występuje odpowiednio sześć i pięć stanów, w tym po cztery oznaczone ∗.

Podobnie jak w przypadku ortoH2–CO, również dla paraD2–CO, w blokach symetrii

JP = 2f i 4f , dla przypadku v2 = 0 zidentyfikowano rezonanse o niskich energiach, rów-

nych odpowiednio 0.0023 cm−1 i 0.2537 cm−1, których odpowiedniki w kompleksie z v2 = 1

występują jako stany związane.

Dla symetrii e (rys. 21), zakres obliczeń rozszerzono do J ∈ [0, 13]. To właśnie tutaj

obserwujemy największą liczbę rezonansów spośród wszystkich rozpatrywanych układów.

Łącznie zidentyfikowano 58 stanów, z czego aż 30 węższych niż 10−2 cm−1. W sześciu przy-

padkach konieczne było zastosowanie metody stabilizacji aby znaleźć rezonanse. Pojawiają

się kolejne stany, które dla przypadku v2 = 1 zostają sklasyfikowane jako związane. Naj-

większe zagęszczenie wąskich rezonansów (oznaczonych ∗) przypada na J = 9, 10 i 11, gdzie

dla każdego z tych przypadków występują po cztery takie rezonanse. Pomimo wyraźnego

wzrostu liczby rezonansów, nie zaobserwowano nowych jakościowo cech w przebiegach prze-

krojów czynnych. Struktura rezonansowa staje się coraz gęstsza, ale nie ujawnia wyraźnych

prawidłowości ponad to, co obserwowano w analizach wcześniejszych układów.
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Rysunek 20: Przekroje czynne σ na zderzenia elastyczne paraD2–CO dla v2 = 0 w blokach symetrii
Jf , gdzie J ∈ [0, 11]. Czerwona linia pokazuje zależność σ od energii Ertot dla kanału (j1 = 1, j2 = 0),
a bordowa dla kanału (j1 = 1, j2 = 1). Wyznaczone energie poziomów rezonansowych, Eres, zaznaczone
niebieską przerywaną linią. Zacieniowany czerwony obszar odpowiada przedziałowi Eres ± Γ/2. Rezonanse o
szerokości Γ < 10−2 cm−1 oznaczone zostały symbolem „∗”, a wyznaczone w oparciu o metodę stabilizacji
symbolem „!”.
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Rysunek 21: Przekroje czynne σ na zderzenia elastyczne paraD2–CO dla v2 = 0 w blokach symetrii
Je, gdzie J ∈ [0, 12]. Niebieska linia pokazuje zależność σ od energii Ertot dla kanału (j1 = 1, j2 = 0), a
granatowa dla kanału (j1 = 1, j2 = 1). Wyznaczone energie poziomów rezonansowych, Eres, zaznaczone
czerwoną przerywaną linią. Zacieniowany niebieski obszar odpowiada przedziałowi Eres ± Γ/2. Rezonanse o
szerokości Γ < 10−2 cm−1 oznaczone zostały symbolem „∗”, a wyznaczone w oparciu o metodę stabilizacji
symbolem „!”.
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Tabela IX: Energie Ev2res i szerokości Γv2 rezonansów znalezionych dla układu paraD2–CO z

v2 = 0, 1. Notacja (-x) oznacza 10−x, rezonanse węższe niż 10−2 cm−1, które potencjalnie pozwalają

im mieć realny wpływ na widmo, oznaczono „∗”. Wykrzyknik przy wartości energii oznacza, że da-

ny stan został znaleziony dzięki metodzie stabilizacji. Liczba wszystkich rezonansów o parzystości

spektroskopowej e (f) wynosi 58 (49), z czego 30 (28) to rezonanse oznaczone ∗. Energie i szerokości

podano w cm−1.

nrJ,P E0res E1res Γ0 Γ1

JP = 0f

1 3.8657 3.8273 7.893(-02) 3.371(-02)

JP = 0e

1 0.8514 0.6935 5.270(-02) 8.776(-02)

2∗ 3.7679 3.6975 4.985(-03) 8.367(-03)

JP = 1f

1 0.5478 0.3162 3.163(-02) 2.084(-02)

2 2.6883 2.5198 7.729(-02) 4.809(-02)

JP = 1e

1∗ 0.2893 0.0792 3.223(-03) 6.196(-03)

2 1.4933 1.2786 4.916(-02) 5.602(-02)

3 2.7844 2.6266 1.053(-01) 6.243(-02)

4∗ 3.8463 3.7913 3.875(-03) 9.144(-03)

5 11.5118 a 2.322(-02) a

JP = 2f

1∗ 0.0023! b 5.263(-08) b

2∗ 0.7245 0.4833 8.913(-03) 4.748(-03)

3∗ 1.6270 1.4077 1.029(-02) 9.128(-03)

4 3.5425 3.3691 2.685(-02) 1.718(-02)

JP = 2e

1∗ 0.2213 0.0147! 4.561(-04) 5.171(-07)

2 0.8816 0.6882 1.013(-01) 1.008(-01)

3 2.6620 2.4245 1.623(-02) 2.373(-02)

4∗ 11.5106 11.3136 7.137(-03) 8.024(-03)

JP = 3f

1∗ 0.8512 0.6169 1.200(-04) 1.269(-04)

2 2.3243 2.0895 2.740(-02) 2.112(-02)

3∗ 3.1509 2.9088 7.897(-04) 1.557(-04)

4 4.0052 3.8132 7.468(-02) 1.006(-02)

JP = 3e

1∗ 0.8404 0.6654 8.590(-03) 8.716(-03)

2 a 3.6716 a 5.855(-02)

a szeroki rezonans na progu otwarcia kanału,
nie udało się wyznaczyć jego szerokości

nrJ,P E0res E1res Γ0 Γ1

JP = 4f

1∗ 0.2537 b 1.067(-04) b

2 1.7507 1.5106 2.004(-02) 1.367(-02)

3∗ 2.2441 2.0226 5.894(-04) 9.706(-04)

4 4.2808 4.0856 5.689(-02) 3.292(-02)

JP = 4e

1 0.5939 0.5113 5.317(-02) 4.613(-02)

2 0.9908 0.7933 1.429(-02) 1.534(-02)

3 1.5418 1.2718 2.570(-02) 1.306(-02)

4 2.4328 2.2280 2.627(-02) 2.458(-02)

5 3.4661 3.2654 3.984(-02) 3.379(-02)

JP = 5f

1∗ 1.1870 0.8991 2.382(-02) 2.506(-03)

2∗ 2.1389! 1.8295 1.092(-06) 5.060(-05)

3 3.0939 2.8846 5.012(-02) 5.216(-02)

4 3.7324 3.4829 2.202(-02) 1.445(-02)

5∗ 4.1768 3.9560 7.607(-03) 1.283(-03)

JP = 5e

1∗ 0.0105! b 1.097(-09) b

2∗ 0.3526 0.0945! 5.240(-04) 5.031(-06)

3 3.5093 3.3224 2.777(-02) 2.255(-02)

4 4.6065 4.4635 4.004(-02) 1.162(-02)

JP = 6f

1∗ 0.6704 0.3272! 7.255(-06) 8.686(-08)

2∗ 0.8683! 0.5151! 6.802(-09) 7.354(-08)

3∗ 4.0100 3.7577 1.244(-03) 6.266(-04)

4∗ 4.6815 4.4846 1.345(-02) 4.060(-03)

JP = 6e

1∗ 0.3713! 0.0838! 3.732(-07) 5.845(-11)

2∗ 0.8612 0.4922 1.689(-04) 8.023(-06)

3∗ 2.3206 1.9652! 1.006(-03) 1.993(-04)

4 2.7199 2.4485 2.202(-02) 2.630(-02)

b odpowiednikiem rezonansu dla v2 = 0
jest stan związany dla v2 = 1
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Tabela IX: Kontynuacja.

nrJ,P E0res E1res Γ0 Γ1

JP = 7f

1∗ 0.8506 0.6066! 1.920(-06) 1.591(-07)

2∗ 1.4765 1.2370 2.836(-05) 5.680(-06)

3∗ 2.1494 1.8308 2.337(-04) 4.188(-05)

4 3.0901 2.8581 3.914(-02) 2.204(-02)

5 3.7124 3.3599 3.474(-02) 2.396(-02)

6∗ 4.1268 3.8169 5.697(-03) 5.644(-03)

JP = 7e

1∗ 2.6515 2.2974 4.380(-02) 9.457(-03)

2∗ 3.9672 3.6118 6.527(-03) 4.939(-03)

3∗ 4.2155 3.9367 8.866(-03) 7.180(-03)

4 4.7560 4.5751 6.402(-02) 3.649(-02)

5 5.9419 5.6370 1.710(-02) 1.268(-02)

JP = 8f

1∗ 2.5256 2.2778 6.055(-06) 3.302(-06)

2 5.2649 5.0284 1.216(-01) 8.405(-02)

3∗ 5.7847 5.5690 8.611(-03) 2.538(-03)

4 6.3977 6.1078 2.949(-02) 1.156(-02)

5 8.1601 7.8752 3.758(-02) 3.612(-02)

JP = 8e

1∗ 0.2743! 0.0252! 7.091(-12) c

2∗ 1.4853 1.2085 9.412(-06) 2.413(-06)

3 4.0154 a 8.336(-02) a

4 5.6406 5.3599 5.510(-02) 3.296(-02)

5 7.5624 7.2015 4.151(-02) 5.924(-02)

6 8.2576 7.9527 9.562(-02) 6.704(-02)

JP = 9f

1∗ 2.2762! 2.0131! 4.395(-07) 1.520(-07)

2∗ 3.9871 3.7547 5.314(-04) 3.249(-04)

3∗ 7.2438 6.9687 5.446(-04) 3.023(-04)

4 10.6802 10.4733 3.479(-02) 3.169(-02)

JP = 9e

1∗ 1.8552! 1.6743! 5.310(-07) 3.541(-07)

2∗ 3.0259 2.8667 4.853(-04) 3.251(-04)

3∗ 4.1336 3.8054 1.734(-04) 1.057(-04)

4∗ 5.1344 4.9011 2.425(-03) 1.579(-03)

5 6.1587 5.8808 1.591(-02) 1.384(-02)

nrJ,P E0res E1res Γ0 Γ1

JP = 10f

1∗ 3.0997 3.0321 4.498(-06) 3.624(-06)

2∗ 4.5868 4.3175 6.735(-05) 4.552(-05)

3∗ 4.8803 4.6776 8.808(-05) 3.861(-05)

4∗ 6.9954 6.7398 1.453(-03) 1.101(-03)

5 8.8243 8.6054 5.812(-02) 4.927(-02)

6 12.0311 11.7306 6.793(-02) 5.350(-02)

JP = 10e

1∗ 0.0849! b 7.881(-13) b

2∗ 3.7608 3.4803 6.164(-06) 2.639(-06)

3∗ 7.3958 7.2134 3.520(-03) 4.333(-03)

4 8.1917 8.0441 9.545(-02) 8.454(-02)

5∗ 8.8563 8.5098 2.116(-03) 1.162(-03)

6 10.4614 10.2411 4.042(-02) 3.374(-02)

7 11.3039 11.0330 4.550(-02) 4.512(-02)

JP = 11f

1∗ 8.2034 8.1324 4.364(-03) 4.041(-03)

2 10.1748 9.9600 1.237(-02) 1.186(-02)

3 10.4971 10.2558 2.598(-02) 1.720(-02)

4 12.1539 11.9108 3.859(-02) 3.426(-02)

JP = 11e

1∗ 1.3930! 1.4363! 1.608(-09) 2.152(-09)

2∗ 4.7344 4.4028 5.017(-05) 3.902(-05)

3∗ 5.3449 5.1965 1.800(-03) 1.339(-03)

4∗ 8.6947 8.4121 3.732(-04) 2.599(-04)

5 13.1723 12.9954 5.948(-02) 6.066(-02)

JP = 12e

1∗ 6.2709 6.3090 3.475(-04) 3.679(-04)

2∗ 10.1345 9.8292 2.481(-03) 2.530(-03)

3 10.9120 10.7665 1.407(-01) 1.247(-01)

JP = 13e

1 11.3898 a 2.103(-02) a

a szeroki rezonans na progu otwarcia kanału,
nie udało się wyznaczyć jego szerokości
b odpowiednikiem rezonansu dla v2 = 0

jest stan związany dla v2 = 1
c bardzo wąski rezonans, nie udało się
wyznaczyć jego szerokości
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IV.I. Rezonanse w układach z j1 = 1 – podsumowanie

Wszystkie rezonanse wyznaczone dla układów ortoH2–CO i paraD2–CO zostały w sposób

schematyczny przedstawione na rys. 22. Wskazać można pewne trendy obserwowane dla

rozpraszań w tych układach, czyli charakteryzujących się wartością j1 = 1. Niektóre z nich

są analogiczne jak dla wcześniej analizowanych kompleksów z j1 = 0, ale pojawiają się także

zauważalne różnice.
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Rysunek 22: Szerokości rezonansów Γ (w skali logarytmicznej) w funkcji energii całkowitej Ertot dla ukła-

dów ortoH2–CO oraz paraD2–CO, z cząsteczką CO w stanie wibracyjnym v2 = 0. Każdy punkt odpowiada

jednemu scharakteryzowanemu rezonansowi. Kolory punktów określają ich parzystość spektroskopową P :

czerwony oznacza f , a niebieski e. Pionowe linie w każdym panelu oddzielają grupy rezonansów z różnymi

wartościami całkowitego momentu pędu J i wyznaczają odcinki na osi poziomej, w ramach których określić

możemy energie odpowiadające każdemu punktowi. Czarna (czerwona) linia w każdym panelu wyznacza

próg Γ wynoszący 10−2 (10−4) cm−1.

Do podobieństw należy przewaga liczby stanów rezonansowych o symetrii e, jednak różni-

ca ta nie jest już tak duża jak dla układów z j1 = 0. Analizując wyłącznie stany o szerokości

Γ < 10−2 cm−1, dla kompleksu ortoH2–CO stosunek liczby rezonansów f : e wynosi 15:20,

czyli około 57% stanów wszystkich znalezionych rezonansów ma parzystość spektroskopową

e. Z kolei dla kompleksu paraD2–CO stosunek ten jest równy 28:30, czyli niespełna 52% ma
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parzystość e. Dla porównania, dla kompleksów paraH2–CO oraz ortoD2–CO, odpowiadające

wartości wynoszą odpowiednio 2:5 (około 71%) oraz 7:12 (około 63%). Zatem dla układów

z j1 = 1, trend przewagi liczby stanów o symetrii e pozostaje zachowany, jednak jest mniej

wyraźny niż dla układów z j1 = 0.

Kolejne podobieństwo układów z j1 = 1 do tych z j1 = 0, to wzrost liczby rezonansów

wraz ze wzrostem całkowitego momentu pędu J , aż do pewnej wartości, powyżej której liczba

stanów gwałtownie maleje. Dla kompleksu ortoH2–CO najwięcej rezonansów pojawia się dla

J = 6, przy J = 8 występują już zaledwie dwa stany, a ostatni rezonans identyfikowany jest

dla J = 9. W przypadku kompleksu paraD2–CO maksimum liczby rezonansów przypada na

J = 10, natomiast ostatni stan rezonansowy pojawia się gdy J = 13.

Zauważalną różnicą w stosunku do układów z j1 = 0 jest brak łatwo identyfikowalnych, w

obrębie jednego J , par rezonansów o przeciwnych parzystościach, które posiadałyby zbliżone,

bardzo małe szerokości. Analogicznie jak w poprzednim podrozdziale, przygotowana została

tabela X przedstawiająca udział wiodących kątowych funkcji bazowych w funkcji falowej dla

pięciu najwęższych stanów rezonansowych dla każdego układu. W tym przypadku zbiór liczb

potrzebny do określenia Λ wzrasta z (j2, l) do (j2, j12, l). O ile wcześniej wkłady do funkcji

falowej λ(Λ) były większe niż 0.80, co pozwalało na wskazanie tylko jednej dominującej funk-

cji kątowej, tutaj sytuacja jest diametralnie różna. W większości przypadków funkcje falowe

mają kilka wiodących składowych kątowych, więc w tabeli X przedstawione zostały te wkła-

dy, których udział mierzony wartością λ(Λ) jest większy od 0.10. Analizując przedstawione

wkłady do funkcji falowych, trudno doszukać się jednoznacznych lub wyraźnych regularno-

ści. Takie zachowanie jest do pewnego stopnia potwierdzeniem dyskutowanego w rozdziale

dotyczącym analizy widma eksperymentalnego faktu, że trudno jest zaproponować prosty,

modelowy hamiltonian, który w pełni opisywałby złożoną strukturę rezonansową układów

z j1 = 1. Silniejsze mieszanie przyczynków kątowych do funkcji falowych wynika prawdopo-

dobnie z dużo większej liczby możliwych sprzężeń w przypadku kompleksów ortoH2–CO i

paraD2–CO, w porównaniu do wcześniej analizowanych paraH2–CO, HD–CO i ortoD2–CO.
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Tabela X: Lista pięciu najwęższych rezonansów w układach z j1 = 1, wraz z ich energiami i

szerokościami, oraz z informacją o kątowych funkcjach bazy, które dają największe wkłady do funkcji

falowych tych rezonansów. Dla każdego układu stany podane są w kolejności rosnących wartości Γ.

Funkcje kątowe charakteryzowane są przez liczby (j2, j12, l), a ich udziały w funkcji falowej przez

wartości parametru λ(Λ). Energie i szerokości rezonansów podane są w cm−1.

układ JP Eres Γ (j2, j12, l) λ(Λ)

ortoH2–CO

6f 0.1270 1.165(-11)
(0, 1, 6) 0.42
(2, 3, 4) 0.25
(1, 1, 5) 0.17

6e 0.4397 3.390(-08)

(3, 4, 2) 0.31
(1, 2, 6) 0.21
(1, 1, 6) 0.17
(1, 0, 6) 0.14

7e 0.7538 1.281(-07)
(2, 3, 4) 0.73
(1, 2, 5) 0.11

5e 0.5918 1.102(-06)
(2, 2, 4) 0.39
(2, 1, 4) 0.39
(0, 1, 6) 0.11

7e 0.9815 1.654(-05) (0, 1, 6) 0.88

paraD2–CO

10e 0.0849 7.881(-13)
(0, 1, 9) 0.48
(2, 3, 7) 0.38

8e 0.2743 7.091(-12)

(2, 3, 7) 0.34
(0, 1, 9) 0.20
(2, 1, 7) 0.18
(2, 3, 5) 0.13

5e 0.0105 1.097(-09)
(0, 1, 4) 0.62
(2, 3, 6) 0.15

11e 1.3930 1.608(-09)
(1, 2, 9) 0.50
(2, 3, 8) 0.15
(0, 1, 10) 0.12

6f 0.8683 6.802(-09)
(3, 3, 3) 0.54
(3, 4, 3) 0.13
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IV.J. Podsumowanie poszukiwań niskoenergetycznych rezonansów

W poprzednich podrozdziałach szczegółowo omówione zostały wyniki poszukiwań stanów

rezonansowych dla różnych izotopologów i odmian spinowych układu H2–CO. Staraliśmy

się wskazać charakterystyczne cechy zależności przekroju czynnego od energii zderzeń oraz

przedyskutowaliśmy podobieństwa lub różnice w zależności od rozważanego układu. Tutaj

przedstawione jest krótkie podsumowanie wraz z syntetycznym zestawieniem wyników. W

tabeli XI zebrano dane o całkowitej liczbie rezonansów, z rozbiciem na parzystości spek-

troskopowe P , wyszczególniono liczbę stanów o szerokościach poniżej ustalonego kryterium

10−2 cm−1, a także wskazano rezonans o najmniejszej szerokości dla każdego z analizowanych

układów. Można zauważyć, systematyczny wzrost liczby rezonansów wraz z przesuwaniem się

w sekwencji rozważanych układów paraH2–CO, ortoD2–CO, HD–CO, ortoH2–CO i paraD2–

CO. Zależność ta jest w zgodzie z zaobserwowaną wcześniej dla liczby stanów związanych

znalezionych dla takiej sekwencji układów [28].

Tabela XI: Zestawienie podstawowych informacji o wyznaczonych rezonansach dla różnych

izotopologów i odmian spinowych układu H2–CO. Obok szerokości najwęższych rezonansów

Γmin, wskazane są bloki symetrii JP , w których występują. Szerokości rezonansów podane są

w cm−1.

układ j1
liczba liczba (Γ < 10−2) v2 = 0 v2 = 1

razem f e razem f e Γmin JP Γmin JP

paraH2–CO 0 18 5 13 7 2 5 3.602(-05) 3e 3.048(-05) 6f

HD–CO 0 35 11 24 19 5 14 a 7f 3.720(-12) 7e

ortoD2–CO 0 49 16 33 19 7 12 3.247(-12) 9f 5.329(-12) 9e

ortoH2–CO 1 61 23 38 35 15 20 1.165(-11) 6f 3.406(-10) 6e

paraD2–CO 1 107 49 58 58 28 30 7.881(-13) 10e b 8e

a węższy niż 10−13 cm−1, nie udało się wyznaczyć jego szerokości
b nie udało się jego szerokości z powodu energii nieznacznie większej od 0 cm−1

Zauważyć można również istotne zmiany liczby rezonansów w przypadku porównywania

kompleksów dla tego samego izotopologu wodoru, ale o różnych wartościach j1, czyli między

kompleksami paraH2–CO i ortoH2–CO, oraz między kompleksami ortoD2–CO i paraD2–CO.

W każdej z tych par występuje znaczący wzrost liczby rezonansów. Efekt ten wynika przede
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wszystkim ze zwiększenia liczby dostępnych kanałów, które mogą się sprzęgać w trakcie

procesu zderzenia.

Na rysunku 23 przedstawiono wykres słupkowy rozkładu liczby rezonansów w funkcji cał-

kowitego momentu pędu J dla wszystkich analizowanych układów. Wartości J rozmieszczone

są na osi poziomej, natomiast liczba zidentyfikowanych stanów rezonansowych odpowiada

wartościom na osi pionowej. Ciemniejszym kolorem oznaczono stany o szerokościach mniej-

szych niż przyjęte kryterium 10−2 cm−1. Rysunek ten całościowo ilustruje opisane wcześniej

trendy zmiany liczby rezonansów dla sekwencji układów paraH2–CO, ortoD2–CO, HD–CO,

ortoH2–CO i paraD2–CO.
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Rysunek 23: Liczba stanów rezonansowych w funkcji całkowitego momentu pędu J dla

wszystkich analizowanych układów.
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V. Obliczenia widm teoretycznych dla ortoH2–CO

Widmo w podczerwieni kompleksu ortoH2–CO zostało po raz pierwszy zarejestrowane

w 1998 roku, razem z widmem paraH2–CO. Podczas gdy to drugie udało się stosunkowo

szybko zinterpretować [14], widmo ortoH2–CO przez wiele lat pozostawało niewyjaśnione.

Istotny postęp nastąpił dopiero w roku 2012 [15, 16], gdy wsparcie teoretyczne pozwoliło na

przypisanie ponad 200 linii spektralnych. Nie zrealizowano jednak planu maksimum, którym

było wyznaczenie schematu oscylacyjno-rotacyjnych poziomów energetycznych, co udało się

wcześniej dla kompleksu paraH2–CO [14]. Próbę rozwiązania tego niebanalnego problemu

podjęliśmy ponownie w badaniach prowadzących do niniejszej dysertacji. Nasze działania

w tym kierunku rozpoczęliśmy od stworzenia możliwie najdokładniejszego widma teoretycz-

nego, a osiągnięty efekt zostanie przedstawiony w tym rozdziale. Potem otrzymane wyniki

wykorzystaliśmy do analizy widma doświadczalnego, co zaprezentujemy w kolejnym rozdzia-

le. Badania nasze doprowadziły do wyznaczenia większości eksperymentalnych poziomów

energetycznych dla ortoH2–CO i najważniejsze rezultaty zostały opublikowane w pracy [23].

Jednak charakter tego czasopisma nie pozwolił na zamieszczenie zbyt wielu szczegółów, któ-

re tak naprawdę zadecydowały o powodzeniu całego przedsięwzięcia. Zastosowana metodo-

logia może być przydatna przy analizie innych widm doświadczalnych, co zostało zresztą

wykorzystane dla kompleksu ortoD2–CO w rozdziale VII. Dlatego w rozdziale VI zostaną

przedstawione kluczowe fragmenty algorytmu wyznaczania poziomów.

Obliczenia oscylacyjno-rotacyjne, na podstawie których obliczono widma teoretyczne w

pracach [15, 16], przeprowadzone były w przybliżeniu sztywnych rotatorów z powierzchnią

uśrednioną po drganiach, która oznaczona została V12. W momencie powstawania tamtych

prac nie było możliwe oszacowanie ewentualnego błędu wynikającego, po pierwsze, z za-

stosowania przybliżenia sztywnych rotatorów, a po drugie z zastosowanej metody uśrednia-

nia potencjału. W ramach przygotowań do kolejnego ataku na problem rozwikłania widma

ortoH2–CO, podjęta została próba wyjaśnienia tych wątpliwości. Opracowana została nowa

pełnowymiarowa powierzchnia energii oddziaływania dla H2–CO, nazwana V23, a świato-

wej klasy eksperci w dziedzinie dynamiki kompleksów, Tucker Carrington Jr. i Xiao-Gang

Wang z Queen’s University w Kingston w Kanadzie, wykonali obliczenia 6D, uwzględniające

wszystkie stopnie swobody ortoH2–CO, i otrzymali układy poziomów energetycznych dla

v2 = 0 i 1. Warto podkreślić, że udało się osiągnąć dokładność obliczeń dynamicznych na

poziomie 0.0001 cm−1, dzięki czemu wyniki te stanowią wiarygodny punkt odniesienia dla

80



innych metod.

Równolegle w naszej grupie przeprowadzone zostały, na podobnym poziomie dokładno-

ści, obliczenia 4D, w przybliżeniu sztywnych rotatorów, z powierzchnią V23 uśrednioną po

drganiach obu cząsteczek. Ta nowa powierzchnia uśredniona powstała na nieco wyższym po-

ziomie obliczeń ab initio niż powierzchnia V12, ponieważ wykonując uśrednienie prowadzące

do tej ostatniej powierzchni wykorzystywaliśmy dane uzyskane z uboższą bazą funkcyjną niż

w przepadku uśredniania V23 [23]. Porównanie najnowszych wyników 4D do wyników 6D

[19, 28] pokazało, że różnice w otrzymanych z obu metod odpowiadających sobie poziomów

energetycznych są minimalne. Np., dla CO w stanie wibracyjnym v2 = 0 średni błąd kwa-

dratowy wyniósł 0.0006 cm−1. Co więcej, okazało się, że różnice energii przejść obliczonych

z V23 i eksperymentalnych są bardzo zbliżone do tych, które otrzymano z V12 [16, 23]. Po-

łączenie tych faktów doprowadziło nas do konkluzji, że widma teoretyczne obliczone z V23

(niezależnie, czy w podejściu 6D czy 4D) są bardzo zbliżone do widm teoretycznych z V12

otrzymanych w pracy [15]. Co więcej, w najbliższej przyszłości nie można spodziewać się

istotnego poprawienia dokładności powierzchni energii oddziaływania dla H2–CO, a co za

tym idzie widma teoretycznego. Niemniej, postanowiliśmy nasze późniejsze analizy widma

eksperymentalnego oprzeć na wynikach otrzymanych z powierzchni V23, które znajdują się

w tabelach XII i XIII, opublikowanych już w pracy [23]. Prezentowane tam energie stanów

związanych zostały otrzymane z obliczeń 6D przez Carringtona i Wanga, natomiast energie

rezonansów pochodzą z obliczeń rozproszeniowych 4D z uśrednioną powierzchnią, opisanych

w rozdziale III, których wyniki znajdują się w tabeli VIII.

Rozważając w rozdziałach III–IV rezonanse, wykorzystywaliśmy w ich opisie fakt, że funk-

cja falowa reprezentująca każdy z nich ma dobrze określone wartości całkowitego momentu

pędu J , oraz parzystości p i parzystości spektroskopowej P , które powiązane są zależnością

P = (−1)Jp. W rozdziale III.C, omawiając metodę stabilizacji, wspomnieliśmy też, że rów-

nania pozwalające obliczyć funkcje falowe dla stanów związanych mają taką samą postać

jak w przypadku obliczeń rozproszeniowych, ale różnią się narzucanymi warunkami brzego-

wymi i inny jest algorytm ich rozwiązywania. Niemniej, również funkcje falowe dla stanów

związanych mają dobrze określone wartości J i P , a sprzężone równania można rozwiązywać

w blokach symetrii JP . Stąd każdemu stanowi związanemu możemy w sposób jednoznaczny

przypisać zestaw indeksów (J, P, nJ,P , v2), gdzie nJ,P jest numerem porządkowym (według

rosnących energii) danego stanu w bloku symetrii JP , a v2 określa stan oscylacyjny cząsteczki

CO. Warto przypomnieć, że w absorpcyjnych widmach eksperymentalnych, które analizo-
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waliśmy, przejścia związane są ze zmianą stany wibracyjnego cząsteczki CO: v2 = 1 ← 0.

Ponadto, w przejściach tych obowiązują reguły ∆J = 0,±1 oraz ∆P = 0,±1, przy czym

zmiana parzystości spektroskopowej P jest ściśle powiązana z wartością J . W kontekście

analizy widm wygodniej jest używać parzystości p, ponieważ przejście zajść może tylko po-

między stanami o różnych wartościach p. Stąd każde przejście możemy zaliczyć do jednej z

dwóch grup: w pierwszej wartość p dla stanu początkowego jest równa −1, a dla końcowego

+1, nazwijmy tę grupę przejść (+)← (−), a w drugiej p = +1 dla stanu początkowego i −1

dla końcowego, nazwijmy tę grupę przejść (−)← (+).

Powróćmy do problemu wyznaczania poziomów oscylacyjno-rotacyjnych dla kompleksu

ortoH2–CO. Kolejnym etapem prac, po wyznaczeniu poziomów energetycznych dla stanów

związanych i kwazizwiązanych (rezonansów), było obliczenie widma teoretycznego, co spro-

wadza się do obliczenia energii przejść oraz intensywności tych przejść. Pierwszą z tych wiel-

kości jest łatwo otrzymać, jeśli znamy poziomy energetyczne. Kluczowa jest jednak znajomość

intensywności, gdyż to ta wielkość decyduje, czy dane przejście pojawi się w widmie. Aby

obliczyć intensywność przejścia między dwoma stanami oscylacyjno-rotacyjnymi, opisanymi

przez funkcje falowe Ψi i Ψf , odpowiednio stanów początkowego i końcowego, skorzystaliśmy

ze standardowego wzoru [51]:

I(f ← i) ∝ Eif e
−Ei/kBT

(
1− e−Eif/kBT

)
|⟨Ψf |µ|Ψi⟩|2, (55)

gdzie Eif to energia przejścia, Ei to energia stanu początkowego, Ef to energia stanu koń-

cowego, kB - stała Boltzmanna, a T oznacza temperaturę. Elementy macierzowe operatora

momentu dipolowego kompleksu ⟨Ψf |µ|Ψi⟩ zostały obliczone przy założeniu, że moment di-

polowy kompleksu przyjmujemy równy momentowi dipolowemu molekuły CO, co wyznacza

jego kierunek. Wartość momentu dipolowego nie była istotna, bo rozpatrywaliśmy inten-

sywności względne. Widmo doświadczalne dla kompleksu ortoH2–CO, do którego będzie

porównywane widmo teoretyczne, zostało zarejestrowane w podczerwieni jako towarzyszą-

ce wzbudzeniu wibracyjnemu w CO. Stąd pojedyncze przejście możemy scharakteryzować

jako (J ′, P ′, n′J ′,P ′ , 1) ← (J, P, nJ,P , 0), gdzie symbol (J, P, nJ,P , v2) wskazuje na stan kwan-

towy kompleksu. Musimy więc znać funkcje falowe odpowiadające tym stanom, przy czym

funkcjom Ψi i Ψf ze wzoru (55) odpowiadają odpowiednio (J, P, nJ,P , 0) i (J ′, P ′, n′J ′,P ′ , 1).

Potrzebne funkcje falowe otrzymaliśmy z obliczeń programem BOUND [46] zarówno dla sta-

nów związanych, jak też kwazizwiązanych. Dzięki temu funkcje falowe opisujące rezonanse

mają tę samą formę jak w przypadku stanów związanych, więc obliczenie intensywności dla

przejść angażujących rezonanse przebiega tak samo jak dla przejść pomiędzy dwoma stanami
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związanymi. We wzorze (55) występuje zależność od temperatury. Przyjęliśmy T = 49 K, co

odpowiada temperaturze w eksperymencie. Jak wspomnieliśmy wyżej, otrzymane przez nas

intensywności są względne. Jeśli określimy je względem najbardziej intensywnego przejścia,

to możemy łatwo wyeliminować z dalszych rozważań te z nich, które są tak mało intensywne,

że ich zauważenie w widmie eksperymentalnym, którym dysponujemy, jest mało prawdopo-

dobne. My przyjęliśmy próg równy 0.01. Okazało się, że jest 1006 przejść o intensywności

nie mniejszej niż ten próg. Nie przytaczamy listy tych przejść w niniejszej pracy, ale można

ją znaleźć w dodatku (SM) do artykułu [23].

Ostatnim elementem, który trzeba uwzględnić, aby widmo teoretyczne przypominało wid-

mo eksperymentalne, jest poszerzenie linii widmowych. Zależy ono od warunków ekspery-

mentalnych. W przypadku kompleksu ortoH2–CO do modelowania linii wykorzystaliśmy

profil Voigta z parametrami wybranymi po analizie linii eksperymentalnych, a więcej szcze-

gółów na ten temat pojawi się w rozdziale VI. Ostatecznie otrzymane widmo teoretyczne dla

ortoH2–CO znajduje się na rysunku 24, na środkowym pasku każdego z paneli. W tabelach

XII i XIII oraz na rysunku 24 jest znacznie więcej informacji, związanych ze znajdowaniem

doświadczalnych poziomów energetycznych, które zostaną omówione w rozdziale VI.
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Tabela XII: Podpis do tabeli na następnej stronie.

J P nJ,P E0expt E0theo ∆0t-e info0 E1expt E1theo ∆1t-e info1

0 f 1 5.7009 5.7036 -0.0027 II 5.7036 5.7003 0.0033 I
0 f 2 19.0004 18.9927 0.0077 II † 18.8724 18.8997 -0.0273 II †
0 f 3 24.4939 24.6141

1 e 1 0.0000 0.0000 0.0000 I 0.0000 0.0000 0.0000 I
1 e 2 1.7322 1.6766 0.0556 I 1.7422 1.7585 -0.0163 I
1 e 3 1.9991 2.0261 -0.0270 I 2.0526 1.9951 0.0575 I
1 e 4 4.8568 4.8512 0.0056 II 4.8408 4.8271 0.0137 I
1 e 5 5.5794 5.5735 0.0059 I ‡ 5.5782 5.5648 0.0134 I ‡
1 e 6 11.5687 11.5725 -0.0038 II † 11.4903 11.4880 0.0023 II ‡
1 e 7 12.3718 12.3686 0.0032 II † 12.2982 12.2875 0.0107 II †
1 e 8 14.1039 14.1143 -0.0104 II ‡ 14.0819 14.0871 -0.0052 II
1 e 9 15.0842 15.0168 15.0073 0.0095 I †
1 e 10 18.4528 18.4506 0.0022 II † 18.3839 18.3904 -0.0065 II ‡
1 e 11 20.3213 20.4420
1 e 12 23.7660 ∗ 23.6983 ∗
1 e 13 24.2093 ∗ 24.3125 ∗

2 f 1 2.9497 2.9508 -0.0011 I 2.9749 2.9724 0.0025 I
2 f 2 4.2164 4.2139 0.0025 I 4.2239 4.2158 0.0081 I
2 f 3 5.5170 5.5137 0.0033 I 5.5054 5.4961 0.0093 I
2 f 4 10.5879 10.5842 0.0037 I 10.5801 10.5757 0.0044 I
2 f 5 11.5902 11.5880 0.0022 I ‡ 11.4978 11.4877 0.0101 I ‡
2 f 6 14.2658 14.2710 -0.0052 II 14.1899 14.1882 0.0017 II
2 f 7 15.3468 15.3447 0.0021 II ‡ 15.2705
2 f 8 15.7942 15.8109 -0.0167 II 15.7382 15.7517 -0.0135 II ‡
2 f 9 19.4981 19.4946 0.0035 II 19.4156 19.4179 -0.0023 II
2 f 10 24.4718 ∗ 24.5697 ∗

3 e 1 3.4907 3.4958 -0.0051 I 3.4866 3.4905 -0.0039 I
3 e 2 4.3682 4.3480 0.0202 I 4.4086 4.3861 0.0225 I
3 e 3 6.8674 6.8389 0.0285 I 6.9514 6.9143 0.0371 I
3 e 4 7.9297 7.9390 -0.0093 I 7.8833 7.8841 -0.0008 I
3 e 5 9.4459 9.4446 0.0013 I 9.4229 9.4117 0.0112 I
3 e 6 10.8121 10.8109 0.0012 I 10.8039
3 e 7 11.9413 11.9389 0.0024 I † 11.8847 11.8770 0.0077 I
3 e 8 14.1776 14.1731 0.0045 II 14.0789 14.0687 0.0102 I ‡
3 e 9 14.9359 14.9359 0.0000 I † 14.8595 14.8522 0.0073 I
3 e 10 16.9599 16.9753 -0.0154 I 16.9031 16.9123 -0.0092 I
3 e 11 21.0651 21.0753 -0.0102 ∗ I † 21.0450 21.0495 -0.0045 ∗ I ‡
3 e 12 24.4049 24.4114 -0.0065 ∗ II † 24.1765 ∗

4 f 1 10.1616 10.1622 -0.0006 I 10.1591 10.1622 -0.0031 I
4 f 2 10.4768 10.4706 0.0062 I 10.5160 10.4974 0.0186 I
4 f 3 10.9566 10.9618 -0.0052 I 10.9484 10.9466 0.0018 I
4 f 4 15.0416 15.0411 0.0005 I 14.9682 14.9606 0.0076 I
4 f 5 15.4597 15.4038 15.3973 0.0065 II ‡
4 f 6 19.2917 19.2932 -0.0015 I 19.2705 19.2650 0.0055 I
4 f 7 21.5966 21.6026 -0.0060 ∗ I 21.5513 21.5510 0.0003 ∗ I
4 f 8 22.4281 ∗ 22.3616 ∗
4 f 9 22.9869 ∗ 22.8685 ∗
4 f 10 25.0009 25.0365 -0.0356 ∗ II † 24.8751 ∗

5 e 1 10.1430 10.1200 0.0230 I 10.1877 10.1690 0.0187 II
5 e 2 10.8711 10.8802 -0.0091 I 10.8861 10.8833 0.0028 II
5 e 3 13.1214 13.1073 0.0141 I 13.1384 13.1146 0.0238 I
5 e 4 16.5019 16.5008 0.0011 I 16.4466 16.4377 0.0089 I
5 e 5 17.9921 17.9888 0.0033 I 18.0054 17.9956 0.0098 I
5 e 6 19.6324 19.6414
5 e 7 20.0810 20.0881 -0.0071 I 20.0192 20.0189 0.0003 I
5 e 8 21.3003 21.2994 0.0009 ∗ I 21.2066 21.1973 0.0093 ∗ I ‡
5 e 9 22.2227 22.2264 -0.0037 ∗ I ‡ 22.1449 22.1416 0.0033 ∗ I

6 f 1 19.7898 19.7702 0.0196 I 19.8524 19.8305 0.0219 I
6 f 2 20.3093 20.3158 -0.0065 I 20.2965 20.2967 -0.0002 I
6 f 3 20.8166 20.8346 -0.0180 ∗ I 20.7902 20.7996 -0.0094 ∗ I
6 f 4 22.8940 22.8991 -0.0051 ∗ I ‡ 22.8270 22.8269 0.0001 ∗ I
6 f 5 24.2263 24.2373 -0.0110 ∗ II ‡ 24.2028 24.2081 -0.0053 ∗ I ‡

7 e 1 19.1340 19.1018 0.0322 I 19.2391 19.2052 0.0339 I
7 e 2 21.4539 21.4614 -0.0075 ∗ I 21.3916 21.3926 -0.0010 ∗ I
7 e 3 21.6813 21.6891 -0.0078 ∗ I 21.7081 21.7086 -0.0005 ∗ I
7 e 4 26.0644 26.0528 0.0116 ∗ I † 26.0095 25.9880 0.0215 ∗ II †
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Tabela XII: Porównanie energii stanów oscylacyjno-rotacyjnych otrzymanych dla
ortoH2–CO z obliczeń, Ev2theo, oraz z eksperymentu, Ev2expt, dla dwóch stanów oscylacyjnych
cząsteczki CO: podstawowego (v2 = 0) i pierwszego wzbudzonego (v2 = 1), dla stanów kom-
pleksu o parzystości p = −1, czyli (−). Energie teoretyczne dla stanów związanych otrzymano
z obliczeń pełnowymiarowych (6D) [23], natomiast dla rezonansów z obliczeń 4D z poten-
cjałem uśrednionym po drganiach, jak opisano w tekście. Różnice pomiędzy wartościami
doświadczalnymi i teoretycznymi są oznaczone jako ∆v2t-e = E

v2
expt −Ev2theo. Energie teoretycz-

ne są podane względem energii stanu podstawowego (1, e, 1, v2). W przypadku 6D, energia
stanu (1, e, 1, 0) jest równa 3359.3249 cm−1, energii drgań zerowych dla kompleksu ortoH2–
CO, o 117.1292 cm−1 powyżej energii drgań zerowych dla nieoddziałujących cząsteczek H2 i
CO. Energia stanu (1, e, 1, 1) jest o 2260.2323 cm−1 wyższa od energii stanu (1, e, 1, 0), czyli
o 116.9568 cm−1 więcej niż przejście fundamentalne w CO wynoszące 2143.2755 cm−1. Dla
rezonansów energiami odniesienia są energie stanów podstawowych związanych otrzymane
z obliczeń 4D, które wynoszą 97.9364 cm−1 and 97.7633 cm−1 odpowiednio dla v2 = 0 i 1.
Kolumny oznaczone infov2 , v2 = 0, 1, dostarczają dodatkowych informacji o poszczególnych
stanach. Gwiazdka wskazuje rezonanse, liczby rzymskie I i II informują, na którym etapie
procedury dedukcyjnej został wyznaczony dany poziom eksperymentalny. Symbol † wskazuje
na energię uzyskaną tylko z jednego przejścia i niepotwierdzoną przez odtworzone widmo,
natomiast energie oznaczone przez ‡ są też wyznaczone tylko z jednego przejścia, ale zosta-
ły potwierdzone w widmie odtworzonym przez co najmniej jedno inne przejście. Jednostką
energii jest cm−1.

Tabela XIII: Porównanie energii stanów oscylacyjno-rotacyjnych o parzystości p = 1, czyli
(+), otrzymanych dla ortoH2–CO. Notacja jest taka sama jak w tabeli XII, poza tym, że
poziomy eksperymentalne wyznaczone są względem energii stanu (1, f, 1, v2), gdyż nie można
użyć (1, e, 1, v2) ponieważ nie ma informacji z eksperymentu w podczerwieni w jaki sposób
energie stanów o parzystości p = −1 wiążą się z energiami stanów z p = 1. Aby umożliwić
porównanie, energie teoretyczne oznaczone Ev2theo,r wyrażono także względem energii stanów
(1, f, 1, v2). Różnice energii są zdefiniowane jako ∆v2t-e = E

v2
expt − Ev2theo,r.

Kontynuacja na następnej stronie.
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Tabela XIII: Kontynuacja – koniec.

J P nJ,P E0expt E0theo E0theo,r ∆0t-e info0 E1expt E1theo E1theo,r ∆1t-e info1

0 e 1 -0.4146 0.3829 -0.4351 0.0205 I -0.5061 0.3540 -0.4878 -0.0183 II
0 e 2 0.3488 1.1554 0.3374 0.0114 I ‡ 0.4083 1.2088 0.3670 0.0413 I
0 e 3 4.3184 3.5004 3.4984 4.3252 3.4834 0.0150 I
0 e 4 13.0606 12.2426 12.9818 12.1400
0 e 5 18.8872 18.0692 18.8025 17.9607

1 f 1 0.0000 0.8180 0.0000 0.0000 I 0.0000 0.8418 0.0000 0.0000 I
1 f 2 3.5320 4.3429 3.5249 0.0071 I 3.4825 4.3178 3.4760 0.0065 I ‡
1 f 3 6.7695 7.5825 6.7645 0.0050 II 6.7302 7.5704 6.7286 0.0016 II
1 f 4 10.7296 11.5520 10.7340 -0.0044 I ‡ 10.6224 11.4677 10.6259 -0.0035 II ‡
1 f 5 12.4507 13.2636 12.4456 0.0051 II 12.3620 13.1891 12.3473 0.0147 II
1 f 6 12.7442 13.5717 12.7537 -0.0095 II 12.6890 13.5313 12.6895 -0.0005 II
1 f 7 18.6178 19.4392 18.6212 -0.0034 II † 19.4409 18.5991
1 f 8 20.6392 19.8212 19.7930 20.6405 19.7987 -0.0057 II †

2 e 1 0.4335 1.2516 0.4336 -0.0001 I 0.3998 1.2476 0.4058 -0.0060 I
2 e 2 1.9017 2.6940 1.8760 0.0257 I 1.9093 2.7361 1.8943 0.0150 I
2 e 3 3.3543 4.1481 3.3301 0.0242 I 3.4011 4.2134 3.3716 0.0295 I
2 e 4 3.8509 4.6763 3.8583 -0.0074 I 3.7839 4.6296 3.7878 -0.0039 I
2 e 5 5.8457 6.6582 5.8402 0.0055 I 5.7942 6.6302 5.7884 0.0058 I
2 e 6 6.9211 7.7315 6.9135 0.0076 I 6.8846 7.7216 6.8798 0.0048 II ‡
2 e 7 11.3467 12.1599 11.3419 0.0048 II ‡ 11.2179 12.0561 11.2143 0.0036 II ‡
2 e 8 12.0851 12.8993 12.0813 0.0038 I † 11.9790 12.8160 11.9742 0.0048 II †
2 e 9 13.5362 14.3623 13.5443 -0.0081 II ‡ 13.4309 14.2828 13.4410 -0.0101 II
2 e 10 16.2895 17.1127 16.2947 -0.0052 I ‡ 16.2344 17.0847 16.2429 -0.0085 I ‡
2 e 11 17.9220 17.1040 17.0112 17.8542 17.0124 -0.0012 I †
2 e 12 18.6931 19.5192 18.7012 -0.0081 II 19.4418 18.6000
2 e 13 23.9156 23.0976 ∗ 23.8973 23.0555 ∗

3 f 1 5.2771 6.0947 5.2767 0.0004 I 5.2664 6.1109 5.2691 -0.0027 I
3 f 2 6.0931 6.9058 6.0878 0.0053 II 6.0761 6.9110 6.0692 0.0069 I
3 f 3 6.9004 7.7149 6.8969 0.0035 I 6.8645 7.7024 6.8606 0.0039 I ‡
3 f 4 11.0419 11.8751 11.0571 -0.0152 II † 11.8099 10.9681
3 f 5 12.9707 12.1527 12.0561 12.8929 12.0511 0.0050 I
3 f 6 13.7462 14.5629 13.7449 0.0013 I 13.6960 14.5366 13.6948 0.0012 I
3 f 7 16.6636 17.4865 16.6685 -0.0049 I ‡ 16.5712 17.4174 16.5756 -0.0044 I
3 f 8 17.6031 18.4276 17.6096 -0.0065 II † 18.3548 17.5130
3 f 9 18.1914 19.0273 18.2093 -0.0179 II ‡ 18.9529 18.1111
3 f 10 23.2415 22.4235 ∗ 20.4032 21.2490 20.4072 -0.0040 ∗ II ‡

4 e 1 5.8976 6.7067 5.8887 0.0089 II ‡ 5.8290 6.6969 5.8551 -0.0261 I
4 e 2 6.0155 6.8223 6.0043 0.0112 I 6.0588 6.8700 6.0282 0.0306 I
4 e 3 9.0323 9.8233 9.0053 0.0270 I 9.0570 9.8704 9.0286 0.0284 I
4 e 4 11.1984 12.0219 11.2039 -0.0055 I 11.1155 11.9602 11.1184 -0.0029 I
4 e 5 12.3467 13.1563 12.3383 0.0084 I 12.3071 13.1414 12.2996 0.0075 I
4 e 6 13.9806 14.7960 13.9780 0.0026 II ‡ 14.7954 13.9536
4 e 7 14.6812 15.4974 14.6794 0.0018 I ‡ 14.5954 15.4368 14.5950 0.0004 II
4 e 8 16.4405 17.2560 16.4380 0.0025 I ‡ 16.3149 17.1519 16.3101 0.0048 II ‡
4 e 9 17.2422 18.0587 17.2407 0.0015 I 17.1338 17.9745 17.1327 0.0011 I
4 e 10 19.6146 20.4483 19.6303 -0.0157 I 19.5509 20.4090 19.5672 -0.0163 I
4 e 11 23.2925 22.4745 ∗ 23.1312 22.2894 ∗

5 f 1 13.9873 14.7853 13.9673 0.0200 I 13.9659 14.8089 13.9671 -0.0012 I
5 f 2 14.1405 14.9592 14.1412 -0.0007 I 14.1418 14.9668 14.1250 0.0168 I
5 f 3 14.5351 15.3675 14.5495 -0.0144 I 14.4935 15.3485 14.5067 -0.0132 I
5 f 4 17.7509 18.5667 17.7487 0.0022 II 17.6418 18.4837 17.6419 -0.0001 I ‡
5 f 5 18.5479 19.3692 18.5512 -0.0033 I 18.4749 19.3199 18.4781 -0.0032 I
5 f 6 23.5258 24.3370 23.5190 0.0068 ∗ I ‡ 23.4335 24.2707 23.4289 0.0046 ∗ I ‡

6 e 1 13.4622 14.2505 13.4325 0.0297 I 13.4992 14.3223 13.4805 0.0187 I
6 e 2 15.0840 15.9105 15.0925 -0.0085 I 15.0678 15.9168 15.0750 -0.0072 I
6 e 3 16.1165 16.9227 16.1047 0.0118 II 16.0605 16.8927 16.0509 0.0096 I
6 e 4 20.3407 21.1473 20.3293 0.0114 ∗ I ‡ 20.2623 21.0917 20.2499 0.0124 ∗ II ‡
6 e 5 23.0611 23.8766 23.0586 0.0025 ∗ I 23.0448 23.8844 23.0426 0.0022 ∗ I
6 e 6 24.5332 25.3599 24.5419 -0.0087 ∗ I † 24.4227 25.2667 24.4249 -0.0022 ∗ I ‡
6 e 7 25.5226 26.3395 25.5215 0.0011 ∗ I 25.4261 26.2680 25.4262 -0.0001 ∗ I

7 f 1 24.5420 25.3366 24.5186 0.0234 ∗ I ‡ 24.5959 25.4147 24.5729 0.0230 ∗ I ‡
7 f 2 25.4672 26.2909 25.4729 -0.0057 ∗ I ‡ 25.4361 26.2837 25.4419 -0.0058 ∗ I

8 e 1 23.7238 24.5006 23.6826 0.0412 ∗ I 23.8296 24.6325 23.7907 0.0389 ∗ I
8 e 2 25.9887 26.8196 26.0016 -0.0129 ∗ I ‡ 25.8746 26.7315 25.8897 -0.0151 ∗ I ‡
8 e 3 30.5061 31.3118 30.4938 0.0123 ∗ I † 30.3951 31.2266 30.3848 0.0103 ∗ I †
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Rysunek 24: Porównanie widm teoretycznego i doświadczalnego w podczerwieni otrzyma-
nych dla kompleksu ortoH2–CO w temperaturze T = 49 K. Linie ciągłe oznaczają widmo
zarejestrowane (niebieskie, w górnym i dolnym pasku każdego panelu) oraz widmo teore-
tyczne (czerwone, środkowy rząd) obliczone w ramach tej pracy. Trójkąty wskazują przejścia
użyte w etapie I procesu dedukcji eksperymentalnych poziomów energetycznych (patrz roz-
dział VI.E). Linie pionowe wskazują energie przejść otrzymane z eksperymentalnych pozio-
mów energetycznych (górne i dolne paski) albo obliczone (środkowe paski). We wszystkich
przypadkach długości tych linii są proporcjonalne do intensywności teoretycznych. Zaprezen-
towane są tylko przejścia z intensywnościami względnymi nie mniejszymi niż 0.01. Linie cią-
głe (przerywane) pod pikami oznaczają przejścia pomiędzy dwoma oscylacyjno-rotacyjnymi
stanami związanymi (angażującymi co najmniej jeden rezonans). Kolor zielony (różowy)
linii oznacza przejścia pomiędzy stanami o parzystościach (−) ← (+) ((+) ← (−)). Li-
nie pionowe w najwyższym pasku odpowiadają energiom przejścia odtworzonym z poziomów
eksperymentalnych otrzymanych w etapie I. Czerwone pionowe strzałki w najwyższym pa-
sku wskazują przejścia odtworzone na tym etapie, dla których zrobiono nowe przypisania.
Czerwone strzałki w środkowym pasku łączą przejścia teoretyczne i ich eksperymentalnymi
odpowiednikami. Pionowe linie w najniższym pasku wskazują pozycje przejść odtworzonych z
końcowego zbioru eksperymentalnych poziomów energetycznych. Romby w najniższym pasku
oznaczają przejścia przypisane w pierwszym kroku etapu II. Czarne strzałki w najniższym
pasku łączą przejścia oznaczone rombami z ich teoretycznymi odpowiednikami. Czerwone pio-
nowe strzałki w najniższym pasku wskazują na nowe przypisania energii przejść z podzbioru
odtworzonych przejść, które angażują przynajmniej jeden poziom wyznaczony w etapie II.
Gwiazdki znajdują się w miejscach pojawiania się linii pochodzących od różnych izotopologów
cząsteczki CO. Ciemnożółty kolor oznacza obszary, dla których linie oscylacyjno-rotacyjnej
pochodzące od swobodnych cząsteczek CO były tak mocne, że uniemożliwiły pomiar widm
kompleksu H2–CO. Zero na osi energii odpowiada energii przejścia oscylacyjnego v2 = 1← 0
w izolowanej cząsteczce CO, równej 2143.2711 cm−1.
Kontynuacja na następnej stronie.
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Rysunek 24: Kontynuacja.
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VI. Wyznaczenie eksperymentalnych poziomów oscylacyjno-rotacyjnych dla

ortoH2–CO

Naszym celem było wyznaczenie poziomów energetycznych dla kompleksu ortoH2–CO

z eksperymentu przeprowadzonego przez A. R. W. McKellara [14, 15]. Musieliśmy więc

przeanalizować widmo absorpcyjne, na którym zostały zarejestrowane przejścia w kom-

pleksie towarzyszące wzbudzeniu wibracyjnemu w cząsteczce CO. Każde przejście angażuje

parę poziomów energetycznych, więc możemy je scharakteryzować w następujący sposób:

(J ′, P ′, n′J ′,P ′ , 1) ← (J, P, nJ,P , 0). Przyporządkowanie takich par do pików eksperymental-

nych jest punktem startowym do późniejszego wyznaczania poziomów energetycznych od-

powiadających poszczególnym stanom kwantowym (J, P, nJ,P , v2). Widma eksperymentalne

są dość skomplikowane, więc przypisanie nie zawsze jest proste, a każda pomyłka na tym

etapie analizy widm powoduje albo brak możliwości znalezienia poziomów energetycznych,

albo przynajmniej duże niedokładności zaproponowanych poziomów. Innym źródłem niedo-

kładności poziomów może być brak precyzji w wyznaczeniu energii przejść. Taka sytuacja

jest prawdopodobna szczególnie wtedy, gdy pojedyncze przejścia pokrywają się w widmie

tworząc większe struktury. Problemy te będziemy dyskutować dokładnie w rozdziale VI.A.

Kiedy już zostaną wykonane przypisania linii i zbudowany zostanie zbiór opisanych

przejść wraz z odpowiadającymi im energiami eksperymentalnymi, to można przystąpić do

wyznaczania eksperymentalnych oscylacyjno-rotacyjnych poziomów energetycznych. Proce-

dura wyznaczania poziomów, którą użyliśmy, jest oparta na metodzie kombinacji różnic

(combination-differences method) [52], której ideę, w wariancie przystosowanym do naszego

przypadku, przedstawia diagram z rysunku 25. W przykładzie tym mamy, w zielonej ram-

ce, grupę czterech przejść, o różnych stanach początkowych (J, P, nJ,P , 0), ale z tym samym

stanem końcowym (2, e, 2, 1). Taką grupę przejść będziemy nazywać dalej klasterem. W owal-

nych polach znajdują się wartości energii przejść wyznaczone z eksperymentu. Daje nam

to informację o energiach trzech stanów, (2, f, 1, 0), (3, e, 3, 0) i (3, e, 7, 0), względem stanu

(1, e, 1, 0). Ich wartości pojawiają się po prawej stronie zielonej pionowej osi. Kolejny klaster

przejść przedstawiony jest w ramce niebieskiej. Tym razem sześć przejść ma ten sam stan

końcowy (4, e, 4, 1), a energie przejść określone z widma doświadczalnego pozwalają wyzna-

czyć energie pięciu stanów (4, f, 1, 0), (5, e, 2, 0), (4, f, 4, 0), (5, e, 7, 0) i (5, e, 8, 0) względem

stanu (3, e, 3, 0) (wypisane po prawej stronie niebieskiej pionowej osi). W dwóch podzbiorach

stanów typu (J, P, nJ,P , 0), które pojawiają się w ramkach zielonej i niebieskiej, jest jeden

94



stan wspólny (3, e, 3, 0). Dzięki temu możemy wzajemnie zorientować energie względne z

obu paneli i umieścić je na wspólnej skali energetycznej. W ten sposób otrzymujemy ener-

gie ośmiu stanów (J, P, nJ,P , 0) wyznaczone względem energii stanu (3, e, 3, 0) (zebrane w

czerwonej ramce). Jako punkt odniesienia możemy wybrać energię dowolnego stanu z listy.

W naszym przypadku wybór padł na stan o najniższej energii spośród rozważanych, czyli

(1, e, 1, 0), a obliczone względem niego energie innych stanów znajdują się po prawej stronie

czerwonej pionowej osi.
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Rysunek 25: Diagram ilustrujący algorytm wyznaczania energii oscylacyjno-

rotacyjnych z energii przejść w podczerwieni, dla których wykonano przypisania

(J ′, P ′, n′J ′,P ′ , 1) ← (J, P, nJ,P , 0). Energie podane są w cm−1.

Idea opisanej metody jest prosta, ale praktyczne wykonanie, w przypadku wielu klastrów

z przejściami o różnych wielkościach, nie jest oczywiste i przypomina nieco układanie puzzli.

Dlatego stworzyliśmy i zaprogramowaliśmy algorytm, który pomógł nam w wyznaczeniu

jednolitego układu poziomów energetycznych. Algorytm ten opisany jest w rozdziale VI.B.
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VI.A. Identyfikacja przejść

Początkowe próby wyznaczenia poziomów energetycznych na podstawie przejść przypi-

sanych we wcześniejszych latach [15, 16] ujawniły, jak istotna jest dokładność przypisań.

Natura opracowanego algorytmu jest taka, że pojedynczy błąd w przypisaniu może znacząco

zaburzyć jakość wyznaczonych poziomów energetycznych, co zostanie zilustrowane w kolej-

nym podrozdziale. Tego typu pomyłki najczęściej pojawiają się w obszarach widma, gdzie

nakładające się przejścia tworzą jedną, sumaryczną linię. W poprzednich pracach wszystkie

przejścia tworzące taką linię przypisywano do jednej wartości energii. Aby lepiej analizować

takie przypadki, opracowaliśmy metodę rozdzielania złożonych linii przy użyciu informacji o

teoretycznych intensywnościach przejść. Metoda ta nie jest wewnętrzną częścią protokołu de-

dukcji poziomów energetycznych, ale przynosi korzyści na wszystkich etapach tego procesu,

ponieważ zwiększa liczbę przypisanych przejść eksperymentalnych.

Zanim przejdziemy do określenia relacji między intensywnościami eksperymentalnymi i

teoretycznymi, przeanalizujmy niepewności intensywności eksperymentalnych. Aby uzyskać

widmo eksperymentalne w formie przedstawionej na rys. 24 widmo zarejestrowane dla zwy-

kłego H2–CO, czyli mieszaniny odmian spinowych para i orto, zostało „spłaszczone” przez

usunięcie silnych linii rotacyjnych wynikających z absorpcji przez cząsteczki CO, które nie

tworzą kompleksów, a następnie odjęto widmo zmierzone wcześniej dla paraH2–CO. W nie-

których zakresach energii można zauważyć obecność tła, które może wpływać na intensywno-

ści interesujących nas pików. Z drugiej strony, istnieją zakresy, w których widmo eksperymen-

talne ortoH2–CO jest całkowicie płaskie między pikami, co wskazuje na zbyt mocne odjęcie

widma paraH2–CO. Może to sugerować, że intensywności sąsiadujących pików są niższe od

ich rzeczywistych wartości. Kolejną kwestią jest temperatura eksperymentalna. Chociaż w

pracy [15] podano, że temperatura, w której zarejestrowano widmo, wynosiła 49 K, to w

pracy [14], gdzie widmo ortoH2–CO zostało zaprezentowane po raz pierwszy, przytoczono

różne wartości temperatury dla różnych fragmentów pomiarów: 47 K, 47.5 K, 48 K i 49 K.

Co więcej, widmo było rejestrowane oddzielnie w pięciu zakresach energii. W związku z tym

interesujące jest, jak bardzo intensywności analizowane w tej pracy zależą od temperatury.

Porównaliśmy względne intensywności teoretyczne dla skrajnych wartości temperatur:

T = 49 K i T = 47 K. Okazało się, że najbardziej intensywne przejście w T = 49 K (o

energii 8.8958 cm−1), (7, e, 4, 1) ← (6, e, 3, 0), nie jest już najintensywniejsze dla T = 47 K,

gdyż nieco większą intensywność ma przejście (6, e, 3, 1)← (5, e, 1, 0) o energii 6.5823 cm−1.
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Aby porównać względne intensywności dla obu temperatur, odnieśmy się w obu przypad-

kach do teoretycznej intensywności tego samego przejścia (7, e, 4, 1) ← (6, e, 3, 0), czyli dla

obu temperatur przyjmujemy jego intensywność równą 1. Następnie, dla danego przejścia

możemy porównać względną intensywność dla T = 49 K, I49, ze względną intensywnością

dla T = 47 K, I47. Przeanalizujmy dwa stosunkowo silne przejścia, dla których zmiany

intensywności są największe przy obniżeniu temperatury z 49 K do 47 K. Dla przejścia

(7, e, 2, 1) ← (8, e, 3, 0) o energii -10.1102 cm−1 intensywność zmniejsza się z I49 = 0.710

do I47 = 0.697, co daje względną zmianę intensywności (I47 − I49)/I49 równą -1.83%. Na

drugim biegunie znajduje się przejście (2, e, 2, 1)← (1, e, 1, 0) o energii 2.5741 cm−1, którego

intensywność wzrasta z I49 = 0.401 do I47 = 0.410, co daje względną zmianę (I47 − I49)/I49
równą +2.24%. Zatem, dla omawianego przejścia użycie T = 47 K zamiast 49 K prowadzi

do 4-procentowej różnicy w intensywnościach przejść.

Intensywności eksperymentalne, podobnie jak teoretyczne, są względne, więc obie te grupy

musieliśmy zorientować też względem siebie. Najsilniejsze teoretyczne przejście w temperatu-

rze T = 49 K występuje dla energii 8.8958 cm−1 i to właśnie jemu przypisaliśmy intensywność

równą 1. Względna intensywność eksperymentalna dla tego przejścia, podana w [15], wyno-

siła 0.956 i została uzyskana przez przemnożenie zmierzonej intensywności przez 4, aby była

w przybliżeniu równa 1. Zatem znormalizowane intensywności eksperymentalna i teoretycz-

na różnią się o 4.4%. Naturalniejsze byłoby przypisanie tej intensywności eksperymentalnej

wartości równej 1, jednak pozostawiliśmy intensywność eksperymentalną na poziomie 0.956

dla zgodności z [15]. W rzeczywistości nie ma to większego znaczenia, ponieważ niepewności

względnych intensywności eksperymentalnych dla układu ortoH2–CO wynoszą kilka procent.

Wynika to głównie z różnych temperatur zastosowanych przy rejestracji różnych fragmentów

widma, mieszczących się w zakresie od 47 K do 49 K [14, 15], jak omówiono wcześniej, ale

także z innych drobnych źródeł, np. odejmowania widma paraH2–CO czy odejmowanie sy-

gnałów od przejść rotacyjnych w CO, które to procedury nigdy nie są idealne. Reasumując,

drobne niepewności intensywności nie mają większego wpływu na przypisania i dedukcję

poziomów energetycznych.

Dyskutowane powyżej najintensywniejsze w widmie teoretycznym przejście,

(7, e, 4, 1)← (6, e, 3, 0) o energii 8.8958 cm−1, jest dość dobrze odseparowane od innych

przejść. Wydaje się świetnym kandydatem, aby być wzorem do modelowania linii widmowej,

który potem moglibyśmy stosować do całego widma, istnieje jednak pewna przeszkoda. Przej-

ście to zachodzi pomiędzy stanem związanym (6, e, 3, 0) a stanem rezonansowym (7, e, 4, 1),
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gdzie szerokość rezonansu wynosi 9.0 · 10−4 cm−1 (określona na podstawie obliczeń zderze-

niowych). Chociaż ta wartość może wydawać się nieistotna w porównaniu z szerokością linii

przejścia równą około 8.0 · 10−3 cm−1, to jednak profil linii eksperymentalnej będzie nieco

poszerzony w porównaniu z liniami odpowiadającymi przejściom pomiędzy dwoma stanami

związanymi. Przejście to nie powinno być więc użyte jako linia „modelowej” do analitycznego

opisu typowego kształtu linii przejścia typu związany-związany.

Kształty linii teoretycznych modelowaliśmy za pomocą profili Voigta. Pojedyncza teo-

retyczna linia widmowa odpowiadająca przejściu o intensywności I (obliczonej zgodnie ze

wzorem (55)) reprezentowana jest przez funkcję

VI(x) = η ·I ·V (x;σ, γ),

gdzie profil Voigta zdefiniowany jest jako splot funkcji Gaussa i Lorentza:

V (x;σ, γ) =
∫ ∞
−∞

G(x′; σ)L(x− x′; γ)dx′,

przy czym

G(x; σ) =
1

σ
√
2π
e−

x2

2σ2 oraz L(x; γ) =
1
π

γ

γ2 + x2
.

Parametry zostały przyjęte jako σ = 0.00175 oraz γ = 0.00310 (patrz niżej), a współczynnik

skalujący η = 0.0038π został dobrany tak, aby wysokość VI(x) była równa 1 dla przejścia o

energii 8.8958 cm−1. Podkreślmy, że wartości σ, γ i η ustaliliśmy jednorazowo i wykorzysty-

waliśmy do modelowania linii dla wszystkich przejść. Ponieważ profil Voigta V (x; σ, γ) jest

znormalizowany,
∞∫
−∞

V (x;σ, γ) dx = 1,

to funkcja VI(x), którą stosujemy do reprezentacji linii widmowych, jest proporcjonalna do

intensywności I obliczonej z odpowiedniego wzoru.

Aby dobrać parametry definiujące profil Voigta, wybraliśmy niewielki podzbiór linii za-

rejestrowanych w widmie ortoH2–CO, z których każda została przypisana do tylko jednego

przejścia teoretycznego o dużej intensywności. Następnie dobraliśmy parametry funkcji Vo-

igta tak, aby po przemnożeniu przez intensywność teoretyczną danej linii, otrzymać kształt

odtwarzający linię eksperymentalną z dokładnością do kilku procent. Na rys. 26 zaprezento-

wano kilka przypadków zastosowania profilu Voigta. Na wstępie warto podkreślić, że tylko

linia doświadczalna zaprezentowana w panelu A należała do zbioru, który posłużył do wy-

znaczenia parametrów profilu Voigta, natomiast zgodność obserwowana w innych panelach

może być uznana za potwierdzeniem poprawności wyboru tych parametrów.
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Przykłady zebrane w poszczególnych panelach rys. 26 dobrane są tak, aby zilustrować

typowe sytuacje i problemy pojawiające się przy przeprowadzonej przez nas analizie widma

doświadczalnego wspomaganej przez wyniki teoretyczne. Przejście (7, e, 2, 1) ← (6, e, 1, 0),

przedstawione na rys. 26A, angażuje stan rezonansowy (7, e, 2, 1) o obliczonej szerokości rów-

nej 1.3 · 10−7 cm−1, podczas gdy szerokość linii eksperymentalnej dla tego przejścia wynosi

około 8.0 · 10−3 cm−1. Oznacza to, że naturalna szerokość stanu (7, e, 2, 1) jest ponad cztery

rzędy wielkości mniejsza niż szerokość linii i nie wpływa w sposób zauważalny na jej sze-

rokość, więc rozważane przejście może być użyte w procedurze dopasowywania parametrów

kształtu linii. Możemy zatem modelować tę linię IR oraz inne powstałe na skutek przejść

z udziałem wąskich rezonansów tak samo, jak przejścia pomiędzy dwoma stanami związa-

nymi. Typowe różnice pomiędzy intensywnościami teoretycznymi i eksperymentalnymi nie

przekraczają kilku procent. Na przykład, jeśli intensywność linii teoretycznej na rys. 26A

byłaby pomnożona przez 1.03, zgodność z pikiem eksperymentalnym byłaby idealna. Podob-

ną dokładność udało się osiągnąć dla wszystkich pików z zestawu użytego do wyznaczenia

parametrów profilu Voigta. Warto podkreślić, że we wszystkich panelach na rys. 26 bazowa

funkcja Voigta jest mnożona wyłącznie przez intensywność teoretyczną, bez żadnych do-

datkowych modyfikacji. Należy jednak zauważyć, że stosowany przez nas profil Voigta nie

nadaje się do opisu kształtu linii widmowej, jeśli stan zaangażowany w przejście angażuje

szeroki rezonans. Na przykład, szeroki pik o energii 9.6059 cm−1, przedstawiony na pane-

lu B, odpowiada przejściu między dwoma stanami rezonansowymi: (8, e, 3, 1) ← (7, e, 2, 0).

Rezonans (7, e, 2, 0) jest stosunkowo wąski, Γ = 1.65 · 10−5 cm−1, ale szerokość rezonansu

(8, e, 3, 1) wynosi 1.13 · 10−2 cm−1, czyli jest duża. Nie próbowaliśmy dopasowywać kształ-

tu takich linii, ale wykorzystywaliśmy informacje o szerokości rezonansowej jakościowo, np.

aby je zidentyfikować. Jeśli szeroka linia mogła zostać przypisana do pojedynczego przej-

ścia, wówczas wyznaczano położenie maksimum tej linii i wykorzystywano je w procedurze

dedukcji poziomów energetycznych.

Wybór profilu linii, który dobrze odtwarzał profil eksperymentalny, był kluczowy w pro-

cedurze udoskonalania przypisań poszczególnych linii eksperymentalnych, polegającej na

sprawdzeniu poprawności już zrobionych przypisań, ewentualnym ich poprawieniu, oraz cza-

sami zrobieniu nowych. Takie przypisanie to z jednej strony wskazanie stanów początkowego

i końcowego, (J ′, P ′, n′J ′,P ′ , 1) ← (J, P, nJ,P , 0), które definiuje przejście, a z drugiej strony

precyzyjne określenie energii takiego przejścia. To drugie zadanie jest szczególnie trudne,

gdy linia w widmie powstała jako superpozycja dwóch lub więcej przejść. Powiedzmy, że
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wiemy tylko, że jakaś linia powstała z dwóch przejść i znamy model profilu każdej z linii

składowych. Nieznane położenia tych linii i ich intensywności możemy potraktować jako pa-

rametry, które trzeba dobrać tak, aby możliwie dokładnie odtworzyć linię eksperymentalną.

W tym przypadku mamy więc 4 parametry (dwie energie i dwie intensywności), które trzeba

wyznaczyć. W efekcie takiego dopasowania poznalibyśmy energie przejść składowych oraz

ich intensywności. Otrzymane wartości obarczone są oczywiście pewnym błędem, który był-

by jeszcze większy, gdybyśmy analizowali linię widmową składającą się np. z trzech przejść.

Oczywiście, procedura znajdowania energii przejść byłaby znacznie dokładniejsza, gdybyśmy

znali ich intensywności, co ograniczyłoby liczbę parametrów do wyznaczenia. Okazało się, że

można w tym celu wykorzystać intensywności teoretyczne. Pokażemy teraz, jak działa taka

ograniczona procedura, sprowadzająca się tylko do wyznaczenia energii przejść. Zrobimy to

na kilku przykładach zilustrowanych na panelach od C do I na rys. 26.

Na panelu C występują trzy niemal idealnie nakładające się przejścia. W tym przypadku

można z bardzo dużą pewnością przypisać im tę samą energię. Intensywności pików odpo-

wiadających każdemu z tych przejść zostały wzięte z obliczeń. Z wykresu widać, jak bliska

intensywności eksperymentalnej jest wypadkowa intensywność teoretyczna. Linia ekspery-

mentalna przedstawiona na panelu D jest wyraźnie asymetryczna, a z obliczeń teoretycznych

wiadomo, że pochodzi od dwóch przejść. Wykorzystując intensywności teoretyczne i dopaso-

wane energie przejść, można zbudować profil teoretyczny niemal idealnie pokrywający się z

eksperymentem. W tym przypadku należało dodać niewielką stałą wartość do intensywności,

aby uwzględnić wpływ tła. Na panelach E i F rozpatrzono tę samą linię eksperymentalną. Z

teorii wiadomo, że składa się ona z dwóch przejść pomiędzy stanami związanymi, jednak jest

zbyt szeroka, aby mogła być superpozycją dwóch takich przejść o jednakowej energii. Dlate-

go składowe przejścia muszą być przesunięte względem środka linii. Niestety, jak pokazano

na tych panelach, nie ma jednoznacznej odpowiedzi, które ustawienie przejść jest popraw-

ne. Dlatego w tym przypadku przypisaliśmy obydwu przejściom tę samą energię, chociaż

wprowadza to niepewność sięgającą 0.002 cm−1. Panel G prezentuje przykład linii z dwoma

maksimami. Przejścia składowe mają podobne intensywności, ale jedno z nich można było

wyznaczyć na podstawie poziomów energetycznych uzyskanych we wcześniejszych etapach

procedury (omówione w dalszej części). Zatem, łącząc dane teoretyczne i eksperymentalne,

znamy kolejność dwóch przejść na osi energii i korzystając z intensywności teoretycznych,

możemy dopasować ich energie do profilu eksperymentalnego. Aby uzyskać niemal idealną

zgodność, trzeba było również uwzględnić w bilansie intensywności trzecie, znacznie słabsze
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przejście, którego pozycję również uzyskano z wyznaczonych wcześniej poziomów energetycz-

nych. Kolejna analiza, oparta na danych zarówno z teorii, jak i eksperymentu, przedstawiona

jest na panelu H. Stosunkowo słaba linia eksperymentalna jest zdecydowanie zbyt szeroka,

by pochodziła z pojedynczego przejścia, a widmo teoretyczne wykazuje, że tworzą ją dwa

przejścia. Jeśli energię jednego z nich wyznaczymy na podstawie poziomów energetycznych

uzyskanych we wcześniejszych etapach, a intensywności weźmiemy z teorii, to pozostaje do

dopasowania tylko jeden parametr – energia drugiego przejścia. Aby całkowicie dopasować

profil teoretyczny do eksperymentalnego, należało dodać pewną stałą wartość do intensyw-

ności, odpowiadającą stosunkowo silnemu tłu. Ostatni przykład doprecyzowania pozycji linii

przedstawiono na panelu I. Tym razem dwa stosunkowo silne przejścia nakładają się, two-

rząc jedną linię. Z rozważań teoretycznych nie możemy być pewni, jaka jest kolejność tych

przejść na osi energii. Jednak użyliśmy wcześniej wyznaczonych eksperymentalnych pozio-

mów energetycznych aby otrzymać położenie jednej z tych składowych. Wówczas pozostało

tylko wyznaczenie energii drugiego przejścia. Ponadto trzeba było uwzględnić jedno słab-

sze, nieco przesunięte, przejście, aby odtworzyć interesującą nas silniejszą linię w optymalny

sposób.

Reasumując: najpierw dokonaliśmy sprawdzenia przypisań z [15, 16], ze szczególnym

uwzględnieniem przejść, którym wcześniej przypisano tę samą energię. Zaktualizowany zbiór

przejść stanowił punkt wyjścia do procedury wyznaczania eksperymentalnych poziomów

energii oscylacyjno-rotacyjnych. Następnie systematycznie powracaliśmy do analizy poszcze-

gólnych linii widmowych, w celu identyfikacji mniej oczywistych przypisań, korzystając ze

znajomości już wyznaczonych poziomów eksperymentalnych. Proces ten zostanie opisany w

kolejnych rozdziałach.
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Rysunek 26: Przykłady linii z eksperymentalnego widma dla ortoH2–CO i jego analiza mają-

ca na celu poprawienia wyznaczania energii przejść. Symbole „x” , które oznaczają intensywności

sygnału zmierzone dla próbkowanej wartości energii, połączone są niebieską linią otrzymaną z lokal-

nej interpolacji wielomianami trzeciego stopnia (cubic splines). Pionowe odcinki umieszczone są w

miejscach odpowiadających energiom przejść, a ich pozycje zostały dopasowane w sposób opisany

w rozdziale VI.A. Długości tych odcinków odpowiadają intensywnościom teoretycznym. Dla każ-

dego odcinka narysowany jest odpowiadający mu profil Voigta. Przejścia o parzystości (+) ← (−)
zaznaczone są na różowo, a te o parzystości (−)← (+) na zielono. Linie ciągłe użyte są do przejść

pomiędzy dwoma stanami związanymi, podczas gdy linie przerywane oznaczają przejścia, w których

przynajmniej jeden ze stanów jest rezonansem. Poziome linie błękitne pojawiające się w niektórych

panelach reprezentują stały sygnał tła obecny w okolicy niektórych rozważanych linii eksperymen-

talnych. Całkowity obliczony profil, będący sumą profili Voigta i stałej imitującej tło, narysowany

jest linią czerwoną.
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VI.B. Wyznaczanie eksperymentalnych poziomów oscylacyjno-rotacyjnych

Omówmy teraz, opracowany w trakcie badań prowadzących do niniejszej dysertacji, pro-

tokół dedukcji poziomów energetycznych, który umożliwił pełną rekonstrukcję oscylacyjno-

rotacyjnej struktury energetycznej kompleksu ortoH2–CO w oparciu o dane eksperymentalne.

Opracowany algorytm dedukcji bazuje na ścisłej integracji danych eksperymentalnych z pre-

cyzyjnymi wynikami obliczeń teoretycznych. Procedura ma charakter iteracyjny i składa się

z dwóch etapów, oznaczonych dalej Etap I i Etap II (rys. 27).

Etap I Etap II

Sprawdzenie przypisań

Wyznaczenie poziomów
oscylacyjno-rotacyjnych

Odtworzenie widma

Przypisanie nowych
przejść

Wyznaczenie poziomów
oscylacyjno-rotacyjnych

Odtworzenie widma

1

Rysunek 27: Schemat algorytmu wyznaczania energii poziomów oscylacyjno-rotacyjnych z

eksperymentu z wykorzystaniem widma teoretycznego.

Każdy z etapów składa się z sekwencji trzech kroków, które są odpowiednio bardzo podobne,

jednak ich funkcja i zastosowanie nieco się różnią.

1. Przypisanie lub sprawdzenie już przypisanych przejść eksperymentalnych w oparciu o

wygenerowane widmo teoretyczne.

2. Wyznaczenie poziomów energetycznych – na podstawie przejść o wspólnym stanie po-

czątkowym lub końcowym wyznaczane są różnice energii między poziomami, a na-

stępnie konstruowana jest sieć powiązań umożliwiająca wyznaczenie ich względnych

wartości.

3. Rekonstrukcja widma i walidacja przypisań – wygenerowane na podstawie poziomów

przypisanych w kroku pierwszym widmo, wykorzystujące teoretyczne intensywności,
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porównywane jest z eksperymentalnym, co pozwala na ocenę poprawności przypisań i

ewentualne dalsze uzupełnienie listy przejść.

Procedura realizowana jest iteracyjnie do momentu, w którym dostępna informacja eks-

perymentalna zostaje w pełni wykorzystana. Zastosowanie tej metody umożliwiło wyzna-

czenie energii dla 84% teoretycznie przewidywanych poziomów energetycznych kompleksu

ortoH2–CO. W kolejnych podrozdziałach przedstawiono szczegółowy opis implementacji każ-

dego z etapów algorytmu.

Jak już wspomniano na początku rozdziału, korzystając z parzystości p, przejścia można

podzielić na dwie grupy: (+)← (−) oraz (−)← (+). Przejścia z różnych grup nie mieszają

się i mogą być analizowane niezależnie. Przykładowe przejścia z grupy (+)← (−):

(2, e, 2, 1)← (1, e, 1, 0), (4, e, 4, 1)← (4, f, 1, 0)

oraz z grupy (−)← (+):

(3, e, 6, 1)← (2, e, 2, 0), (4, f, 1, 1)← (4, e, 2, 0).

Opis algorytmu przedstawmy na przykładzie przejść typu (+) ← (−) i wyznaczaniu po-

ziomów dla stanów z stanów v2 = 0. Ze względu na brak mieszania się grup przejść, poziomów

energetycznych wyznaczonych z grupy (+) ← (−) nie można zorientować względem pozio-

mów wyznaczonych z drugiej grupy przejść. Jako punkt odniesienia wybierzmy najniższe

energie w każdej grupie. Dlatego pomimo, że z rozważań teoretycznych wiadomo, że stan

podstawowy to (1, e, 1, v2), to korzystając tylko z eksperymentu w podczerwieni jesteśmy

co najwyżej w stanie powiedzieć, że jest on stanem podstawowym dla grupy o parzystości

p = (−). Podobnie stwierdzimy, że dla stanów p = (+), stanem o najniższej energii jest

(1, f, 1, v2). Aby zachować w poniższych rozważaniach spójność z oznaczeniami dla przejść,

podczas których zmienia się symetria oscylacyjno-rotacyjnej funkcji falowej, stosujemy tutaj

nieortodoksyjne oznaczenia parzystości p, (+) i (−), które odpowiadają wartościom +1 i −1.

Działanie algorytmu zostanie również zilustrowane graficznie. Wprowadźmy reprezenta-

cję widma za pomocą diagramu, rys. 28, w której każdemu przejściu odpowiada punkt na

dwuwymiarowej siatce, gdzie na osi poziomej wskazujemy stany końcowe z v2 = 1, a na osi

pionowej stany początkowe z v2 = 0. Na rysunku 28, prezentującym pierwszym diagram z

serii, zaznaczono wszystkie przejścia teoretyczne, których względna intensywność jest więk-

sza niż 0.01. Jeśli dane przejście zostało przypisane w eksperymencie, to odpowiadający mu

punkt zaznaczono kolorem czerwonym. W każdym bloku symetrii JP stany uporządkowane

są zgodnie z wartościami nJ,P .
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Rysunek 28: Graficzna reprezentacja widma w podczerwieni kompleksu ortoH2–CO.

Omówmy teraz kolejne kroki algorytmu wyznaczania energii oscylacyjno-rotacyjnych.

Krok i) Wstępna klasyfikacja danych wejściowych.

Do programu wczytywana jest pełna lista proponowanych przejść, czyli wartości zmiennych

definiujących (J ′, P ′, n′J ′,P ′ , 1)← (J, P, nJ,P , 0) oraz energii przejść Etrans.

J ′ P ′ n′J,P v′2 J P nJ,P v2 Etrans

2 e 2 1 1 e 1 0 2.5732

4 e 4 1 4 f 1 0 1.6178

7 e 1 1 7 f 1 0 −6.3010

3 f 7 1 3 e 4 0 9.3060

· · ·

Lista przejść jest dzielona na dwie grupy, przejścia typu (+) ← (−) oraz (−) ← (+). Od

tego miejsca możemy rozważać cztery niezależne przypadki:
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1) wyznaczanie stanów z v2 = 0 i p = (−) [oznaczany dalej (v2, p) = (0,−)],

2) wyznaczanie stanów z v2 = 1 i p = (+) [(v2, p) = (1,+)],

3) wyznaczanie stanów z v2 = 0 i p = (+) [(v2, p) = (0,+)],

4) wyznaczanie stanów z v2 = 1 i p = (−) [(v2, p) = (1,−)],

Energie stanów dla przypadków pierwszego i drugiego otrzymuje się z analizy przejść

(+)← (−), a dla przypadków trzeciego i czwartego z (+)← (−). Analiza każdego przypad-

ku jest analogiczna, więc w dalszej części pracy prezentowane są kolejne kroki algorytmu dla

przypadku pierwszego. Na górnym diagramie z rys. 29, zacieniowane obszary to przejścia

z grupy (−) ← (+), które z perspektywy realizacji algorytmu dla pierwszego przypadku

nie wnoszą żadnej informacji. W dalszej części analizy zbędne obszary zostały usunięte z

diagramu, czyli ograniczamy się do przejść zaznaczonych schematycznie w dolnym diagramie

z rys. 29.
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Rysunek 29: Graficzna reprezentacja widma w podczerwieni kompleksu ortoH2–CO, zacie-

niowane obszary prezentują przejścia z grupy (−)← (+).
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Krok ii) Budowa klastrów.

Dla analizowanego przypadku, tj. wyznaczania poziomów z grupy (v2, p) = (0,−), klaster

definiujemy jako zbiór przejść posiadających wspólny stan końcowy. Oznacza to, że wszystkie

przejścia należące do danego klastra wychodzą z różnych stanów z (v2, p) = (0,−) i prowadzą

do jednego, wspólnego stanu (v2, p) = (1,+). Ze względu na tę strukturę, klaster identyfiku-

jemy używając oznaczenia tego wspólnego stanu końcowego. Pogrupowanie danych w klastry

umożliwia wyznaczenie relacji energetycznych między poziomami (v2, p) = (0,−) z wykorzy-

staniem metody kombinacji różnic. Wymagamy, aby każdy klaster zawierał co najmniej dwa

przypisane przejścia, klastry jednoelementowe nie są uwzględniane w dalszej analizie.

Poniżej przedstawiono dwa przykładowe klastry, (2, e, 2, 1) oraz (4, e, 4, 1), w posta-

ci tabel zawierających zbiór przejść, których stanem końcowym jest wspólny poziom o

(v2, p) = (1,+). Klastry te użyliśmy wcześniej na rys. 25 do zilustrowania metody kom-

binacji różnic. Aby uprościć nieco symbol (J, P, nJ,P , v2), stosowany do oznaczania po-

ziomów energetycznych, wprowadźmy dla potrzeb tego rozdziału skrócony zapis. Niech

(J, P, nJ,P ) ≡ (J, P, nJ,P , 0), a [J, P, nJ,P ] ≡ (J, P, nJ,P , 1).

J ′ P ′ n′J,P v′2 J P nJ,P v2 Etrans

klaster (2, e, 2, 1) ≡ [2, e, 2]

2 e 2 1 1 e 1 0 2.5732

2 e 2 1 3 e 7 0 −9.3681

2 e 2 1 3 e 3 0 −4.2942

2 e 2 1 2 f 1 0 −0.3765

klaster (4, e, 4, 1) ≡ [4, e, 4]

4 e 4 1 3 e 3 0 4.9120

4 e 4 1 5 e 8 0 −9.5209

4 e 4 1 5 e 7 0 −8.3016

4 e 4 1 4 f 4 0 −3.2622

4 e 4 1 5 e 2 0 0.9083

4 e 4 1 4 f 1 0 1.6178

· · ·

Uprzedzając nieco wypadki wspomnijmy, że w trakcie całej procedury wyodrębniliśmy

37 klastrów dla rozważanego przypadku (v2, p) = (0,−). Na rysunku 30 wszystkie wykryte

klastry zaznaczono jako pionowe pasy. Każdy zawiera co najmniej dwa przypisane przejścia

kończące się w tym samym stanie v2 = 1. Klastry [2, e, 2] oraz [4, e, 4], zaprezentowane na

diagramie z rys. 25 i omówione wcześniej, zostały dodatkowo wyróżnione. Można zauważyć,
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że pas odpowiadający klastrowi [2, e, 2] zawiera cztery czerwone kółka, a pas odpowiadający

[4, e, 4] – sześć czerwonych kółek, co jest zgodne z liczbą przejść w odpowiednich ramkach na

rys. 25. W kolejnym kroku wszystkie klastry analizujemy pod względem obecności wspólnych

stanów. Jeżeli uda się zidentyfikować takie powiązania, to odpowiadające im klastry są łą-

czone. Kolejne dołączane klastry pozwalają zbudować nowy zbiór przejść, który nazwaliśmy

klastrem głównym. Elementy klastra głównego mogą zostać wykorzystane w dalszej części

algorytmu do wyznaczania energii poziomów oscylacyjno-rotacyjnych na podstawie przejść

eksperymentalnych. W trakcie całej procedury dla układu ortoH2–CO, wszystkie klastry

udało się połączyć w jeden klaster główny. Graficznie klastry połączone można rozpoznać

dzięki temu, że zacieniowane obszary dają się połączyć horyzontalnym paskiem przechodzą-

cym przez czerwone punkty, które reprezentują przypisane przejścia. Na rys. 30 pokazano

przykład takiego połączenia dla klastrów [2, e, 2] i [4, e, 4], które łączą się poprzez wspólny

stan (3, e, 3) (patrz też rys. 25).
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Rysunek 30: Schemat budowania klastrów. Klastry [2, e, 2] oraz [4, e, 4] zostały wyróżnione

jako przykład połączenia w klaster główny poprzez wspólny stan (3, e, 3).
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Krok iii) Tworzenie płaszczyzn.

W ramach każdego klastra budujemy płaszczyznę, czyli macierz różnic energii pomiędzy

stanami typu (v2, p) = (0,−), które uczestniczą w przejściach do wspólnego stanu końcowego

z (v2, p) = (1,+). Ponieważ wszystkie przejścia w danym klastrze kończą się w tym samym

stanie, możliwe jest wyznaczenie wszystkich różnic pomiędzy stanami początkowymi typu

(v2, p) = (0,−) z danego klastra.

Przyjmijmy oznaczenie X dla wspólnego stanu końcowego z bloku (v2, p) = (1,+) oraz

α, β, . . . dla stanów początkowych z (v2, p) = (0,−). Energia przejścia ze stanu α do X

wyraża się wzorem:

EX←αtrans = EX − Eα.

Odejmując od siebie dwie energie przejść o wspólnym stanie końcowym X, otrzymujemy:

EX←αtrans − E
X←β
trans = Eβ − Eα ≡ ∆αβ,

co odpowiada różnicy energii pomiędzy stanami α i β z bloku (v2, p) = (0,−).

W celu zilustrowania tego kroku pozostajemy przy przykładzie klastra [2, e, 2], w któ-

rym występują cztery stany początkowe: {(1, e, 1), (2, f, 1), (3, e, 3), (3, e, 7)}. Każdy punkt

na płaszczyźnie reprezentuje jedną różnicę ∆αβ. Warto zauważyć, że ∆βα = −∆αβ oraz

∆αα = 0, dlatego zbiór punktów można formalnie zredukować z N2 do N(N − 1)/2, gdzie

N to liczba stanów (v2, p) = (0,−) angażowanych w przejścia w danym klastrze. Na osiach

rysunku 31 prezentującego płaszczyznę powstającą z klastra [2, e, 2], stany ułożone są zgod-

nie z porządkiem leksykograficznym. Przyjmujemy, że dla β ­ α punkt nie wnosi nowej

informacji i zostaje usunięty. Punkty reprezentujące różnice ∆αβ niosące nową informację

zostały zaznaczone kolorem zielonym.
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Rysunek 31: Schemat płaszczyzny związanej z klastrem [2, e, 2].

Krok iv) Budowanie łańcuchów.

W ramach zbioru płaszczyzn budujemy struktury zwane łańcuchami. Każdy łańcuch sta-

nowi uporządkowaną sekwencję różnic energetycznych ∆αβ pomiędzy stanami v2 = 0, przy

czym poszczególne różnice muszą być logicznie połączone, koniec jednej stanowi początek

następnej, jak np. ∆αβ, ∆βγ, itd.

Budowę łańcucha rozpoczynamy od pierwszej płaszczyzny w zbiorze. Ogniwem łańcucha

jest różnica ∆αβ, do którego można dołączyć kolejne ogniwo ∆βγ. Jeżeli w danej płaszczyźnie

nie da się już kontynuować budowy, łańcuch przechodzi do kolejnej płaszczyzny. W ten

sposób łańcuch może łączyć punkty pochodzące z różnych płaszczyzn. Dla zilustrowania tej

procedury posłużymy się znanym już klastrem [2, e, 2].
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Rysunek 32: Schemat płaszczyzny związanej z klastrem [2, e, 2].

Zaznaczony na rysunku 32 łańcuch przejść ma postać:

{(2, f, 1)(1, e, 1)→ (1, e, 1)(3, e, 3)→ (3, e, 3)(2, f, 1)→ (2, f, 1)(3, e, 7)→ (3, e, 7)(3, e, 3)}.

Podczas budowy posłużyliśmy się punktami (3, e, 3)(1, e, 1) oraz (3, e, 7)(2, f, 1), oznaczony-

mi czerwonym kolorem na rys. 32, wykorzystując zależność ∆αβ = −∆βα. Warto zauwa-

żyć, że punkt (3, e, 7)(1, e, 1) nie został włączony do łańcucha, ale informacja o wzajemnej

energii tych dwóch stanów jest uwzględniona poprzez sekwencję ogniw (1, e, 1)(3, e, 3) →

(3, e, 3)(2, f, 1)→ (2, f, 1)(3, e, 7).

W pewnym momencie kontynuacja łańcucha w obrębie jednej płaszczyzny nie jest już

możliwa, wtedy pod uwagę brana jest kolejna płaszczyzna. Jej przeglądanie odbywa się w

analogiczny sposób, jeśli na nowej płaszczyźnie uda się odnaleźć kolejne ogniwo, łańcuch jest

dalej budowany w jej obrębie. Drugim klastrem na liście naszych danych jest [4, e, 4], który

zawiera sześć stanów:

{(3, e, 3), (4, f, 1), (4, f, 4), (5, e, 2), (5, e, 7), (5, e, 8)},
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graficznie zaprezentowany jest na diagramie z rys. 33.

(3,e,3) (4,f ,1)(4,f ,4) (5,e,2) (5,e,7)
(5,e,8)

(3,e,3)

(4,f ,1)
(4,f ,4)

(5,e,2)

(5,e,7)
(5,e,8)

Rysunek 33: Schemat płaszczyzny związanej z klastrem [4, e, 4].

Ostatnie ogniwo łańcucha zbudowanego na płaszczyźnie reprezentującej klaster [2, e, 2]

kończyło się stanem (3, e, 3), który jednocześnie należy do klastra [4, e, 4]. Dzięki temu moż-

liwe jest bezpośrednie połączenie obu płaszczyzn i kontynuacja budowy łańcucha. Proces

łączenia przedstawiony jest na rysunku 34.
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Rysunek 34: Schemat płaszczyzny związanej z klastrem [4, e, 4].

Górny panel z rys. 34 przedstawia obraz nawiązujący do wprowadzonego nazewnictwa,

tzn. płaszczyzn, a dolny przedstawia rzut z góry. Zielone punkty na tym rysunku przedstawia-

ją przejścia z klastra [2, e, 2], niebieskie z klastra [4, e, 4], natomiast strzałka różowa wskazuje

fragment łańcucha, który łączy dwie płaszczyzny poprzez wspólny stan. Budowanie łańcu-

cha jest kontynuowane w ramach wszystkich dostępnych płaszczyzn. Łańcuch przechodzący
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przez wiele płaszczyzn, prezentujemy na rys. 35.

Klaster 1    

Klaster 2    

Klaster 9    

Klaster 15   

Klaster 16   

Płaszczyzna 1

Płaszczyzna 2

Płaszczyzna 3

Płaszczyzna 4

Płaszczyzna 5

Rysunek 35: Łańcuch łączący informacje o różnicach energii pochodzące z kilku płaszczyzn

(klastrów).

Tak utworzony łańcuch pozwala w prosty sposób zbudować drabinkę względnych energii

w ramach danego zbioru stanów energetycznych. Załóżmy, że łańcuch zbudowany jest z

ogniw: {αβ → βγ → γδ}, czyli połączonych kolejnych różnic energii ∆αβ, ∆βγ oraz ∆γδ.

Jeśli przyjmiemy, że poziom odniesienia odpowiada energii Eα = 0, to kolejne poziomy
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wyznaczane są zgodnie z następującym wzorem:

∆αβ = Eβ − Eα ⇒ Eβ = ∆αβ

∆βγ = Eγ − Eβ ⇒ Eγ = ∆αβ +∆βγ

∆γδ = Eδ − Eγ ⇒ Eδ = ∆αβ +∆βγ +∆γδ.

(56)

Jeśli w innym łańcuchu pojawi się jeden z już wyznaczonych stanów, można połączyć oba

łańcuchy i rozszerzyć listę względnych energii. Na końcu, korzystając z informacji teoretycz-

nej o tym, który stan jest najniższym energetycznie, możemy przesunąć wszystkie energie w

taki sposób, aby poziom zerowy był zgodny z tą informacją.

Na tym etapie warto wskazać dwa potencjalne problemy. Po pierwsze, jeżeli początkowa

lista przypisań jest zbyt uboga, może dojść do sytuacji, w której zbudowane zostaną roz-

łączne grupy łańcuchów, nieposiadające wspólnych stanów. W takim przypadku nie da się

wyznaczyć jednej wspólnej listy energii. W toku naszych badaniach taka sytuacja nie wystą-

piła. Drugim, bardziej subtelnym problemem, jest możliwość, że ten sam stan, przyjmijmy

że β, pojawi się więcej niż raz w obrębie jednego łańcucha. Jeżeli zbudowany łańcuch ma

postać

{αβ − βγ − . . .− ωβ},

to możemy otrzymać dwie niezależne wartości energii stanu β:

Eβ = ∆αβ oraz Eβ = ∆αβ +∆βγ + . . .+∆ωβ.

Gdyby wyznaczone z eksperymentu energie przejść oraz przypisania były idealne, to te war-

tości powinny być sobie równe. W praktyce obserwujemy niekiedy drobne różnice (mniejsze

niż 0.001 cm−1). Zazwyczaj wynikają one z nieprecyzyjnego wyznaczenia energii różnych

przejść angażujących ten sam stan. Jeśli różnica jest nieco większa, to jest to sygnał, że

któreś przypisanie jest błędne. Można je wtedy zidentyfikować i poprawić. Słuszne wydaje

się tu stwierdzenie: „It’s a feature, not a bug.”

Opisany w tym podrozdziale algorytm wyznaczania eksperymentalnych poziomów energe-

tycznych z widm zmierzonych w podczerwieni [14, 15] został zaprogramowany i zastosowany

dla kompleksu ortoH2–CO. Program został załączony do pracy [23].

VI.C. Odtworzenie widma i walidacja przypisań

Po wyznaczeniu eksperymentalnych poziomów energetycznych zgodnie z opisaną proce-

durą, możliwe jest wygenerowanie zestawu wszystkich możliwych przejść wynikających z
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tych poziomów. W tym celu wykorzystujemy listę przejść i intensywności z obliczeń teore-

tycznych. Identyfikujemy te, które angażują stany oscylacyjno-rotacyjne, dla których znamy

już w danym momencie energie eksperymentalne. Możemy więc energie przejść obliczone

z teorii, zastąpić przez energie przejść obliczonych z energii eksperymentalnych. Modelu-

jąc kształt linii tak, jak w widmach teoretycznych otrzymujemy symulację (części) widma

doświadczalnego.

Jeśli pozycje tak odtworzonych przejść pokrywają się (lub znajdują się bardzo blisko) z

wcześniej przypisanymi liniami eksperymentalnymi, traktujemy to jako potwierdzenie we-

wnętrznej spójności przypisań. Jeśli natomiast linia nie pokrywa się w jakimś przypadku,

pomimo, że powinna, to świadczy to o błędzie w jakimś przypisaniu. Należy jednak zauwa-

żyć, że w przypadku pojedynczego przejścia, którego poziomy zostały wyznaczone właśnie

na jego podstawie, zgodność jest automatyczna i nie stanowi niezależnej weryfikacji.

W wielu przypadkach zdarza się, że uzyskane poziomy generują przejścia, które mają

swoje odpowiedniki w widmie eksperymentalnym, a które nie były wcześniej wykorzystane

w procesie dedukcji. Takie sytuacje stanowią silne potwierdzenie wiarygodności zbudowa-

nego układu poziomów eksperymentalnych. Odtworzone w ten sposób przejścia okazują się

szczególnie przydatne w przypadkach, gdy dana linia widmowa powstaje w wyniku nakła-

dania się kilku przejść. Taka sytuacja zilustrowana jest na panelu G rys. 26, gdzie w widmie

eksperymentalnym obserwujemy linię o dwóch maksimach, wynikającą z nakładania się kil-

ku przejść. Dzięki przypisaniom dokonanym na podstawie innych fragmentów widma, dla

jednego z tych przejść udało się wcześniej wyznaczyć energie obu stanów, co pozwoliło na

jego odtworzenie. Informacja ta umożliwiła przypisanie pozostałych komponentów złożonej

linii. W rezultacie uzyskano jednoznaczne przypisanie wszystkich składowych, co prowadzi

do dalszego rozszerzenia zbioru przypisań.

VI.D. Dedukcja eksperymentalnych poziomów energetycznych

We wcześniejszej części niniejszego rozdziału przedyskutowaliśmy wszystkie pojęcia, któ-

re pojawiają się w schemacie algorytmu wyznaczania eksperymentalnych poziomów energe-

tycznych zamieszczonym na rys. 27. Poniżej przedstawiamy szczegóły dedukcji eksperymen-

talnych poziomów energetycznych stanów oscylacyjno-rotacyjnych kompleksu ortoH2–CO,

przeprowadzonej na podstawie przypisań linii widmowych. Kluczowe znaczenie mają tu da-

ne teoretyczne: energie poziomów, energie przejść oraz intensywności, które stanowią punkt
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odniesienia dla analizy eksperymentu.

Istnieją zaawansowane programy komputerowe służące do przypisywania struktur widmo-

wych (np. MARVEL [53]), jednak do tej pory nie były one stosowane w przypadku komplek-

sów van der Waalsa. Stąd stworzyliśmy własny program, który jest kluczową częścią naszej

procedury, dzięki czemu mieliśmy pełną kontrolę nad jego działaniem. Przy przypisywaniu

widm oscylacyjno-rotacyjnych często wykorzystuje się modelowe hamiltoniany [54–56]. Je-

śli parametry takiego hamiltonianu, np. stałe rotacyjne i dystorsji, zostaną dopasowane do

wybranego podzbioru linii, to z otrzymanego modelu można następnie przewidywać szero-

ki zakres widma. Jednak w przypadku układów takich jak H2–CO nie da się skonstruować

rozsądnego modelowego hamiltonianu ze względu na brak wyraźnych regularności, w tym

podziału na wysokoenergetyczne drgania i niskoenergetyczne rotacje całego układu. Drga-

nia, które mają dużą amplitudę oraz są silnie anharmoniczne, sprzęgają się z rotacjami

podukładów i całego układu. W pracach [15, 16] zaproponowano podejście alternatywne:

przypisywania przejść dokonuje się na podstawie porównania z widmem teoretycznym, bez

konstruowania modelowego hamiltonianu. W niniejszej pracy ten protokół został rozwinięty

i zautomatyzowany.

Prezentowany protokół składa się z dwóch etapów, z których każdy zawiera trzy kroki,

patrz rys. 27. Kroki te są podobne co do struktury, lecz różnią się szczegółami. Pierwszy krok

obejmuje przypisanie eksperymentalnych energii przejść na podstawie danych teoretycznych.

W drugim kroku dokonywana jest dedukcja poziomów energetycznych na podstawie przypi-

sanych przejść. Trzeci krok polega na generowaniu energii przejść (częściowej rekonstrukcji

widma) na podstawie wyznaczonych poziomów energetycznych, co pozwala na walidację wy-

konanych wcześniej przypisań oraz na identyfikację nowych przejść eksperymentalnych. Po-

nieważ wyznaczone poziomy energetyczne mają dokładność spektroskopową, wygenerowane

przejścia powinny ściśle odpowiadać pozycjom obserwowanych pików w widmie eksperymen-

talnym. Umożliwia to identyfikację większej liczby przejść niż pierwotnie użyto jako dane

wejściowe do etapu I. Dodatkowe przypisania przeprowadzane są w pierwszym kroku eta-

pu II. Rozszerzony zbiór przypisanych energii przejść stanowi następnie dane wejściowe do

drugiego kroku tego etapu. Sekwencję trzech kroków etapu II powtarza się iteracyjnie, do-

póki możliwe jest wydobywanie nowych informacji z widma eksperymentalnego przy użyciu

danych teoretycznych oraz informacji uzyskanych we wcześniejszych etapach analizy.
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VI.E. Etap I procedury

1. Weryfikacja opublikowanych przypisań

Punktem wyjścia dla dedukcji poziomów energetycznych była lista przypisanych przejść

IR w kompleksie ortoH2–CO pochodząca z pracy [16]. Lista ta zawiera 240 przejść, z czego

219 uzyskano w eksperymencie przeprowadzonym w temperaturze T = 49 K, a 21 zmierzono

przy T = 2 K. Dla rozróżnienia, tę drugą grupę określamy jako przejścia „zimne”.

Dwanaście spośród zimnych przejść ma przypisane odpowiedniki w widmach zarejestro-

wanych przy T = 49 K. Jednak energie przejść w każdej z tych par nie są identyczne,

największa różnica wynosi 0.002 cm−1. Różnice te stanowią potencjalne źródło niepewności

w wyznaczaniu poziomów energetycznych. Zdecydowaliśmy się odrzucić podzbiór 12 przejść

zmierzonych przy T = 2 K i pozostawić jedynie ich odpowiedniki uzyskane przy T = 49 K,

ponieważ cała dalsza analiza opierała się na widmach IR w tej właśnie temperaturze. Po tej

redukcji pozostało 228 przejść, w tym 9 zimnych, tworzących początkowy zbiór. Zbiór ten

nazwijmy treningowym (training set).

Wstępna dedukcja poziomów energetycznych przeprowadzona z użyciem technik opisa-

nych w rozdziale VI.B bazująca na tym zbiorze, nie była tak dokładna jak oczekiwaliśmy.

Część przejść wygenerowanych z dopasowanych poziomów energetycznych znacznie odbiegała

od wartości odpowiadających im przejść ze zbioru treningowego. Najbardziej prawdopodob-

ną przyczyną była błędna identyfikacja niektórych przejść. Aby to sprawdzić, wyselekcjono-

waliśmy przejścia o najmniej pewnych przypisaniach i usunęliśmy je ze zbioru treningowego.

Równolegle zastosowano metodę opisaną w rozdziale VI.A, aby poprawić dokładność po-

łożeń linii nakładających się. W niniejszej pracy nie przytaczam wszystkich tabel, które

były wykorzystywane w omawianej procedurze, gdyż komplet danych znajduje się w dodat-

ku (SM) do pracy [23]. Tabela S1 z tej pracy zawiera listę początkowych 228 przejść oraz

informacje o 21 z nich, które zostały odrzucone, a także o przypadkach, w których dopre-

cyzowano pozycje niektórych linii. Po tej selekcji pozostało 207 przejść, w tym 6 zimnych.

W przypadku piku przy −4.6315 cm−1 (który znalazł się wśród 21 odrzuconych), przypisa-

nie (0, e, 1, 1) ← (1, e, 4, 0) z pracy [16] zostało zastąpione przez (5, f, 3, 1) ← (6, f, 1, 0) i

przejście to zostało dodane do zbioru treningowego. Dodatkowo zidentyfikowano jedno nowe

przejście (6, f, 5, 1)← (6, e, 5, 0) o energii 0.1439 cm−1 i również włączono je do zbioru. Osta-

teczna lista 209 przejść stanowi zbiór treningowy wykorzystany w dalszych krokach etapu

I.
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Podsumowanie liczby przypisań na różnych etapach procedury dedukcji poziomów ener-

getycznych przedstawiono w tabeli XIV, a szczegółowe informacje dotyczące redukcji i korekt

pierwotnej listy przypisań podano w przypisach do tabeli S1 [23]. Z analizy przeprowadzonej

a posteriori wynika, że tylko 6 spośród odrzuconych przejść było błędnie przypisanych. Nie-

które spośród usuniętych przejść zostały w rzeczywistości przypisane poprawnie, ponieważ

ich energie dały się odtworzyć z wysoką dokładnością na podstawie poziomów energetycznych

wyznaczonych z innych przejść. W przypadku niektórych pików wynikających z nakładania

się dwóch przejść, same przypisania były poprawne, jednak rzeczywiste pozycje tych przejść

były przesunięte. W takich przypadkach zastąpiono je dokładniejszymi odpowiednikami. W

toku dalszej dedukcji poziomów energetycznych oraz procesu walidacji stwierdziliśmy, że

wśród 209 przejść treningowych użytych w etapie I, 4 były błędnie przypisane. Przejścia te

zostały skorygowane, a krok dedukcji powtórzony. Łącznie więc 10 przejść (6+4) z pracy [16]

miało niepoprawne przypisania.

Tabela XIV: Podsumowanie liczby przypisanych linii widmowych na poszczególnych eta-

pach procedury dedukcji poziomów energetycznych.

Całkowita liczba przypisanych linii w pracy [16] 240

Linie dla T = 49 K (praca [16]) 219

Linie dla T = 0.9 K (praca [16]) 21

Linie niemal pokrywające się (zdublowane) 12

Łącznie po usunięciu duplikatów 228

Linie odrzucone po wstępnej dedukcji 21

Linie z poprawionymi pozycjami 4

Nowo dodane przejścia 2

Liczba linii użytych w etapie I dedukcji 209

Liczba nowych linii przypisanych w etapie II 41

Łączna liczba przypisanych linii 250

Liczby przypisanych linii eksperymentalnych przedstawiono w tab. XIV. W pracy [16] zi-

dentyfikowano łącznie 253 linie w widmie, z czego 240 zostało przypisanych do konkretnych

przejść, a 13 pozostało nieprzypisanych. Dla porównania, pełna lista przejść teoretycznych w

temperaturze T = 49 K obejmuje około 1000 przejść o względnej intensywności większej niż

0.01 w zakresie energii (−12, 12) cm−1, przy czym wartość największej intensywności została
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ustalona na 1, jak omówiono wcześniej.

2. Dedukcja poziomów energetycznych

Jak zauważono wcześniej, poziomy energetyczne H2–CO nie mogą być dobrze opisane żad-

nym modelowym hamiltonianem, nawet w mniej złożonym przypadku paraH2–CO [14]. Dla-

tego dedukcja poziomów energetycznych musi być przeprowadzona innymi metodami. Aby

wyznaczyć poziomy energetyczne paraH2–CO, McKellar [14] dokonywał przypisań próbnych,

wykorzystując informacje z obliczeń na empirycznej 3-wymiarowej powierzchni oddziaływań

dla H2–CO [57, 58] (traktując H2 jako „atom”, z użyciem współrzędnych R, θ2 i r2 w na-

szej notacji), metodę kombinacji różnic oraz znane reguły wyboru. Uwzględniano również

podobieństwa widm paraH2–CO do widm He–CO [57, 58]. Następnie zastosowano dopaso-

wanie metodą najmniejszych kwadratów w celu znalezienia poziomów energetycznych, które

najlepiej odwzorowują obserwowane energie przejść.

Procedura ta nie działała dla ortoH2–CO, najprawdopodobniej ze względu na większe

zagęszczenie widma: 253 przypisane linie [16] w porównaniu do 135 linii dla paraH2–CO w

tym samym zakresie energetycznym (oraz znacznie większą liczbę nieprzypisanych linii w

pierwszym przypadku). Ponadto dla ortoH2–CO nie można już skorzystać z podobieństwa

do widma He–CO. Nasza procedura różni się od tej z pracy [14] tym, że nie wykonuje-

my żadnej minimalizacji: różnice poziomów energetycznych wyznaczone z energii przejść

od początku mają maksymalnie możliwą dokładność. Proces dedukcji został zilustrowany w

rozdziale VI.B. Na podstawie początkowej listy 209 odświeżonych przypisanych eksperymen-

talnych energii przejść, oznaczonych trójkątami w górnym pasku każdego panelu na rys. 24

(nieco zmodyfikowana kopia rys. S1 z [23]), uzyskano 82 (83) eksperymentalne poziomy ener-

getyczne dla przypadków v2 = 0 (1), oznaczone cyfrą rzymską „I” w tabelach XII i XIII. Z

obliczeń dynamicznych wiadomo również, że dla każdej z wartości v2 istnieje łącznie 131

poziomów energetycznych, co oznacza, że na tym etapie udało się nam wyznaczyć wartości

eksperymentalne dla około 63% poziomów energetycznych.

3. Generowanie przejść eksperymentalnych z poziomów energetycznych

W ostatnim (trzecim) kroku etapu I obliczyliśmy wszystkie możliwe energie przejść na

podstawie zbioru wyznaczonych poziomów energetycznych, korzystając z informacji teore-

tycznych o tym, które przejścia są dozwolone i jaką mają intensywność. Liczba tak wyge-
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nerowanych przejść wynosi 568; są one oznaczone pionowymi kreskami w górnych wierszach

paneli z rys. 24. Spośród tych przejść, 193 odpowiada przejściom ze zbioru treningowego,

tzn. przejściom, które zostały wykorzystane do wyznaczenia poziomów energetycznych. Na

rys. 24 są to przypadki, w których trójkąt pokrywa się z pionową kreską. W rzeczywistości

to dopasowanie jest bardzo dokładne: największa różnica pomiędzy odpowiadającymi sobie

wartościami wynosi 0.0015 cm−1, a RMSE wynosi 0.0004 cm−1. Przyczyna nieco większych

różnic dla niektórych linii wynika z faktu, że ich pozycje są bardziej rozmyte i mogą mieć

niepewność nieco większą niż deklarowane w pracy eksperymentalnej 0.0005 cm−1.

Ogólnie rzecz biorąc, procedura dedukcji i generowania działała bardzo skutecznie. Po-

twierdziliśmy poprawność przypisań dla 193 spośród 209 wstępnie rozważanych przejść. Dla

16 (= 209− 193) przejść ze zbioru treningowego, nie znaleziono odpowiadających im energii

(przejawia się to brakiem pionowej kreski pod trójkątem w górnym wierszu rys. 24), jak w

przypadku linii o dużej intensywności dla energii −6.9260 cm−1. Oznacza to, że w naszej pro-

cedurze dedukcji dane przejście nie mogło zostać powiązane z przejściami tworzącymi duży

klaster, czyli energia takiego przejścia nie mogła być włączona do łańcucha energii (patrz

rozdział VI.B).

Procedura odtwarzania widm pozwoliła również uzyskać energie dla 375 (568 − 193)

przejść, których nie było w zbiorze treningowym użytym w drugim kroku etapu I (piono-

we kreski bez odpowiadających im trójkątów). Są to więc niezależne przewidywania pozycji

przejść eksperymentalnych, które wcześniej nie zostały przypisane lub zmierzone, a które

leżą w zakresach energii, dla których nie zarejestrowano widma kompleksu, lub które są zbyt

słabe i ukryte pod innymi liniami bądź zanurzone w tle. Wśród tych 375 przejść znajduje

się 69, które można powiązać ze słabymi pikami w widmie, nieuwzględnionymi wcześniej ze

względu na ich niską intensywność. Przejścia te są zaznaczone czerwonymi pionowymi strzał-

kami w górnych wierszach rys. 24 i stanowią nowe przypisania przejść w widmie. Jest to silne

potwierdzenie, że zarówno początkowe przypisania, jak i wyznaczone poziomy energetyczne

są poprawne. Nowo przypisane przejścia znacząco poprawiają interpretację widma, ale nie

pozwalają w bezpośredni sposób na wyznaczenie dodatkowych poziomów energetycznych,

ponieważ są one generowane z już wyznaczonych poziomów. Te nowe przypisania umożliwia-

ją jednak wyeliminowanie odpowiadających im linii z dalszych rozważań, zatem pośrednio

ułatwiają wykonanie nowych przypisań w etapie II.
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VI.F. Etap II procedury

Przy przejściu do etapu II mieliśmy łącznie 262 (193+69) przypisane przejścia ekspery-

mentalne, dla których znane były eksperymentalne poziomy energetyczne.

Pierwszy krok etapu II rozpoczynamy od porównania listy wcześniej wyznaczonych ekspe-

rymentalnych poziomów energetycznych z listą wszystkich poziomów teoretycznych. Stwo-

rzyliśmy listę poziomów eksperymentalnych, których brakuje. Wybraliśmy jeden poziom z tej

listy i spośród wszystkich przejść teoretycznych wybraliśmy takie, w których bierze on udział

(zazwyczaj kilka). Następnie przeszukiwaliśmy widmo eksperymentalne w pobliżu położenia

tych przejść teoretycznych i w niektórych przypadkach udało się znaleźć ich eksperymentalne

odpowiedniki, czyli w praktyce zrobić nowe przypisanie linii eksperymentalnej. To ukierun-

kowane przeszukiwanie widma eksperymentalnego pozwoliło przypisać przejścia zbyt słabe

lub położone w zbyt gęstych obszarach, by można je było zidentyfikować w etapie I. Jeśli

udało się przypisać nowe przejścia zawierające rozpatrywany poziom, zostały one dodane do

zbioru wcześniej przypisanych przejść, czyli zbiór treningowy był rozbudowany.

Następnie wykonano drugi krok procedury dedukcji – wyznaczanie poziomów, korzysta-

jąc tym razem z rozszerzonego zbioru przejść (treningowego). Pozwoliło to uzyskać nową

listę poziomów energetycznych, zawierającą aktualnie badany poziom, a także potencjalnie

kolejny lub kolejne. Dzieje się tak, ponieważ nowe przypisania mogą tworzyć nowe połącze-

nia pomiędzy klastrami w metodzie kombinacji różnic (zob. rozdział VI.B), co umożliwia

wyznaczenie więcej niż jednego nowego poziomu.

Trzeci krok polegał na generowaniu widma z energii eksperymentalnych w celu potwier-

dzenia ostatniego przypisania. W niektórych przypadkach obserwowano odtwarzanie się do-

datkowych przejść, które miały swoje odpowiedniki w widmie doświadczalnym, co stanowiło

potwierdzenie poprawności nowych przypisań.

W ten sposób kończył się jeden pełny cykl etapu II procedury wyznaczania eksperymental-

nych poziomów energetycznych. Potem rozpoczynano kolejną iterację procedury, zaczynając

od pierwszego kroku etapu II i wybierając kolejny poziom energetyczny, dla którego nie zna-

leziono jeszcze wartości eksperymentalnej. Zgodnie z opisaną strategią przypisano 41 nowych

przejść, które zaznaczone są rombami w dolnych wierszach paneli na rys. 24. Przykładowo,

pięć takich przejść znajduje się w zakresie energetycznym (−1, 0) cm−1. W tabeli XV przed-

stawiono liczbę eksperymentalnych poziomów energetycznych uzyskanych w każdej kategorii

oraz porównano je z przewidywaniami teoretycznymi.
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Tabela XV: Liczba stanów oscylacyjno-rotacyjnych kompleksu ortoH2–CO, zarówno zwią-

zanych (b) i rezonansowych (r), dla różnych wartości v2 i parzystości p.

(v2, p) teoria eksperyment

b r b+r b r b+r

(0,−) 49 17 66 44 12 56

(1,−) 49 17 66 44 10 54

(0,+) 52 13 65 46 10 56

(1,+) 52 13 65 44 11 55

(0,−) + (0,+) 101 30 131 90 22 112

(1,−) + (1,+) 101 30 131 88 21 109

Po wykonaniu etapu II, liczba eksperymentalnych poziomów energetycznych wzrosła z 82

(83) do 112 (109) dla przypadków v2 = 0 (v2 = 1), co odpowiada 84% wszystkich możliwych

poziomów. W ostatniej iteracji procedury dedukcji wykorzystano 250 przypisanych przejść

(209+41). Tylko jedno przejście, (3, e, 6, 1)← (2, e, 11, 0), które w widmie eksperymentalnym

odpowiada jednej z trzech nakrywających się linii tworzących silny pik w eksperymencie, nie

było wykorzystane w procesie dedukcji. W efekcie nie zostały wyznaczone energie poziomów

(3, e, 6, 1) i (2, e, 11, 0). Listę 250 przypisanych przejść zestawiono w tabeli S4 w pracy [23].

Energie przejść wygenerowane z poziomów energetycznych dla 249 przejść ze zbioru tre-

ningowego można porównać z bezpośrednio przypisanymi wartościami. Największa różnica

między odpowiadającymi sobie energiami wynosi 0.0015 cm−1, a RMSE jest równy 0.0004

cm−1. Zatem dokładność wygenerowanego widma jest praktycznie taka sama jak uzyskana

w etapie I.

Można zapytać, czy pozostałe 16% eksperymentalnych poziomów energetycznych da się

wyznaczyć z analizowanego eksperymentu. Odpowiedź brzmi nie. Stan (4, f, 5, 0) omówiony

został jako przykład w pracy [23], tutaj przedstawiam inny przypadek. Zgodnie z przewi-

dywaniami teoretycznymi przedstawionymi w tabeli S6 z [23], stan rezonansowy (2, f, 10, 0)

występuje w trzech przejściach: (2, e, 11, 1) ← (2, f, 10, 0), (1, f, 7, 1) ← (2, f, 10, 0)

oraz (1, f, 8, 1) ← (2, f, 10, 0), o energiach równych odpowiednio −6.7900, −5.2033 i

−4.0037 cm−1, oraz względnych intensywnościach wynoszących odpowiednio 0.012, 0.024 i

0.024. Jak widać na rys. 24, pierwsze z tych przejść jest bardzo słabe i leży blisko innych,

znacznie silniejszych linii oraz tła o istotnej intensywności. W związku z tym nie da się ziden-
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tyfikować eksperymentalnego odpowiednika dla przejścia (2, e, 11, 1) ← (2, f, 10, 0). Drugie

przejście leży w obszarze zakrytym przez silną linię izotopologu monomeru CO w okolicach

−5.2 cm−1. Trzecie natomiast znajduje się w obszarze niezarejestrowanym w eksperymencie.

Zatem żadne z tych trzech przejść nie może być zlokalizowane w analizowanym przez nas

widmie eksperymentalnym i wykorzystane do wyznaczenia energii stanu (2, f, 10, 0).

Z powyższych rozważań wynika, że informacja o teoretycznych energiach przejść o wy-

starczająco dużych intensywnościach może stanowić cenną wskazówkę dla przyszłych eks-

perymentów, wskazując obszary widma, w których należy poszukiwać linii dostarczających

istotnych danych do rozszerzenia zbioru eksperymentalnych poziomów energetycznych.

Oszacowanie niepewności wyznaczonych eksperymentalnych poziomów energetycznych

nie jest trywialne. Choć niepewność eksperymentalnej energii przejść została oszacowana

na 0.0005 cm−1, niektóre przejścia, szczególnie te wynikające z szerokich linii powstałych z

częściowo nakładających się przejść, z pewnością mają większe niepewności, sięgające nawet

0.002 cm−1. W niekorzystnym scenariuszu takie niepewności mogą się kumulować w trakcie

procedury dedukcji. Niemniej jednak doskonała zgodność między wygenerowanymi energia-

mi przejść a pozycjami pików w widmie eksperymentalnym wskazuje, że wartość 0.002 cm−1

(zaokrąglona największa różnica 0.0015 cm−1 między wygenerowanymi i zmierzonymi przej-

ściami) jest rozsądnym oszacowaniem dokładności dla zdecydowanej większości uzyskanych

tutaj eksperymentalnych poziomów energetycznych. Niektóre poziomy oscylacyjno-rotacyjne

występują tylko w jednym przejściu i mogą nie generować żadnego innego przejścia w widmie

odtworzonym. Poziomy takie należy traktować jako obarczone nieco większą niepewnością i

są one oznaczone symbolem † w tabelach XII i XIII.

Na zakończenie naszej procedury wygenerowaliśmy wszystkie możliwe energie przejść na

podstawie końcowego zbioru eksperymentalnych poziomów energetycznych. Choć krok ten

nie zwiększa liczby wyznaczonych poziomów energetycznych, zwiększa on liczbę przypisanych

przejść eksperymentalnych. Liczba przejść wygenerowanych po etapie II wynosi 833, z czego

249 odpowiada przejściom ze zbioru treningowego. Spośród pozostałych 584 przejść, 375 było

już znanych z generowania po etapie I, a 69 z nich zostało powiązanych z pikami w widmie

eksperymentalnym i pomogło w przypisaniu nowych linii. Po etapie II udało się przypisać

dodatkowe 35 linii. Pełną listę 104 (69+35) nowo przypisanych przejść przedstawiono w

tabeli S5 w pracy [23].

Jako zwieńczenie dyskusji szczegółów algorytmu wyznaczania oscylacyjno-rotacyjnych

poziomów energetycznych dla kompleksu ortoH2–CO z widm w podczerwieni, można po-
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traktować rys. 36, na którym zaprezentowano otrzymany układ poziomów, teoretycznych

i eksperymentalnych, dla v2 = 0. W większości przypadków różnice pomiędzy odpowied-

nimi wartościami teoretycznymi i eksperymentalnymi są praktycznie niezauważalne w skali

rysunku.
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Rysunek 36: Teoretyczne i eksperymentalne oscylacyjno-rotacyjne poziomy energetyczne

dla ortoH2–CO (v2 = 0). Poziomy teoretyczne otrzymane z obliczeń 6D (oznaczone na niebie-

sko) podane są względem stanu o najniższej energii, (0, e, 1, 0), wynoszącej 3359.3249 cm−1.

Poziomy eksperymentalne wyznaczone w obecnej pracy (na czerwono) podane są względem

energii eksperymentalnych stanów (1, e, 1, 0) (dla stanów o symetrii p = −1) oraz (1, f, 1, 0)

(dla stanów o symetrii p = 1). Zielona linia ciągła oznacza granicę dysocjacji, stany położone

powyżej są rezonansami.
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VII. Analiza widma kompleksu ortoD2–CO

Sukces odniesiony w interpretacji widma ortoH2–CO zmotywował nas do przyjrzenia się

kompleksowi ortoD2–CO. Jego widmo zostało zmierzone w podczerwieni oraz dość dokładnie

zinterpretowane w roku 2000 [18], jednak dane teoretyczne na jego temat są dość ograniczone.

Pierwsze wyniki teoretyczne pojawiły się nieco wcześniej, w roku 1998, w pracy [50], w której

zaprezentowano poziomy energetyczne dla ortoD2–CO obliczone z najdokładniejszego wtedy

potencjału energii oddziaływania. Otrzymano energię dysocjacji 30.756 cm−1 dla przypadku,

gdy obie cząsteczki są w podstawowych stanach wibracyjnych. W obecnych obliczeniach,

wykonanych z powierzchnią uśrednioną po drganiach cząsteczek, które przedstawię poniżej,

otrzymaliśmy energię dysocjacji równą 25.5279 cm−1. Z dokładności używanego potencjału

oraz precyzji obliczeń oscylacyjno-rotacyjnych dla ortoH2–CO można wnioskować, że nasza

aktualna energia dysocjacji jest wyznaczona z dokładnością około 0.2 cm−1. Widać stąd, jak

dużym błędem obarczona była wartość otrzymana w 1998 roku, różna od obecnej o około 5

cm−1. Różnica ta ma znaczenie symboliczne, bo pokazuje jak ogromną poprawę dokładności

obliczania właściwości spektroskopowych zanotowaliśmy na przestrzeni ostatnich lat.

W roku 2017 wykonano kolejne obliczenia oscylacyjno-rotacyjne dla ortoD2–CO [59]. Tym

razem użyto znacznie lepszej powierzchni energii oddziaływania niż w 1998 roku, analogicznej

do tej, która była użyta w badaniach H2–CO z pracy [15], ale przygotowanej specjalnie dla

izotopologu D2–CO. Jednak kompleks ortoD2–CO nie był wtedy poddany dokładnej analizie

teoretycznej pod katem stanów związanych, a jedynie wykonano dla niego podstawowe testy

numeryczne w ramach sprawdzania jakości powierzchni energii oddziaływania potrzebnej do

obliczeń rozproszeniowych.

W chwili, gdy zajęliśmy się problemem ortoD2–CO, brakowało więc kompletnych wyni-

ków teoretycznych. Postanowiliśmy uzupełnić tę lukę: znaleźć poziomy energetyczne, zarówno

stanów związanych jak i kwazizwiązanych, oraz sprawdzić poprawność wyznaczenia energii

doświadczalnych w pracy [18]. Z obliczeń można otrzymać wszystkie poziomy energetyczne

i niskoenergetyczne rezonanse, które mogą mieć znaczenie w widmie, a na tej podstawie

stwierdzić, na ile kompletna jest lista poziomów energetycznych z pracy [18]. W przypadku

braków, można ponownie przeanalizować widma doświadczalne i porównując je z widmami

teoretycznymi zidentyfikować przejścia umożliwiające wyznaczenie energii pominiętych po-

ziomów. Obecnie dysponujemy powierzchnią pełnowymiarową dla kompleksu H2–CO, która

umożliwia obliczenia dynamiczne dla dowolnych izotopologów tego kompleksu, zarówno na
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poziomie pełnowymiarowym 6D, jak też w przybliżeniu sztywnych rotatorów 4D. W roz-

dziale IV.E zaprezentowałem wyniki obliczeń rozproszeniowych dla kompleksu ortoD2–CO,

otrzymane z potencjału uśrednionego po drganiach kompleksu. Parametry potrzebne do

konstrukcji takiej powierzchni, a w zasadzie dwóch, dla dwóch stanów oscylacyjnych CO,

v2 = 0 lub 1, oraz oscylacyjnego stanu podstawowego D2 znajdują się w rozdz. II.E tab. I.

Potencjały te wykorzystaliśmy wcześniej do obliczeń stanów związanych dla tego kompleksu

i stanowiły część pracy doktorskiej koleżanki z grupy, Eweliny Grabowskiej [28]. Parametry

tych obliczeń dobrane zostały tak, aby błąd obliczeń dynamicznych nie przekraczał 0.0001

cm−1, czyli był zaniedbywalny w stosunku do błędów wynikających z niedoskonałości po-

wierzchni energii oddziaływania.

VII.A. Wyniki obliczeń oscylacyjno-rotacyjnych

W tabeli XVI (str. 138) zaprezentowano wartości energii oscylacyjno-rotacyjnych dla kom-

pleksu ortoD2–CO, zarówno teoretycznych, jak i doświadczalnych, otrzymanych w pracy [18]

oraz obecnie. Energie teoretyczne Ev2theo, v2 = 0, 1, były wcześniej podane w pracy [28]. Ener-

gie rezonansów zostały obliczone w ramach obecnej pracy i zostały zaczerpnięte z tabeli VI.

Okazało się, że jest 88 stanów związanych dla każdego z przypadków v2 = 0 i 1 (tabela XVII,

str. 142). Kwalifikując stany jako związane uwzględniliśmy fakt, że granica dysocjacji dla

stanów o parzystości spektroskopowej f jest wyższa niż dla stanów o parzystości e o 3.845

(3.810) cm−1 dla v2 = 0 (v2 = 1). Z tabeli VI wiemy, że znalezione rezonanse mają bardzo

różne szerokości. W związku z tym w tabeli XVI uwzględniliśmy tylko te z nich, dla których

przejścia, w które są zaangażowane, mogłyby być widoczne w widmach doświadczalnych. Na-

sze obliczenia dostarczają też informację o energii dysocjacji, która wynosi −25.5279 cm−1

(−25.7212 cm−1) dla v2 = 0 (v2 = 1). Wielkość ta jest dość trudna do oszacowania bezpośred-

nio z eksperymentu, bo wiele rezonansów jest tak wąskich, że linie widmowe odpowiadające

przejściom, które zachodzą z takich stanów albo na takie stany, nie wykazują poszerzenia w

porównaniu do linii dla przejść pomiędzy dwoma stanami związanymi. W pracy doświad-

czalnej [18], energia dysocjacji została bardzo mało precyzyjnie oszacowana na 30 cm−1.

Nie ulega wątpliwości, że otrzymane przez nas wartości tej wielkości są znacznie bardziej

dokładne.

Duża część eksperymentalnych poziomów energetycznych dla ortoD2–CO została wyzna-
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czona w pracy [18]. Otrzymane tam 82 (83) stany dla v2 = 0 (v2 = 1), w tym odpowiednio

77 (77) związane, porównaliśmy z obliczonymi przez nas wartościami. Zgodność była bar-

dzo dobra, różnice były nie większe od 0.0142 cm−1 dla wszystkich stanów poza jednym.

Tym wyjątkiem był stan (J, P, nJ,P , v2) = (0, e, 3, 0), dla którego energia obliczona wynosiła

14.0011 cm−1, a eksperymentalna 14.0388 cm−1. Różnica tych energii, 0.0377 cm−1, była

znacznie większa niż rozbieżności dla innych stanów. W pracy [18] udało się zidentyfikować

tylko jedno przejście angażujące stan (0, e, 3, 0) i z niego wyznaczono energię tego stanu.

Ponieważ nie mogła zostać ona potwierdzona w żadnym innym przejściu, więc jego energia

została określona w [18] jako „mniej pewna”. Przeanalizowaliśmy ponownie dostępne dane i

skorygowaliśmy wartość eksperymentalną na 14.0077 cm−1. Taką wartość umieściliśmy w ta-

beli XVI. Pomimo tej korekty, w dalszych rozważaniach będziemy nadal zaliczać ten stan do

grupy wyznaczonych w pracy [18]. Sprawdziliśmy również poprawność innych wyznaczonych

w [18] stanów. Jeszcze w jednym przypadku, również z kategorii „mniej pewne” z pracy [18],

dokonaliśmy pewnej korekty. Energia stanu (2, e, 6, 1) została zmieniona z 17.7902 cm−1 na

17.7884 cm−1, więc różnica jest bardzo niewielka w porównaniu z tą opisywaną powyżej. Mi-

mo tej zmiany, również energię stanu (2, e, 6, 1) będziemy dalej traktować jako wyznaczoną w

pracy [18]. Należy jednak podkreślić, że poza dwoma wymienionymi przypadkami, pozostałe

energie „mniej pewne” z pracy [18] zostały potwierdzone w naszych rozważaniach, podobnie

zresztą jak te, które nie należały do tej kategorii. Wartości RMSE obliczonych poziomów

energetycznych w porównaniu z eksperymentalnymi [18] wynoszą odpowiednio 0.0064 cm−1

i 0.0068 cm−1 dla v2 = 0 i v2 = 1. Największa rozbieżność dla przypadku v2 = 0 występuje

dla stanu (10, e, 2, 0) i wynosi 0.0153 cm−1, natomiast dla przypadku v2 = 1 największa

różnica to 0.0168 cm−1 dla stanu (10, e, 1, 1).

Dane teoretyczne dostarczają informacji o tym, które stany są związane. Z drugiej stro-

ny, energie obliczone i wyznaczone z eksperymentu są bardzo zbliżone do siebie. Dzięki te-

mu możemy jednoznacznie powiedzieć, które poziomy eksperymentalne odpowiadają stanom

związanym. Okazuje się, że 77 poziomów z 82 (83) wyznaczonych w pracy [18] dla v2 = 0

(v2 = 1) to stany związane. Takie definitywne stwierdzenie byłoby praktycznie niemożliwe

bez wsparcia teoretycznego. Z obliczeń wiemy, że dla każdego przypadku v2 mamy 88 stanów

związanych, więc pozostaje do wyznaczenia 11 energii dla stanów związanych dla każdego

v2. Wiemy też, że tylko 5 (6) energii stanów kwazizwiązanych, dla v2 = 0 (v2 = 1), zo-

stało wyznaczonych w [18]. Analiza wyników obliczeń rozproszeniowych pokazuje, że liczba

rezonansów, których śladów możemy spodziewać się w widmie jest znacznie większa. W ta-
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beli XVI uwzględniliśmy 49 rezonansów dla każdego przypadku v2, więc jeśli nawet niektóre

z nich są w praktyce zbyt szerokie, aby brać udział w przejściach widocznych w widmie, to i

tak zostaje wiele takich, których obecność powinna być potwierdzona, a energie wyznaczone.

VII.B. Przygotowanie widma teoretycznego

Doświadczenie zdobyte przy analizie widma dla ortoH2–CO postanowiliśmy wykorzystać

do ponownej analizy widma kompleksu ortoD2–CO z pracy [18]. Podobnie jak w przypadku

ortoH2–CO, w eksperymencie badano przejścia w kompleksie towarzyszące przejściu v2=1←0

w cząsteczce CO, więc zachodzące w podczerwieni. W pracy [18] przedstawiono fragmenty

zmierzonych widm dla tego kompleksu, ale przede wszystkim listę energii przejść, dla których

zaproponowano przypisania określające, pomiędzy którymi stanami zachodzi dane przejście.

Na podstawie tej listy wyznaczono potem poziomy energetyczne. Warto w tym miejscu po-

wiedzieć, bez wdawania się w szczegóły, że widma eksperymentalne otrzymane zostały z

wykorzystaniem dwóch technik. Pierwsza z nich wykorzystywała spektroskopię FTIR (Fo-

urier Transform Infrared Spectroscopy) i pomiary zostały wykonane w zakresie (około) od

2131.4 cm−1 do 2154.3 cm−1. Niestety, podobnie jak dla ortoH2–CO, w zakresie tym po-

jawiały się fragmenty, w których nie można było otrzymać informacji o kompleksie, gdyż

występujące tam sygnały pochodzące od przejść w kompleksie były przykryte przez sygnały

pochodzące od znacznie mocniejszych przejść oscylacyjno-rotacyjnych dla cząsteczki CO. Tu-

taj w sukurs przyszła inna technika, oparta na laserze diodowym, która pozwoliła zmierzyć

wiele linii pochodzących od kompleksu w otoczeniu przejść w cząsteczce, czyli uzupełniają-

cych widmo uzyskane z FTIR. Niestety, te pomiary nie zapewniły tak precyzyjnej informacji

o intensywności przejść, jak widma uzyskane pierwszą techniką. Oczywiście, dostęp do jak

najpełniejszych danych eksperymentalnych miał kluczowe znaczenie dla wyznaczenia bra-

kujących eksperymentalnych poziomów energetycznych, więc skontaktowaliśmy się z A. R.

W. McKellarem z prośbą o takie dane. Otrzymaliśmy widmo FTIR w postaci „surowej” [60],

które prezentujemy na rysunku 37 (str. 149).

Widmo eksperymentalne zostało zmierzone w przedziale temperatur 47-49 K [18]. War-

tość temperatury ma oczywiście wpływ na widmo teoretyczne, ale taki niewielki rozrzut

temperatur nie ma dla nas większego znaczenia. We wcześniejszej części pracy (VI.A) po-

kazaliśmy dla ortoH2–CO, że intensywności przejść obliczone dla temperatury 47 K różnią

się od tych obliczonych dla 49 K o nie więcej niż 4%, a takie różnice nie są ważne w naszej
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analizie widma.

Ponadto, intensywności linii eksperymentalnych posiadają także dość dużą niepewność

w związku z obecnością względnie silnego tła. Zatem, bez zauważalnej utraty dokładności

naszych późniejszych porównań z widmem eksperymentalnym, w dalszej analizie możemy

posługiwać się widmem teoretycznym wygenerowanym dla temperatury 49 K. Widmo ekspe-

rymentalne zmierzono w okolicach przejścia podstawowego v2 = 1← 0 w CO, więc aby uzy-

skać widmo teoretyczne do porównań, musieliśmy wykonać obliczenia poziomów oscylacyjno-

rotacyjnych dla ortoD2–CO z CO w dwóch stanach oscylacyjnych: v2 = 0 i v2 = 1. Z tych

obliczeń, wykonanych programem BOUND [46], pozyskaliśmy również funkcje falowe. Bardzo

precyzyjne energie odpowiadające rezonansom otrzymaliśmy z obliczeń rozproszeniowych,

ale odpowiadające im funkcje falowe otrzymaliśmy korzystając z programu BOUND. Dzięki te-

mu można było obliczyć elementy macierzowe potrzebne do wyznaczenia intensywności. W

przypadku szerokich rezonansów ich identyfikacja, wśród stanów generowanych przez BOUND,

wymagała niekiedy porównania funkcji falowej otrzymanej z tych obliczeń z funkcją falową

z obliczeń rozproszeniowych.

Podobnie jak to miało miejsce dla kompleksu ortoH2–CO, również dla ortoD2–CO infor-

macja o intensywnościach przejść ma kluczowe znaczenie w interpretacji widma i znajdowa-

niu brakujących poziomów energetycznych. Znając funkcje falowe, obliczaliśmy intensywno-

ści przejść korzystając ze wzoru (55), w dokładnie taki sam sposób, i w oparciu o takie same

założenia jak dla opisanego wcześniej w rozdziale VI.A przypadku ortoH2–CO. Najwięk-

szą intensywność ma przejście (8, e, 3, 1) ← (7, e, 2, 0) o energii 7.5803 cm−1. Interesują nas

intensywności względne, więc przyjęliśmy, że to przejście ma intensywność 1. Założyliśmy,

że w widmie doświadczalnym nie będzie można zauważyć pików o intensywności względnej

mniejszej od 0.01, więc w dalszych rozważaniach pozostawiliśmy tylko przejścia teoretyczne

o intensywnościach nie mniejszych niż 0.01.

W efekcie dla temperatury 49 K otrzymaliśmy 716 przejść angażujących stany związa-

ne i rezonanse podane w tabeli XVI. Ich położenia zaznaczone są też w dolnych paskach

każdego panelu z rys. 37 (str. 149). Dla 366 spośród tych energii przejść udało nam się

znaleźć ich eksperymentalne odpowiedniki, które zostały wykorzystane do wyznaczania po-

ziomów energetycznych, co będzie dyskutowane w szczegółach w rozdziale VII.C. Lista tych

przejść znajduje się w tabeli XVIII (str. 143), natomiast w najniższych paskach w pane-

lach z rys. 37 oznaczone są przez strzałki. W tabeli XVIII znajduje się też jedno przejście,

(0, e, 1, 1)← (1, e, 1, 0) o energii teoretycznej −0.8032 cm−1, którego intensywność jest mniej-
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sza niż ustalony przez nas próg i wynosi 0.007. Dołączyliśmy to przejście, ponieważ było ono

wyznaczone w pracy [18].

Należy również zauważyć, że w tabeli XVIII nie ma wspomnianego powyżej przejścia

o największej intensywności. Znajduje się ono w obszarze przesłoniętym przez silną linię

pochodzącą od przejścia oscylacyjno-rotacyjnego w cząsteczce CO i nie zostało zmierzone

żadną z dwóch stosowanych technik. Teoretyczne energie przejść w tabeli XVIII i na rysun-

ku 37 zawarte są w przedziale pomiędzy −11.9 cm−1 i 11.8 cm−1, ale trzeba pamiętać, że

aby je powiązać z eksperymentalnymi energiami przejść należy dodać do nich wartość energii

oscylacyjnego przejścia podstawowego w izolowanej cząsteczce CO, która wynosi 2143.2711

cm−1.

Aby widma teoretyczne były możliwie najbardziej zbliżone do eksperymentalnych i umoż-

liwiały ich bezpośrednie porównanie, należy przyjąć odpowiedni profil linii, modelujący jej

kształt uwzględniając warunki panujące w eksperymencie. W widmie ortoD2–CO jest znacz-

nie mniej linii niż w rozważanym wcześniej widmie ortoH2–CO, więc nie pojawiła się koniecz-

ność analizy linii widmowych składających się z dwóch lub więcej sygnałów od pojedynczych

przejść jak te opisane w rozdziale VI.A. W związku z tym zastosowaliśmy prostszy model linii

z użyciem krzywej Lorentza. Zdefiniowaliśmy ją przyjmując parametr γ = 0.0045. Warto pod-

kreślić, że stosujemy ten sam parametr γ dla wszystkich przejść, nawet gdy w takie przejście

zaangażowany jest rezonans. Jest to dobre przybliżenie dla wąskich rezonansów, ale dla rezo-

nansów szerokich widać jego niedoskonałość. Na przykład, w przejściu (6, e, 4, 1)← (5, e, 7, 0)

o energii teoretycznej −5.8013 cm−1, stan (5, e, 7, 0) jest rezonansem o dość dużej szerokości

1.153 · 10−2 cm−1 (tabela VI). Na rysunku 37 widać, że odpowiadająca temu przejściu linia

eksperymentalna o bardzo zbliżonej energii −5.8021 cm−1 jest wyraźnie poszerzona.

Istnieje jeszcze jeden problem związany z obliczaniem intensywności przejść angażujących

stany rezonansowe, który nie jest bezpośrednio związany z samym kształtem linii. Funkcja fa-

lowa opisująca taki stan nie jest ściśle normalizowalna. W praktyce przyjmujemy jej postać

uzyskaną z obliczeń w przedziale o określonej długości i normalizujemy w jego granicach.

Oczywiście tak zdefiniowana funkcja falowa zależy od długości przedziału, a tym samym

także obliczone na jej podstawie elementy macierzowe są funkcją tego parametru. Niemniej

jednak, dla wąskich rezonansów obliczone intensywności przejść, w które są one zaanga-

żowane, pozostają w zgodzie z wynikami eksperymentalnymi w takim samym stopniu, jak

w przypadku przejść pomiędzy stanami związanymi. Na przykład intensywność przejścia

pomiędzy dwoma stanami kwazizwiązanymi (9, f, 1, 1) ← (9, e, 2, 0), o energii teoretycz-
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nej 3.4372 cm−1, świetnie zgadza się z eksperymentalnym ponieważ rezonans (9, e, 2, 0) ma

szerokość tylko 3.366 · 10−5 cm−1, a rezonans (9, f, 1, 1) jest jeszcze węższy, jego szerokość

oszacowaliśmy na mniejszą niż 10−12 cm−1, tabela VI.

Na drugim biegunie są przejścia, dla których przynajmniej jeden rezonans jest bar-

dzo szeroki. Przykładem może być przejście teoretyczne (3, f, 7, 1) ← (2, f, 4, 0) o energii

9.3849 cm−1. Stan (2, f, 4, 0) jest związany, ale (3, f, 7, 1) jest bardzo szerokim rezonansem,

Γ = 1.163 · 10−1 cm−1, i dlatego nie ma swojego odpowiednika w widmie eksperymentalnym.

Takich przejść angażujących bardzo szerokie rezonanse, które nie mają eksperymentalnych

odpowiedników jest dość dużo. Pomimo tego, że nieco „zaśmiecają” rysunki, pozostawiliśmy

je, ponieważ gdyby został kiedyś przeprowadzony eksperyment o lepszym stosunku sygnału

do szumu, to być może część z tych przejść udałoby się zaobserwować jako bardzo rozmyte

piki.

Teoretyczne intensywności linii są względne, ale również intensywności otrzymane z do-

świadczenia są względne. Aby móc je porównać, musimy wyznaczyć jedno przejście, które

posłuży do zdefiniowania relacji pomiędzy intensywnościami z widm teoretycznych i doświad-

czalnych. Naturalnym wyborem byłoby przejście teoretyczne o największej intensywności,

ale już wiemy, że nie ma ono swojego odpowiednika w widmie zmierzonym. Musieliśmy więc

wybrać inne przejście, najlepiej takie, które w widmie eksperymentalnym jest reprezento-

wane przez pojedynczą linię niezaburzoną przez inne przejścia albo znaczące sygnały tła.

Ostatecznie wybraliśmy do tego celu przejście (5, f, 3, 1) ← (5, e, 4, 0), któremu odpowiada

energia teoretyczna 6.9313 cm−1, a intensywność względna jest równa 0.43. Energia ekspe-

rymentalna tego przejścia to 6.9291 cm−1, a intensywność została przeskalowana tak, aby

po odjęciu tła również była równa 0.43. Na rysunku 37 znajduje się zestawienie widma teo-

retycznego z doświadczalnym. Porównując je warto zwrócić uwagę na skalę na osi poziomej,

która wynosi tylko 1 cm−1 na panel, dzięki czemu można było zaobserwować nawet niewielkie

różnice pomiędzy położeniem odpowiadających sobie linii teoretycznych i doświadczalnych.

Na najniższym pasku w każdym panelu pionowe czarne odcinki wskazują położenia przejść

teoretycznych, a ich długość jest proporcjonalna do intensywności względnej. Jeśli przynaj-

mniej jeden ze stanów zaangażowanych w dane przejście jest rezonansem, to czarna linia

jest przerywana. Czerwona krzywa obrazuje widmo otrzymane przy opisanym wcześniej mo-

delowaniu linii. Z kolei krzywa na najwyższym pasku reprezentuje widmo eksperymentalne.

Widać, że w niektórych przedziałach energii stosunek sygnału do tła jest niekorzystny. Aby

ułatwić nieco analizę widma eksperymentalnego narysowaliśmy je jeszcze raz w środkowym
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pasku, ale tym razem względna intensywność została pomniejszona w arbitralny sposób dla

różnych zakresów energii, co miało służyć zredukowaniu tła. Pionowe czarne odcinki w gór-

nych paskach wskazują na energie przejść opisanych w pracy [18], a ich wysokość określa

intensywności doświadczalne podane w tej pracy. Znaczenie innych oznaczeń pojawiających

się na rysunku 37 omówimy sukcesywnie w kolejnym rozdziale.

VII.C. Nowe dane eksperymentalne ze „starych” widm

Po przygotowaniu widm teoretycznych odpowiadających warunkom eksperymentalnym,

przystąpiliśmy do wyznaczenia eksperymentalnych poziomów energetycznych, których bra-

kuje w pracy [18]. Skorzystaliśmy z procedury zastosowanej wcześniej do analizy widm

ortoH2–CO [23], która została dokładnie opisana w rozdziale VI. Składała się ona z dwóch

etapów, z których każdy składał się z trzech kroków. Jednak dla widma ortoD2–CO ma-

my nieco prostszą sytuację, ponieważ wiele poziomów energetycznych zostało już wcześniej

wyznaczonych w pracy [18]. Dlatego pierwszy etap wspomnianego algorytmu mogliśmy ogra-

niczyć tylko do sprawdzenia, czy poziomy energetyczne z pracy [18] zostały poprawnie wy-

znaczone.

Punktem wyjścia do tego sprawdzenia były dwie grupy danych. Po pierwsze, energie

przejść ∆E ′obs z pracy [18], które w tabeli XVIII oznaczone są liczbą I w kolumnie „etap”.

W pracy [18] opisano 291 przejść, ale kilka z nich wyeliminowaliśmy, głównie dlatego, że nie

wyznaczono z nich żadnych poziomów. Pozostawiliśmy do dalszej analizy 286 z nich i to one

oznaczone są I w tabeli XVIII. Po drugie, wykorzystaliśmy energie Ev2expt, v2 = 0, 1, z tabe-

li XVI. Z tych ostatnich energii odtworzyliśmy (wygenerowaliśmy, stąd oznaczenie) energie

przejść według wzoru ∆E ′gen = E1expt − E0expt +∆Eshift, gdzie ∆Eshift to przesunięcie energii

ku czerwieni, które musimy dodać, gdyż energie Ev2expt są określone względem najniższego

poziomu dla każdego v2. Z obliczeń teoretycznych to przesunięcie wynosi −0.1933 cm−1 i

można je otrzymać jako różnicę energii stanów podstawowych (0, e, 1, v2), których energie

są równe -25.7212 cm−1 dla v2 = 1 i -25.5279 cm−1 dla v2 = 0. Do obliczenia ∆E ′gen użyli-

śmy jednak nieco innej wartości ∆Eshift = -0.1968 cm−1, którą otrzymaliśmy minimalizując

metodą najmniejszych kwadratów różnice ∆E ′gen −∆E ′obs dla wszystkich przejść.

Na tym etapie poprawiliśmy wartości dwóch poziomów energetycznych, odpowiadających

stanom (0, e, 3, 0) i (2, e, 6, 1), o czym była mowa w rozdziale VII.A. Warto tutaj podkre-

ślić, że generowaliśmy nie tylko przejścia, które były wcześniej wyznaczone w pracy [18].
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Wzięliśmy listę przejść teoretycznych i wyselekcjonowaliśmy z nich takie, dla których stan

początkowy i końcowy miały wyznaczone energie eksperymentalne. Następnie zamiast ener-

gii teoretycznych podstawiliśmy energie doświadczalne i po dodaniu ∆Eshift otrzymaliśmy

∆E ′gen.

W ten sposób powstała lista 402 przejść, które na rysunku 37 (str. 149) przedstawione są

jako niebieskie pionowe odcinki na środkowych paskach w poszczególnych panelach. Długość

każdego odcinka jest proporcjonalna do intensywności teoretycznej przejścia, które reprezen-

tuje. Wskazywane są one zawsze niebieską strzałką (↑), która zaczyna się w miejscu, gdzie

znajduje się odpowiednie przejście teoretyczne. Część z tych niebieskich odcinków wskazywa-

na jest też przez strzałki czarne (↓), rozpoczynające się na najwyższym pasku. Łączą one 286

energii przejść ∆E ′obs z odpowiednimi energiami ∆E ′gen. Wszystkie strzałki czarne są prak-

tycznie pionowe, co jest efektem bardzo małych różnic ∆Eg-o = ∆E ′gen−∆E ′obs, dla których

RMSE wynosi zaledwie 0.0004 cm−1. Pozostałe 116 przejść stanowi bardzo cenne narzędzie

diagnostyczne w badaniu poprawności interpretacji pików eksperymentalnych w [18] oraz

poprawności wyznaczonych tam poziomów energetycznych.

Przeanalizujmy dwa takie przejścia. Pierwsze z nich, (1, e, 2, 1) ← (2, e, 5, 0), ma energię

teoretyczną −10.5926 cm−1, ale jej odpowiednik z odtworzenia to −10.5915 cm−1. Widzimy,

że ten odtworzony pik trafia idealnie w niewielki pik w widmie eksperymentalnym. Drugie

przejście, któremu warto poświęcić uwagę, to (5, f, 2, 1) ← (4, f, 5, 0) o energii teoretycznej

−10.8243 cm−1. Z odtworzenia dostajemy energię −10.8221 cm−1, która świetnie pasuje do

piku eksperymentalnego. Chociaż oba omawiane tu przejścia mają niewielką intensywność,

wartości teoretyczne to odpowiednio 0.015 i 0.023, to nie ma wątpliwości, że odtwarzają z

dużą dokładnością pewne piki eksperymentalne. Jest to potwierdzeniem poprawności wy-

znaczenia eksperymentalnych poziomów energetycznych definiujących dwa rozważane przej-

ścia, ponieważ w czasie wyznaczania tych poziomów dyskutowane przejścia eksperymentalne

nie były wykorzystywane. Przy okazji otrzymujemy nową informację o charakterze dwóch

przejść. Można byłoby uzupełnić o nie listę zinterpretowanych linii doświadczalnych z pra-

cy [18]. Pamiętajmy jednak, że takie linie nie wnoszą informacji, która mogłaby być przy-

datna przy wyznaczaniu nieznanych poziomów energetycznych, ponieważ wszystkie energie

składowe były już wcześniej znane. Niemniej rola każdej odtworzonej linii, której położe-

nie koreluje z jakimś pikiem w widmie jest szalenie ważna. Po pierwsze, pośrednio zostaje

potwierdzona prawidłowość wyznaczonych poziomów energetycznych. Po drugie zaś, elimi-

nujemy niektóre piki z poszukiwania przejść niosących informację o nowych poziomach.
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Po potwierdzeniu, z drobnymi korektami, poprawności wyznaczenia doświadczalnych po-

ziomów energetycznych z pracy [18], przystąpiliśmy do drugiego etapu procedury wyznacza-

nia kolejnych poziomów, opisanej ze szczegółami w rozdziale VI. Przypomnijmy więc tylko,

że jest to procedura iteracyjna, w której w każdej iteracji bierzemy jeden ze stanów, dla

których nie została wyznaczona jeszcze energia doświadczalna. Listę tych stanów znamy z

obliczeń teoretycznych. Z obliczeń znamy też listę wszystkich przejść o intensywnościach

względnych większych niż 0.01. Procedura iteracyjna składa się z trzech kroków.

(1) W pierwszym kroku wybieramy stan, którym zajmujemy się w danej iteracji, poszuku-

jemy przejść, w których bierze udział ten stan. Jeśli znajdujemy takie przejście, w którym

energia partnera jest znana ze wcześniejszych etapów, to pojawia się szansa wyznaczenia

energii interesującego nas stanu. Może być oczywiście kilka przejść spełniających ten wa-

runek. Jeśli nie znajdujemy żadnego, to powracamy na początek procedury iteracyjnej i

rozpoczynamy ją z innym stanem o nieznanej energii.

(2) W drugim kroku, dla wyselekcjonowanych przejść staramy się znaleźć ich eksperymen-

talne odpowiedniki. Jeśli się to uda, to możemy wyznaczyć energię interesującego nas stanu.

(3) W kolejnym kroku odtwarzamy energie przejść w oparciu o listę przejść teoretycznych

oraz wszystkie wyznaczone do tej pory eksperymentalne poziomy energetyczne tak, jak to

robiliśmy wcześniej w etapie I procedury. Porównujemy otrzymane wartości przejść, któ-

re angażują ostatnio wyznaczony poziom energetyczny z widmem eksperymentalnym. Jeśli

nie zaobserwujemy istotnych rozbieżności, to poziom możemy uznać za wyznaczony. W ten

sposób kończymy jedną pętlę w procedurze iteracyjnej i możemy powrócić na jej początek.

Gdy wykonamy krok (3) po wyznaczeniu ostatniego poziomu energetycznego, możemy

dokonać ostatecznego sprawdzenia poprawności wyznaczenia eksperymentalnych poziomów

energetycznych na wszystkich etapach procedury. Jeżeli jakiś poziom jest odtwarzany w wię-

cej niż jednym przejściu, czyli również przynajmniej w jednym innym niż ten, z którego był

wyznaczony, to możemy uznać go za „pewny”, jeśli występuje tylko w jednym, to uznajemy

go za mniej pewny.

W tabeli XVI poziomy „pewne” otrzymane na etapie II oznaczyliśmy literą C, a te z

drugiej literą D. Przejścia, które zostały przypisane na etapie II zostały oznaczone „II” w

tabeli XVIII. Na rysunku 37, teoretyczne odpowiedniki tych przejść oznaczone są rombami

w dolnych paskach poszczególnych paneli. Różowe strzałki (↑) łączą te przejścia teoretyczne

z ich odpowiednikami wygenerowanymi z wyznaczonych energii eksperymentalnych, które są

zaznaczone na środkowym pasku. Z kolei na górnym pasku odpowiadają im czerwone pio-
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nowe kreski, które wskazują eksperymentalne energie przejść użyte do wyznaczania nowych

stanów. Połączone są one czerwonymi (↓) strzałkami z odtworzonymi energiami przejść. Na

najniższych paskach są też różowe strzałki, które nie rozpoczynają się na pikach oznaczo-

nych rombami. Wskazują one przejścia angażujące przynajmniej jeden stan, którego energia

została wyznaczona w tej pracy, ale które nie były bezpośrednio wykorzystane do wyzna-

czenia nowych poziomów. Piki wskazywane przez nie w widmie eksperymentalnym stanowią

potwierdzenie poprawności ich wyznaczenia. Na najwyższych paskach paneli znajdują się też

zielone kreski, które wskazują na energie przejść, które zostały wymienione w pracy [18], ale

nie zostały tam zinterpretowane. W obecnej pracy udało nam się rozszyfrować pochodzenie

wszystkich tych przejść, co stanowi również pewien sukces naszych rozważań.

Ujmując rzecz statystycznie, wartość RMSE dla różnic energii przejść ∆Eg-o dla wszyst-

kich przejść z tabeli wynosi 0.0004 cm−1, czyli jest równa RMSE, które wcześniej obliczyliśmy

tylko dla przejść z pracy [18]. Pokazuje to, że nowe poziomy zostały wyznaczone z podobną

dokładnością jak te wcześniej znane. Na rysunku 38 (str. 156) przedstawiono zestawienie

poziomów teoretycznych i doświadczalnych z pracy [18] oraz z niniejszej pracy. Widać, że

wówczas udało się wyznaczyć głównie stany związane, oznaczone przez czarne kreski poniżej

zielonej linii ciągłej (przerywanej) dla parzystości spektroskopowej e (f). Mimo zidentyfiko-

wania przeważającej ich liczby, w widmie pozostawało wiele obszarów niezinterpretowanych.

Kluczowa okazała się szczegółowa analiza obejmująca także stany kwazizwiązane. Ich po-

prawny opis jakościowy umożliwił znacznie pełniejsze wyjaśnienie widma i uzyskanie spój-

nego obrazu poziomów oscylacyjno-rotacyjnych kompleksu.

W tabeli XVII (str. 142) znajduje się podsumowanie naszych działań prowadzących do

wyznaczenia nieznanych wcześniej poziomów energetycznych. Znaleźliśmy wszystkie braku-

jące energie stanów związanych i 23 (18) energie rezonansów dla przypadku v2 = 0 (v2 = 1).

Nieznane pozostają nadal energie 21 rezonansów dla v2 = 0 i 25 dla v2 = 1.

Aby lepiej zrozumieć charakter stanów kwazizwiązanych, których nie udało się wyzna-

czyć, przygotowaliśmy rysunek 39 (str. 156). Przedstawia on, podobnie jak rysunek 17 z

rozdziału IV.F, szerokości rezonansów ortoD2–CO, ale dodatkowo wskazuje stany niewyzna-

czone z eksperymentu. Wszystkie z 21 brakujących rezonansów charakteryzują się szeroko-

ścią większą niż 10−2 cm−1. Istnieje prawdopodobieństwo, że liczba niewyznaczonych stanów

jest zawyżona, ponieważ przejścia z udziałem bardzo szerokich rezonansów mogą być nie-

widoczne w widmie. W takiej sytuacji wyznaczenie ich energii na podstawie analizowanego

eksperymentu może nie być możliwe.
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Tabela XVI: Porównanie energii oscylacyjno-rotacyjnych otrzymanych dla ortoD2–CO z

obliczeń, Ev2theo, oraz z eksperymentu, Ev2expt, dla dwóch stanów oscylacyjnych cząsteczki CO:

podstawowego (v2 = 0) i pierwszego wzbudzonego (v2 = 1). Energie Ev2theo podane są wzglę-

dem energii stanów podstawowych wynoszących −25.5279 cm−1 i −25.7212 cm−1, odpo-

wiednio dla v2 = 0 i 1. Różnice pomiędzy energiami obliczonymi i eksperymentalnymi są

oznaczone jako ∆Ev2t-e = Ev2theo − Ev2expt. Poziomy energetyczne są numerowane z użyciem

ścisłych liczb kwantowych całkowitego momentu pędu J oraz parzystości spektroskopowej

P = e lub f , a także liczby nJ,P , która numeruje kolejne stany (zgodnie z rosnącą energią) w

ramach bloku symetrii JP . Stany rezonansowe oznaczone są gwiazdkami. Kolumny oznaczone

infov2 , gdzie v2 = 0, 1, dostarczają dodatkowej informacji o poszczególnych stanach. Ener-

gie eksperymentalne wyznaczone w pracy [18] oznaczone są przez „A”, z wyjątkiem dwóch

wskazywanych przez „B”, których wartości w tamtej pracy były błędne i zostały poprawione.

Energie eksperymentalne wyznaczone w obecnej pracy są oznaczone przez „C” lub „D”, w

zależności od tego, czy są bardziej czy mniej pewne. Te drugie występują tylko w jednym

zaobserwowanym przejściu, z którego zostały wyznaczone, więc nie zostały potwierdzone w

innych przejściach. Granica dysocjacji dla stanów o parzystości f jest podniesiona, w po-

równaniu ze stanami e, o 3.845 (3.810) cm−1 dla v2 = 0 (v2 = 1). Energie podane są w

cm−1.
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Tabela XVI: Kontynuacja.

J P nJ,P E0expt E0theo ∆E0t-e info0 E1expt E1theo ∆E1t-e info1

0 e 1 0.0000 0.0000 0.0000 A 0.0000 0.0000 0.0000 A

0 e 2 6.9787 6.9808 0.0021 A 6.9519 6.9549 0.0030 A

0 e 3 14.0077 14.0011 −0.0066 B 13.9701 13.9587 −0.0114 A

0 e 4 23.0573 23.0679 0.0106 C 23.1879 23.1941 0.0062 C

0 e 5 24.8396 24.8448 0.0052 C 24.7976 24.8039 0.0063 C

0 e 6∗ 28.8922 28.9560

1 f 1 3.5941 3.5851 −0.0090 A 3.5702 3.5611 −0.0091 A

1 f 2 14.5908 14.5894 −0.0014 A 14.4941 14.4929 −0.0012 A

1 f 3 24.1728 24.1687 −0.0041 C 24.1379 24.1334 −0.0045 C

1 f 4 28.7597 28.7622 0.0025 C 28.7773 28.7825 0.0052 C

1 e 1 0.6093 0.6099 0.0006 A 0.6087 0.6101 0.0014 A

1 e 2 3.4288 3.4195 −0.0093 A 3.4046 3.3954 −0.0092 A

1 e 3 7.6875 7.6892 0.0017 A 7.6614 7.6640 0.0026 A

1 e 4 13.3302 13.3271 −0.0031 A 13.2607 13.2569 −0.0038 A

1 e 5 15.7815 15.7791 −0.0024 A 15.7154 15.7113 −0.0041 A

1 e 6 23.3127 23.3122 −0.0005 C 23.3055 23.3035 −0.0020 C

1 e 7 23.5547 23.5605 0.0058 C 23.6214 23.6270 0.0056 C

1 e 8∗ 25.7369 25.7464

1 e 9∗ 28.1192 28.1330 0.0138 D 28.1636 28.1732 0.0096 D

1 e 10∗ 29.4912 29.7340

2 f 1 4.8481 4.8391 −0.0090 A 4.8253 4.8158 −0.0095 A

2 f 2 11.1007 11.0891 −0.0116 A 11.0117 10.9989 −0.0128 A

2 f 3 16.0317 16.0304 −0.0013 A 15.9376 15.9362 −0.0014 A

2 f 4 24.4875 24.4838 −0.0037 A 24.3832 24.3783 −0.0049 A

2 f 5 26.5885 26.5894 0.0009 C 26.5068 26.5066 −0.0002 C

2 f 6∗ 29.5298 29.6441

2 f 7∗ 33.3073 33.3036 33.2927 −0.0109 D

2 e 1 1.8257 1.8263 0.0006 A 1.8259 1.8269 0.0010 A

2 e 2 4.3721 4.3637 −0.0084 A 4.3493 4.3404 −0.0089 A

2 e 3 9.0788 9.0808 0.0020 A 9.0537 9.0567 0.0030 A

2 e 4 11.0244 11.0123 −0.0121 A 10.9357 10.9232 −0.0125 A

2 e 5 13.7993 13.7947 −0.0046 A 13.7322 13.7263 −0.0059 A

2 e 6 17.8537 17.8507 −0.0030 A 17.7884 17.7848 −0.0036 B

2 e 7 23.1792 23.1772 −0.0020 A 23.0723 23.0690 −0.0033 A

2 e 8 24.1613 24.1710 0.0097 C 24.2897 24.2976 0.0079 C

2 e 9∗ 26.2432 26.1039

2 e 10∗ 27.2163 27.2427

2 e 11∗ 28.5350 28.5453 0.0103 D 28.5901 28.5788 −0.0113 D

2 e 12∗ 37.0626 37.1512

3 f 1 6.7192 6.7110 −0.0082 A 6.6977 6.6891 −0.0086 A

3 f 2 12.5843 12.5731 −0.0112 A 12.4944 12.4829 −0.0115 A

3 f 3 18.1412 18.1390 −0.0022 A 18.0500 18.0480 −0.0020 A

3 f 4 22.5242 22.5124 −0.0118 A 22.3330 22.3203 −0.0127 A

3 f 5 25.7552 25.7521 −0.0031 A 25.6530 25.6488 −0.0042 A

3 f 6 28.2756 28.2792 0.0036 C 28.2487 28.2498 0.0011 C

3 f 7∗ 34.0844 34.0789 −0.0055 C 34.0620
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Tabela XVI: Kontynuacja.

J P nJ,P E0expt E0theo ∆E0t-e info0 E1expt E1theo ∆E1t-e info1

3 e 1 3.6410 3.6425 0.0015 A 3.6415 3.6437 0.0022 A
3 e 2 5.8200 5.8117 −0.0083 A 5.7989 5.7897 -0.0092 A
3 e 3 11.1153 11.1171 0.0018 A 11.0912 11.0931 0.0019 A
3 e 4 12.2544 12.2444 −0.0100 A 12.1703 12.1599 -0.0104 A
3 e 5 15.0960 15.0910 −0.0050 A 15.0282 15.0219 -0.0063 A
3 e 6 20.4141 20.4133 −0.0008 A 20.3563 20.3542 -0.0021 A
3 e 7 22.3832 22.3720 −0.0112 C 22.1986 22.1863 -0.0123 A
3 e 8 23.8351 23.8299 −0.0052 A 23.7079 23.7025 -0.0054 A
3 e 9 25.1808 25.1889 0.0081 C 25.3157 25.3221 0.0064 C
3 e 10∗ 27.7965 27.7963 −0.0002 D 27.7568
3 e 11∗ 28.7085 28.7080 −0.0005 D 28.7441 28.7399 -0.0042 D
3 e 12∗ 29.5414 29.6079

4 f 1 9.1973 9.1894 −0.0079 A 9.1780 9.1694 -0.0086 A
4 f 2 14.6025 14.5932 −0.0093 A 14.5135 14.5035 -0.0100 A
4 f 3 20.8756 20.8740 −0.0016 A 20.7887 20.7871 -0.0016 A
4 f 4 24.1353 24.1253 −0.0100 A 23.9451 23.9344 -0.0107 A
4 f 5 27.7019 27.6991 −0.0028 A 27.6228 27.6180 -0.0048 A
4 f 6∗ 29.9727 29.9776 0.0049 D 29.9955 29.9932 -0.0023 D
4 f 7∗ 35.2766 35.2412
4 f 8∗ 37.8449 37.5297

4 e 1 6.0459 6.0479 0.0020 A 6.0470 6.0499 0.0029 A
4 e 2 7.7868 7.7791 −0.0077 A 7.7678 7.7594 -0.0084 A
4 e 3 13.7043 13.7094 0.0051 A 13.6279 13.6317 0.0038 A
4 e 4 13.8817 13.8705 −0.0112 A 13.8570 13.8469 -0.0101 A
4 e 5 17.2026 17.1965 −0.0061 A 17.1320 17.1251 -0.0069 A
4 e 6 23.3647 23.3657 0.0010 A 23.2882 23.2866 -0.0016 A
4 e 7 23.5316 23.5250 −0.0066 A 23.3991 23.3936 -0.0055 A
4 e 8 25.4650 25.4589 −0.0061 A 25.3228 25.3160 -0.0068 A
4 e 9∗ 26.3743 26.3749 0.0006 D 26.5188
4 e 10∗ 29.0429 29.1131 29.0986 -0.0145 D

5 f 1 12.2648 12.2581 −0.0067 A 12.2480 12.2407 -0.0073 A
5 f 2 17.1646 17.1567 −0.0079 A 17.0766 17.0681 -0.0085 A
5 f 3 24.1952 24.1942 −0.0010 A 24.1143 24.1128 -0.0015 A
5 f 4 26.2065 26.1997 −0.0068 A 26.0178 26.0101 -0.0077 A
5 f 5∗ 30.0448 30.0437 −0.0011 C 30.0375 30.0346 -0.0029 C
5 f 6∗ 36.7037 36.7045 0.0008 D 36.6898

5 e 1 9.0244 9.0280 0.0036 A 9.0267 9.0312 0.0045 A
5 e 2 10.2785 10.2705 −0.0080 A 10.2632 10.2544 -0.0088 A
5 e 3 15.7956 15.7918 −0.0038 A 15.7096 15.7057 -0.0039 A
5 e 4 16.9884 16.9882 −0.0002 A 16.9818 16.9810 -0.0008 A
5 e 5 20.0272 20.0226 −0.0046 A 19.9554 19.9491 -0.0063 A
5 e 6 24.9742 24.9701 −0.0041 A 24.8055 24.8001 -0.0054 A
5 e 7∗ 26.3296 26.3323 0.0027 C 26.3809 26.3827 0.0018 C
5 e 8∗ 27.8212 27.8157 −0.0055 A 27.6844 27.6777 -0.0067 A
5 e 9∗ 30.1707 30.2580

6 f 1 15.9000 15.8942 −0.0058 A 15.8866 15.8804 -0.0062 A
6 f 2 20.2669 20.2611 −0.0058 A 20.1807 20.1741 -0.0066 A
6 f 3 28.0493 28.0500 0.0007 A 27.9776 27.9780 0.0004 A
6 f 4 28.7795 28.7749 −0.0046 A 28.5907 28.5852 -0.0055 A
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Tabela XVI: Kontynuacja – koniec.

J P nJ,P E0expt E0theo ∆E0t-e info0 E1expt E1theo ∆E1t-e info1

6 e 1 12.5580 12.5631 0.0051 A 12.5613 12.5678 0.0065 A

6 e 2 13.2868 13.2791 −0.0077 A 13.2779 13.2681 −0.0098 A

6 e 3 18.2508 18.2481 −0.0027 A 18.1695 18.1669 −0.0026 A

6 e 4 20.7279 20.7286 0.0007 A 20.7243 20.7243 0.0000 A

6 e 5 23.4899 23.4868 −0.0031 A 23.4172 23.4127 −0.0045 A

6 e 6∗ 26.8967 26.8951 −0.0016 A 26.7294 26.7270 −0.0024 A

6 e 7∗ 30.4860 30.4427

7 f 1 20.0707 20.0663 −0.0044 A 20.0631 20.0573 −0.0058 A

7 f 2 23.8987 23.8954 −0.0033 A 23.8154 23.8107 −0.0047 A

7 f 3∗ 31.8217 31.8185 −0.0032 A 31.6535 31.6495 −0.0040 A

7 f 4∗ 32.3957 32.3214 32.3224 0.0010 D

7 e 1 16.6210 16.6269 0.0059 A 16.6197 16.6324 0.0127 A

7 e 2 16.7944 16.7864 −0.0080 A 16.7988 16.7841 −0.0147 A

7 e 3 21.1949 21.1946 −0.0003 A 21.1167 21.1160 −0.0007 A

7 e 4 24.9486 24.9489 0.0003 A 24.9494 24.9493 −0.0001 A

7 e 5∗ 27.5216 27.5208 −0.0008 A 27.4518 27.4501 −0.0017 A

7 e 6∗ 29.3357 29.3360 0.0003 A 29.1717 29.1701 −0.0016 A

8 f 1 24.7353 24.7292 −0.0061 A 24.7321 24.7268 −0.0053 A

8 f 2 28.0423 28.0423 0.0000 A 27.9613 27.9606 −0.0007 A

8 f 3∗ 35.4065 35.2317

8 e 1 20.7659 20.7563 −0.0096 A 20.7694 20.7615 −0.0079 A

8 e 2 21.1785 21.1870 0.0085 A 21.1946 21.1985 0.0039 A

8 e 3 24.6349 24.6379 0.0030 A 24.5590 24.5600 0.0010 A

8 e 4∗ 29.5597 29.5633 0.0036 C 29.5692 29.5694 0.0002 C

8 e 5∗ 32.0207 31.9389

8 e 6∗ 32.3519 32.3508 −0.0011 D 32.2024

9 f 1∗ 29.8150 29.8146 −0.0004 C 29.8276 29.8210 −0.0066 C

9 f 2∗ 32.6734 32.6761 0.0027 C 32.5983 32.5988 0.0005 A

9 f 3∗ 39.5525 39.3659

9 e 1 25.1511 25.1378 −0.0133 A 25.1655 25.1569 −0.0086 C

9 e 2∗ 26.1815 26.1905 0.0090 C 26.1975 26.2069 0.0094 C

9 e 3∗ 28.5707 28.5768 0.0061 C 28.4905 28.4979 0.0074 C

9 e 4∗ 34.4135 34.4181 0.0046 D 34.4058 34.4088 0.0030 D

9 e 5∗ 35.8413 35.7008

9 e 6∗ 37.2519 37.1812

10 f 1∗ 35.2090 35.2067 −0.0023 C 35.2271 35.2255 −0.0016 D

10 f 2∗ 37.7586 37.7640 0.0054 C 37.6844 37.6939 0.0095 D

10 e 1∗ 29.8566 29.8459 −0.0107 C 29.8984 29.8816 −0.0168 C

10 e 2∗ 31.5360 31.5513 0.0153 D 31.5677 31.5771 0.0094 D

10 e 3∗ 32.9927 33.0075 0.0148 D 32.9271

11 e 1∗ 34.7696 34.7548 −0.0148 D 34.8085

11 e 2∗ 37.9181 37.8393
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Tabela XVII: Liczba poziomów oscylacyjno-rotacyjnych dla kompleksu ortoD2–CO okre-
ślona na podstawie tabeli XVI. W wierszu „eksperyment (A+B)” podana jest liczba stanów
wyznaczonych w pracy [18], a w wierszu „eksperyment (C+D)” wyznaczonych w obecnej
pracy (patrz tabela XVI).

v2 = 0 v2 = 1

b r b+r b r b+r

teoria 88 49 137 88 49 137

eksperyment (A+B) 77 5 82 77 6 83

eksperyment (C+D) 11 23 34 11 18 29

eksperyment (razem) 88 28 116 88 24 112
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Tabela XVIII: Lista przejść oscylacyjno-rotacyjnych obliczonych dla ortoD2–CO z potencjału

uśrednionego po drganiach cząsteczek. Energie przejść są zdefiniowane jako ∆Etheo = Ef−Ei, gdzie

energie stanów końcowego (final), Ef , i początkowego (initial), Ei, były obliczone dla cząsteczki CO

znajdującej się, odpowiednio, w stanach v2 = 1 i v2 = 0. Stany oscylacyjno-rotacyjne zaangażowane

w przejścia numerowane są zestawem indeksów (J, P, nJ,P ), będących skrótem od (J, P, nJ,P , v2).

Energie Ei odpowiadają energiom E0theo z tabeli XVI, ale są podane względem energii drgań ze-

rowych nieoddziałujących cząsteczek H2 i CO. Zatem najniższa energia, odpowiadająca stanowi

(0, e, 1, 0), wynosi −25.5279 cm−1, jak podano w tabeli XVI. Analogicznie, energie Ef , odpowiada-

jące energiom E1theo, są podane w taki sposób, że energia najniższego z nich, (0, e, 1, 1), jest równa

−25.7212 cm−1. Względne intensywności przejść, obliczone dla temperatury T = 49 K, są podane w

kolumnie oznaczonej Itheo, a intensywność 1 przypisano najsilniejszej linii odpowiadającej przejściu

(8, e, 3, 1)← (7, e, 2, 0) o energii 7.5803 cm−1. W tabeli podane są tylko przejścia o intensywnościach

nie mniejszych niż 0.01 (poza jednym wyjątkiem opisanym w rozdziale VII) i takie, które udało się

powiązać z eksperymentalnymi odpowiednikami. Litera „b” w kolumnie tf (ti) oznacza, że energia Ef
(Ei) odpowiada stanowi związanemu, a litera „r”, że rezonansowi. Symbol∆E′obs oznacza energię eks-

perymentalną z odjętą energią przejścia podstawowego w izolowanej cząsteczce CO równą 2143.2711

cm−1. Z kolei ∆E′gen oznacza energie przejść obliczone z eksperymentalnych poziomów energetycz-

nych Ev2expt wziętych z tabeli XVI, ∆E′gen = E1expt−E0expt+∆Eshift, gdzie ∆Eshift jest przesunięciem

równym -0.1968 cm−1, wyznaczonym w sposób opisany w rozdziale VII.C. Aby ułatwić śledzenie

różnic energii przejść, podano także wartości ∆Ee-o = ∆E′expt −∆E′obs i ∆Eg-o = ∆E′gen −∆E′obs.
Przejścia opisane w pracy [18] zostały oznaczone I w kolumnie „etap”, natomiast II w tej kolumnie

oznacza, że dane przejście zostało zinterpretowane w obecnej pracy. Energie podane są w cm−1.

final initial Ef Ei ∆Etheo ∆E′gen ∆E′obs ∆Et-o ∆Eg-o Itheo tf ti etap
(5, f , 2) (6, f , 4) −8.6531 3.2470 −11.9001 −11.8997 −11.9000 −0.0001 0.0003 0.471 b b I
(4, f , 2) (5, f , 4) −11.2177 0.6718 −11.8895 −11.8898 −11.8897 0.0002 −0.0001 0.444 b b I
(3, f , 2) (4, f , 4) −13.2383 −1.4026 −11.8357 −11.8377 −11.8377 0.0020 0.0000 0.404 b b I
(6, f , 2) (7, f , 3) −5.5471 6.2906 −11.8377 −11.8378 −11.8377 0.0000 −0.0001 0.455 b r I
(2, f , 2) (3, f , 4) −14.7223 −3.0155 −11.7068 −11.7093 −11.7092 0.0024 −0.0001 0.357 b b I
(3, e, 4) (4, e, 7) −13.5613 −2.0029 −11.5584 −11.5581 −11.5583 −0.0001 0.0002 0.413 b b I
(4, e, 3) (5, e, 6) −12.0895 −0.5578 −11.5317 −11.5431 −11.5435 0.0118 0.0004 0.313 b b I
(3, f , 2) (3, e, 8) −13.2383 −1.6980 −11.5403 −11.5375 −11.5379 −0.0024 0.0004 0.071 b b I
(5, e, 3) (6, e, 6) −10.0155 1.3672 −11.3827 −11.3839 −11.3839 0.0012 0.0000 0.606 b r I
(6, e, 3) (7, e, 6) −7.5543 3.8081 −11.3624 −11.3630 −11.3630 0.0006 0.0000 0.346 b r I
(4, e, 4) (5, e, 6) −11.8743 −0.5578 −11.3165 −11.3140 −11.3136 −0.0029 −0.0004 0.219 b b I
(4, f , 2) (4, e, 8) −11.2177 −0.0690 −11.1487 −11.1483 −11.1484 −0.0003 0.0001 0.143 b b I
(2, e, 5) (2, f , 4) −11.9949 −1.0441 −10.9508 −10.9521 −10.9519 0.0011 −0.0002 0.067 b b I
(5, f , 2) (5, e, 8) −8.6531 2.2878 −10.9409 −10.9414 −10.9415 0.0006 0.0001 0.128 b r I
(3, e, 5) (3, f , 5) −10.6993 0.2242 −10.9235 −10.9238 −10.9238 0.0003 0.0000 0.129 b b I
(7, e, 3) (7, f , 3) −4.6052 6.2906 −10.8958 −10.9018 −10.9019 0.0061 0.0001 0.164 b r I
(4, e, 5) (5, e, 8) −8.5961 2.2878 −10.8839 −10.8860 −10.8859 0.0020 −0.0001 0.185 b r I
(4, e, 5) (3, e, 10) −8.5961 2.2684 −10.8645 −10.8613 −10.8613 −0.0032 0.0000 0.016 b r II
(6, e, 3) (6, f , 4) −7.5543 3.2470 −10.8013 −10.8068 −10.8065 0.0052 −0.0003 0.156 b b I
(4, e, 5) (4, f , 5) −8.5961 2.1712 −10.7673 −10.7667 −10.7667 −0.0006 0.0000 0.167 b b I
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Tabela XVIII: Kontynuacja.

final initial Ef Ei ∆Etheo ∆E′gen ∆E′obs ∆Et-o ∆Eg-o Itheo tf ti etap
(4, e, 3) (4, f , 4) −12.0895 −1.4026 −10.6869 −10.7042 −10.7040 0.0171 −0.0002 0.060 b b I
(5, e, 3) (5, f , 4) −10.0155 0.6718 −10.6873 −10.6937 −10.6938 0.0065 0.0001 0.134 b b I
(3, e, 5) (4, e, 8) −10.6993 −0.0690 −10.6303 −10.6336 −10.6335 0.0032 −0.0001 0.266 b b I
(3, e, 4) (3, f , 4) −13.5613 −3.0155 −10.5458 −10.5507 −10.5507 0.0049 0.0000 0.062 b b I
(4, e, 4) (4, f , 4) −11.8743 −1.4026 −10.4717 −10.4751 −10.4753 0.0036 0.0002 0.043 b b I
(2, e, 5) (3, e, 8) −11.9949 −1.6980 −10.2969 −10.2997 −10.2993 0.0024 −0.0004 0.262 b b I
(5, e, 5) (5, f , 5) −5.7721 4.5158 −10.2879 −10.2862 −10.2856 −0.0023 −0.0006 0.095 b r II
(1, f , 2) (2, f , 4) −11.2283 −1.0441 −10.1842 −10.1902 −10.1903 0.0061 0.0001 0.105 b b I
(1, e, 4) (2, e, 7) −12.4643 −2.3507 −10.1136 −10.1153 −10.1153 0.0017 0.0000 0.203 b b I
(3, f , 2) (3, e, 7) −13.2383 −3.1559 −10.0824 −10.0856 −10.0856 0.0032 0.0000 0.031 b b II
(2, f , 3) (3, f , 5) −9.7850 0.2242 −10.0092 −10.0144 −10.0144 0.0052 0.0000 0.120 b b I
(1, f , 1) (1, e, 4) −22.1601 −12.2008 −9.9593 −9.9568 −9.9568 −0.0025 0.0000 0.055 b b I
(2, f , 4) (3, f , 7) −1.3429 8.5510 −9.8939 −9.8980 −9.8980 0.0041 0.0000 0.075 b r II
(3, f , 3) (4, f , 5) −7.6732 2.1712 −9.8444 −9.8487 −9.8487 0.0043 0.0000 0.111 b b I
(0, e, 3) (1, e, 6) −11.7625 −2.2157 −9.5468 −9.5394 −9.5393 −0.0075 −0.0001 0.040 b b II
(3, f , 1) (2, f , 3) −19.0321 −9.4975 −9.5346 −9.5308 −9.5308 −0.0038 0.0000 0.086 b b I
(2, e, 1) (3, e, 3) −23.8943 −14.4108 −9.4835 −9.4862 −9.4861 0.0026 −0.0001 0.017 b b I
(4, f , 3) (5, f , 5) −4.9341 4.5158 −9.4499 −9.4529 −9.4535 0.0036 0.0006 0.045 b r II
(1, e, 5) (0, e, 5) −10.0099 −0.6831 −9.3268 −9.3210 −9.3210 −0.0058 0.0000 0.033 b b II
(4, f , 5) (5, f , 6) 1.8968 11.1766 −9.2798 −9.2777 −9.2777 −0.0021 0.0000 0.103 b r II
(1, f , 2) (1, e, 7) −11.2283 −1.9674 −9.2609 −9.2574 −9.2574 −0.0035 0.0000 0.020 b b II
(2, f , 1) (2, e, 5) −20.9054 −11.7332 −9.1722 −9.1708 −9.1710 −0.0012 0.0002 0.102 b b I
(4, f , 1) (3, f , 3) −16.5518 −7.3889 −9.1629 −9.1600 −9.1600 −0.0029 0.0000 0.132 b b I
(2, e, 6) (2, f , 5) −7.9364 1.0615 −8.9979 −8.9969 −8.9969 −0.0010 0.0000 0.072 b b II
(5, f , 1) (4, f , 3) −13.4805 −4.6539 −8.8266 −8.8244 −8.8245 −0.0021 0.0001 0.174 b b I
(1, e, 5) (1, f , 3) −10.0099 −1.3592 −8.6507 −8.6542 −8.6542 0.0035 0.0000 0.081 b b II
(3, f , 1) (3, e, 5) −19.0321 −10.4369 −8.5952 −8.5951 −8.5951 −0.0001 0.0000 0.186 b b I
(6, f , 1) (5, f , 3) −9.8408 −1.3337 −8.5071 −8.5054 −8.5052 −0.0019 −0.0002 0.208 b b I
(3, e, 2) (4, e, 4) −19.9315 −11.6574 −8.2741 −8.2796 −8.2795 0.0054 −0.0001 0.319 b b I
(4, e, 2) (5, e, 3) −17.9618 −9.7361 −8.2257 −8.2246 −8.2246 −0.0011 0.0000 0.630 b b I
(4, f , 1) (4, e, 5) −16.5518 −8.3314 −8.2204 −8.2214 −8.2211 0.0007 −0.0003 0.279 b b I
(5, f , 1) (6, f , 2) −13.4805 −5.2668 −8.2137 −8.2157 −8.2155 0.0018 −0.0002 0.430 b b I
(6, f , 1) (7, f , 2) −9.8408 −1.6325 −8.2083 −8.2089 −8.2089 0.0006 0.0000 0.439 b b I
(4, f , 1) (5, f , 2) −16.5518 −8.3712 −8.1806 −8.1834 −8.1838 0.0032 0.0004 0.408 b b I
(5, e, 2) (6, e, 3) −15.4668 −7.2798 −8.1870 −8.1844 −8.1838 −0.0032 −0.0006 0.701 b b I
(7, f , 1) (6, f , 3) −5.6639 2.5221 −8.1860 −8.1830 −8.1838 −0.0022 0.0008 0.228 b b I
(7, f , 1) (8, f , 2) −5.6639 2.5144 −8.1783 −8.1760 −8.1761 −0.0022 0.0001 0.435 b b I
(8, f , 1) (9, f , 2) −0.9944 7.1482 −8.1426 −8.1381 −8.1381 −0.0045 0.0000 0.417 b r II
(9, f , 1) (10, f , 2) 4.0998 12.2361 −8.1363 −8.1278 −8.1273 −0.0090 −0.0005 0.382 r r II
(6, e, 2) (7, e, 3) −12.4531 −4.3333 −8.1198 −8.1138 −8.1139 −0.0059 0.0001 0.740 b b I
(2, e, 2) (3, e, 4) −21.3808 −13.2835 −8.0973 −8.1019 −8.1018 0.0045 −0.0001 0.417 b b I
(3, f , 1) (4, f , 2) −19.0321 −10.9347 −8.0974 −8.1016 −8.1018 0.0044 0.0002 0.374 b b I
(3, e, 2) (4, e, 3) −19.9315 −11.8185 −8.1130 −8.1022 −8.1018 −0.0112 −0.0004 0.215 b b I
(10, e, 1) (10, f , 2) 4.1604 12.2361 −8.0757 −8.0570 −8.0571 −0.0186 0.0001 0.232 r r II
(7, e, 2) (8, e, 3) −8.9371 −0.8900 −8.0471 −8.0329 −8.0329 −0.0142 0.0000 0.695 b b I
(9, e, 1) (10, e, 3) −0.5643 7.4796 −8.0439 −8.0240 −8.0240 −0.0199 0.0000 0.474 b r II
(8, e, 1) (9, e, 3) −4.9597 3.0489 −8.0086 −7.9981 −7.9975 −0.0111 −0.0006 0.757 b r II
(5, f , 1) (5, e, 5) −13.4805 −5.5053 −7.9752 −7.9760 −7.9761 0.0009 0.0001 0.353 b b I
(2, f , 1) (3, f , 2) −20.9054 −12.9548 −7.9506 −7.9558 −7.9560 0.0054 0.0002 0.330 b b I
(1, e, 2) (2, e, 4) −22.3258 −14.5156 −7.8102 −7.8166 −7.8166 0.0064 0.0000 0.312 b b I
(6, f , 1) (6, e, 5) −9.8408 −2.0411 −7.7997 −7.8001 −7.8005 0.0008 0.0004 0.403 b b I
(7, f , 1) (7, e, 5) −5.6639 1.9929 −7.6568 −7.6553 −7.6551 −0.0017 −0.0002 0.419 b r I
(8, e, 2) (9, e, 3) −4.5227 3.0489 −7.5716 −7.5729 −7.5734 0.0018 0.0005 0.072 b r II
(6, e, 4) (6, f , 3) −4.9969 2.5221 −7.5190 −7.5218 −7.5217 0.0027 −0.0001 0.352 b b I
(7, e, 1) (7, f , 2) −9.0888 −1.6325 −7.4563 −7.4758 −7.4760 0.0197 0.0002 0.054 b b II
(8, e, 1) (8, f , 2) −4.9597 2.5144 −7.4741 −7.4697 −7.4696 −0.0045 −0.0001 0.335 b b I
(4, e, 3) (4, f , 3) −12.0895 −4.6539 −7.4356 −7.4445 −7.4444 0.0088 −0.0001 0.132 b b I
(5, e, 4) (5, f , 3) −8.7402 −1.3337 −7.4065 −7.4102 −7.4103 0.0038 0.0001 0.346 b b I
(9, e, 1) (8, e, 6) −0.5643 6.8229 −7.3872 −7.3832 −7.3832 −0.0040 0.0000 0.021 b r II
(7, e, 2) (7, f , 2) −8.9371 −1.6325 −7.3046 −7.2967 −7.2966 −0.0080 −0.0001 0.308 b b I
(3, e, 3) (3, f , 3) −14.6281 −7.3889 −7.2392 −7.2468 −7.2468 0.0076 0.0000 0.276 b b I
(4, e, 4) (4, f , 3) −11.8743 −4.6539 −7.2204 −7.2154 −7.2151 −0.0053 −0.0003 0.190 b b I
(6, e, 2) (6, f , 2) −12.4531 −5.2668 −7.1863 −7.1858 −7.1861 −0.0002 0.0003 0.326 b b I
(2, e, 3) (2, f , 3) −16.6645 −9.4975 −7.1670 −7.1748 −7.1747 0.0077 −0.0001 0.218 b b I
(5, e, 2) (4, e, 5) −15.4668 −8.3314 −7.1354 −7.1362 −7.1361 0.0007 −0.0001 0.067 b b I
(1, e, 3) (1, f , 2) −18.0572 −10.9385 −7.1187 −7.1262 −7.1261 0.0074 −0.0001 0.140 b b I
(5, e, 2) (5, f , 2) −15.4668 −8.3712 −7.0956 −7.0982 −7.0982 0.0026 0.0000 0.302 b b I
(4, e, 2) (4, f , 2) −17.9618 −10.9347 −7.0271 −7.0315 −7.0318 0.0047 0.0003 0.257 b b I
(6, e, 4) (7, e, 5) −4.9969 1.9929 −6.9898 −6.9941 −6.9942 0.0044 0.0001 0.177 b r I
(3, e, 2) (3, f , 2) −19.9315 −12.9548 −6.9767 −6.9822 −6.9827 0.0060 0.0005 0.195 b b I
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Tabela XVIII: Kontynuacja.

final initial Ef Ei ∆Etheo ∆E′gen ∆E′obs ∆Et-o ∆Eg-o Itheo tf ti etap
(4, e, 3) (3, e, 6) −12.0895 −5.1146 −6.9749 −6.9830 −6.9827 0.0078 −0.0003 0.148 b b I
(3, e, 3) (2, e, 6) −14.6281 −7.6772 −6.9509 −6.9593 −6.9593 0.0084 0.0000 0.273 b b I
(2, e, 2) (2, f , 2) −21.3808 −14.4388 −6.9420 −6.9482 −6.9482 0.0062 0.0000 0.115 b b I
(8, e, 1) (7, e, 5) −4.9597 1.9929 −6.9526 −6.9490 −6.9482 −0.0044 −0.0008 0.080 b r I
(6, e, 2) (5, e, 5) −12.4531 −5.5053 −6.9478 −6.9461 −6.9456 −0.0022 −0.0005 0.080 b b II
(2, e, 3) (1, e, 5) −16.6645 −9.7488 −6.9157 −6.9246 −6.9246 0.0089 0.0000 0.170 b b I
(4, f , 6) (5, f , 6) 4.2720 11.1766 −6.9046 −6.9050 −6.9050 0.0004 0.0000 0.052 r r II
(7, e, 2) (6, e, 5) −8.9371 −2.0411 −6.8960 −6.8879 −6.8877 −0.0083 −0.0002 0.073 b b I
(4, e, 7) (4, f , 6) −2.3276 4.4497 −6.7773 −6.7704 −6.7704 −0.0069 0.0000 0.029 b r II
(4, e, 4) (3, e, 6) −11.8743 −5.1146 −6.7597 −6.7539 −6.7541 −0.0056 0.0002 0.207 b b I
(5, e, 4) (4, e, 7) −8.7402 −2.0029 −6.7373 −6.7466 −6.7465 0.0092 −0.0001 0.018 b b I
(5, e, 4) (6, e, 5) −8.7402 −2.0411 −6.6991 −6.7049 −6.7048 0.0057 −0.0001 0.199 b b I
(9, e, 2) (9, f , 2) 0.4857 7.1482 −6.6625 −6.6727 −6.6727 0.0102 0.0000 0.066 r r II
(4, e, 3) (5, e, 5) −12.0895 −5.5053 −6.5842 −6.5961 −6.5962 0.0120 0.0001 0.084 b b I
(5, e, 4) (4, e, 6) −8.7402 −2.1622 −6.5780 −6.5797 −6.5797 0.0017 0.0000 0.361 b b I
(0, e, 2) (1, e, 4) −18.7663 −12.2008 −6.5655 −6.5751 −6.5754 0.0099 0.0003 0.137 b b I
(1, e, 1) (0, e, 2) −25.1111 −18.5471 −6.5640 −6.5668 −6.5665 0.0025 −0.0003 0.045 b b I
(2, f , 1) (2, e, 4) −20.9054 −14.5156 −6.3898 −6.3959 −6.3955 0.0057 −0.0004 0.081 b b I
(10, e, 2) (10, f , 2) 5.8559 12.2361 −6.3802 −6.3877 −6.3877 0.0075 0.0000 0.110 r r II
(4, e, 4) (5, e, 5) −11.8743 −5.5053 −6.3690 −6.3670 −6.3673 −0.0017 0.0003 0.129 b b I
(1, e, 3) (2, e, 5) −18.0572 −11.7332 −6.3240 −6.3347 −6.3348 0.0108 0.0001 0.198 b b I
(3, e, 3) (4, e, 5) −14.6281 −8.3314 −6.2967 −6.3082 −6.3085 0.0118 0.0003 0.220 b b I
(2, e, 3) (3, e, 5) −16.6645 −10.4369 −6.2276 −6.2391 −6.2391 0.0115 0.0000 0.222 b b I
(2, e, 1) (1, e, 3) −23.8943 −17.8387 −6.0556 −6.0584 −6.0582 0.0026 −0.0002 0.119 b b I
(6, e, 4) (5, e, 7) −4.9969 0.8044 −5.8013 −5.8021 −5.8021 0.0008 0.0000 0.228 b r II
(3, f , 1) (3, e, 4) −19.0321 −13.2835 −5.7486 −5.7535 −5.7533 0.0047 −0.0002 0.092 b b I
(3, e, 1) (2, e, 3) −22.0775 −16.4471 −5.6304 −5.6341 −5.6343 0.0039 0.0002 0.209 b b I
(4, e, 6) (3, e, 11) −2.4346 3.1801 −5.6147 −5.6171 −5.6171 0.0024 0.0000 0.047 b r II
(9, f , 1) (10, f , 1) 4.0998 9.6788 −5.5790 −5.5782 −5.5782 −0.0008 0.0000 0.024 r r II
(1, e, 7) (1, f , 4) −2.0942 3.2343 −5.3285 −5.3351 −5.3347 0.0062 −0.0004 0.067 b b II
(4, e, 1) (3, e, 3) −19.6713 −14.4108 −5.2605 −5.2651 −5.2650 0.0045 −0.0001 0.301 b b I
(0, e, 4) (1, e, 9) −2.5271 2.6051 −5.1322 −5.1281 −5.1281 −0.0041 0.0000 0.066 b r II
(1, e, 7) (2, e, 11) −2.0942 3.0174 −5.1116 −5.1104 −5.1104 −0.0012 0.0000 0.080 b r II
(5, e, 1) (4, e, 4) −16.6900 −11.6574 −5.0326 −5.0518 −5.0518 0.0192 0.0000 0.143 b b I
(4, f , 1) (4, e, 4) −16.5518 −11.6574 −4.8944 −4.9005 −4.9003 0.0059 −0.0002 0.056 b b I
(9, e, 1) (10, e, 1) −0.5643 4.3180 −4.8823 −4.8879 −4.8879 0.0056 0.0000 0.112 b r II
(5, e, 1) (4, e, 3) −16.6900 −11.8185 −4.8715 −4.8744 −4.8745 0.0030 0.0001 0.242 b b I
(9, e, 1) (9, f , 1) −0.5643 4.2867 −4.8510 −4.8463 −4.8463 −0.0047 0.0000 0.093 b r II
(9, f , 1) (9, e, 4) 4.0998 8.8902 −4.7904 −4.7827 −4.7827 −0.0077 0.0000 0.024 r r II
(4, f , 1) (4, e, 3) −16.5518 −11.8185 −4.7333 −4.7231 −4.7237 −0.0096 0.0006 0.018 b b I
(6, e, 1) (5, e, 4) −13.1534 −8.5397 −4.6137 −4.6239 −4.6239 0.0102 0.0000 0.445 b b I
(7, e, 2) (8, e, 2) −8.9371 −4.3409 −4.5962 −4.5765 −4.5766 −0.0196 0.0001 0.101 b b I
(5, e, 1) (6, e, 2) −16.6900 −12.2488 −4.4412 −4.4569 −4.4569 0.0157 0.0000 0.712 b b I
(4, e, 1) (5, e, 2) −19.6713 −15.2574 −4.4139 −4.4283 −4.4290 0.0151 0.0007 0.657 b b I
(6, e, 1) (7, e, 2) −13.1534 −8.7415 −4.4119 −4.4299 −4.4290 0.0171 −0.0009 0.744 b b I
(8, e, 1) (7, e, 4) −4.9597 −0.5790 −4.3807 −4.3760 −4.3758 −0.0049 −0.0002 0.035 b b II
(3, e, 1) (4, e, 2) −22.0775 −17.7488 −4.3287 −4.3421 −4.3426 0.0139 0.0005 0.574 b b I
(7, e, 1) (8, e, 1) −9.0888 −4.7716 −4.3172 −4.3430 −4.3426 0.0254 −0.0004 0.670 b b I
(7, e, 1) (6, e, 4) −9.0888 −4.7993 −4.2895 −4.3050 −4.3049 0.0154 −0.0001 0.450 b b I
(6, e, 1) (7, e, 1) −13.1534 −8.9010 −4.2524 −4.2565 −4.2566 0.0042 0.0001 0.011 b b I
(2, e, 1) (3, e, 2) −23.8943 −19.7162 −4.1781 −4.1909 −4.1913 0.0132 0.0004 0.468 b b I
(7, e, 2) (8, e, 1) −8.9371 −4.7716 −4.1655 −4.1639 −4.1643 −0.0012 0.0004 0.064 b b I
(8, e, 1) (8, f , 1) −4.9597 −0.7987 −4.1610 −4.1627 −4.1643 0.0033 0.0016 0.052 b b I
(8, e, 2) (9, e, 1) −4.5227 −0.3901 −4.1326 −4.1533 −4.1532 0.0206 −0.0001 0.686 b b I
(7, e, 2) (6, e, 4) −8.9371 −4.7993 −4.1378 −4.1259 −4.1261 −0.0117 0.0002 0.080 b b I
(1, e, 1) (2, e, 2) −25.1111 −21.1642 −3.9469 −3.9602 −3.9595 0.0126 −0.0007 0.345 b b I
(8, e, 2) (7, e, 4) −4.5227 −0.5790 −3.9437 −3.9508 −3.9510 0.0073 0.0002 0.521 b b I
(8, e, 2) (8, f , 1) −4.5227 −0.7987 −3.7240 −3.7375 −3.7369 0.0129 −0.0006 0.698 b b I
(5, e, 1) (6, e, 1) −16.6900 −12.9648 −3.7252 −3.7281 −3.7277 0.0025 −0.0004 0.023 b b I
(7, e, 1) (7, f , 1) −9.0888 −5.4616 −3.6272 −3.6478 −3.6478 0.0206 0.0000 0.669 b b I
(0, e, 1) (1, e, 2) −25.7212 −22.1084 −3.6128 −3.6256 −3.6263 0.0135 0.0007 0.215 b b I
(9, e, 2) (8, e, 4) 0.4857 4.0354 −3.5497 −3.5590 −3.5590 0.0093 0.0000 0.470 r r II
(6, e, 2) (7, e, 1) −12.4531 −8.9010 −3.5521 −3.5399 −3.5406 −0.0115 0.0007 0.091 b b I
(6, e, 1) (6, f , 1) −13.1534 −9.6337 −3.5197 −3.5355 −3.5355 0.0158 0.0000 0.743 b b I
(7, e, 2) (7, f , 1) −8.9371 −5.4616 −3.4755 −3.4687 −3.4690 −0.0065 0.0003 0.115 b b I
(5, e, 1) (5, f , 1) −16.6900 −13.2698 −3.4202 −3.4349 −3.4350 0.0148 0.0001 0.730 b b I
(10, e, 2) (11, e, 1) 5.8559 9.2269 −3.3710 −3.3987 −3.3987 0.0277 0.0000 0.422 r r II
(2, e, 3) (3, e, 4) −16.6645 −13.2835 −3.3810 −3.3975 −3.3985 0.0175 0.0010 0.015 b b I
(4, e, 1) (4, f , 1) −19.6713 −16.3385 −3.3328 −3.3471 −3.3470 0.0142 −0.0001 0.674 b b I
(3, e, 1) (3, f , 1) −22.0775 −18.8169 −3.2606 −3.2745 −3.2746 0.0140 0.0001 0.576 b b I
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Tabela XVIII: Kontynuacja.

final initial Ef Ei ∆Etheo ∆E′gen ∆E′obs ∆Et-o ∆Eg-o Itheo tf ti etap
(2, e, 1) (2, f , 1) −23.8943 −20.6888 −3.2055 −3.2190 −3.2193 0.0138 0.0003 0.442 b b I
(1, e, 1) (1, f , 1) −25.1111 −21.9428 −3.1683 −3.1822 −3.1820 0.0137 −0.0002 0.278 b b I
(3, e, 9) (3, f , 6) −0.3991 2.7513 −3.1504 −3.1567 −3.1566 0.0062 −0.0001 0.115 b b II
(6, e, 2) (6, f , 1) −12.4531 −9.6337 −2.8194 −2.8189 −2.8188 −0.0006 −0.0001 0.046 b b I
(3, e, 1) (4, e, 1) −22.0775 −19.4800 −2.5975 −2.6012 −2.6023 0.0048 0.0011 0.022 b b I
(6, f , 1) (6, e, 3) −9.8408 −7.2798 −2.5610 −2.5610 −2.5611 0.0001 0.0001 0.044 b b I
(5, e, 2) (6, e, 1) −15.4668 −12.9648 −2.5020 −2.4916 −2.4931 −0.0089 0.0015 0.103 b b I
(5, e, 2) (5, f , 1) −15.4668 −13.2698 −2.1970 −2.1984 −2.1986 0.0016 0.0002 0.030 b b I
(2, e, 1) (3, e, 1) −23.8943 −21.8854 −2.0089 −2.0119 −2.0122 0.0033 0.0003 0.018 b b I
(2, e, 1) (1, e, 2) −23.8943 −22.1084 −1.7859 −1.7997 −1.8000 0.0141 0.0003 0.062 b b I
(5, e, 4) (6, e, 3) −8.7402 −7.2798 −1.4604 −1.4658 −1.4657 0.0053 −0.0001 0.052 b b I
(4, e, 2) (5, e, 1) −17.9618 −16.4999 −1.4619 −1.4534 −1.4530 −0.0089 −0.0004 0.109 b b I
(7, f , 1) (7, e, 3) −5.6639 −4.3333 −1.3306 −1.3286 −1.3275 −0.0031 −0.0011 0.035 b b I
(3, e, 2) (3, f , 1) −19.9315 −18.8169 −1.1146 −1.1171 −1.1175 0.0029 0.0004 0.012 b b I
(3, e, 1) (2, e, 2) −22.0775 −21.1642 −0.9133 −0.9274 −0.9271 0.0138 −0.0003 0.095 b b I
(0, e, 1) (1, e, 1) −25.7212 −24.9180 −0.8032 −0.8061 −0.8066 0.0034 0.0005 0.007 b b I
(1, e, 7) (1, f , 3) −2.0942 −1.3592 −0.7350 −0.7482 −0.7482 0.0132 0.0000 0.034 b b II
(6, e, 4) (7, e, 3) −4.9969 −4.3333 −0.6636 −0.6674 −0.6675 0.0039 0.0001 0.051 b b I
(3, e, 8) (2, e, 8) −2.0187 −1.3569 −0.6618 −0.6502 −0.6502 −0.0116 0.0000 0.023 b b II
(3, e, 9) (3, f , 5) −0.3991 0.2242 −0.6233 −0.6363 −0.6363 0.0130 0.0000 0.043 b b II
(8, e, 3) (7, e, 4) −1.1612 −0.5790 −0.5822 −0.5864 −0.5868 0.0046 0.0004 0.045 b b I
(3, e, 2) (4, e, 1) −19.9315 −19.4800 −0.4515 −0.4438 −0.4437 −0.0078 −0.0001 0.108 b b I
(2, e, 8) (2, f , 4) −1.4236 −1.0441 −0.3795 −0.3946 −0.3946 0.0151 0.0000 0.036 b b II
(8, e, 3) (8, f , 1) −1.1612 −0.7987 −0.3625 −0.3731 −0.3728 0.0103 −0.0003 0.028 b b I
(0, e, 4) (1, e, 6) −2.5271 −2.2157 −0.3114 −0.3216 −0.3216 0.0102 0.0000 0.021 b b II
(8, f , 1) (8, e, 3) −0.9944 −0.8900 −0.1044 −0.0996 −0.0996 −0.0048 0.0000 0.026 b b I
(4, e, 8) (3, e, 9) −0.4052 −0.3390 −0.0662 −0.0548 −0.0548 −0.0114 0.0000 0.021 b b II
(4, e, 1) (3, e, 2) −19.6713 −19.7162 0.0449 0.0302 0.0296 0.0153 0.0006 0.109 b b I
(1, e, 6) (0, e, 4) −2.4177 −2.4600 0.0423 0.0514 0.0514 −0.0091 0.0000 0.024 b b II
(7, e, 4) (8, e, 3) −0.7719 −0.8900 0.1181 0.1177 0.1172 0.0009 0.0005 0.044 b b I
(7, e, 3) (6, e, 4) −4.6052 −4.7993 0.1941 0.1920 0.1922 0.0019 −0.0002 0.053 b b I
(2, e, 8) (3, e, 8) −1.4236 −1.6980 0.2744 0.2578 0.2583 0.0161 −0.0005 0.027 b b II
(3, f , 5) (3, e, 9) −0.0724 −0.3390 0.2666 0.2754 0.2757 −0.0091 −0.0003 0.035 b b II
(2, e, 2) (3, e, 1) −21.3808 −21.8854 0.5046 0.5115 0.5116 −0.0070 −0.0001 0.097 b b I
(1, f , 3) (1, e, 6) −1.5878 −2.2157 0.6279 0.6284 0.6284 −0.0005 0.0000 0.020 b b II
(3, f , 1) (3, e, 2) −19.0321 −19.7162 0.6841 0.6809 0.6786 0.0055 0.0023 0.011 b b I
(7, e, 3) (7, f , 1) −4.6052 −5.4616 0.8564 0.8492 0.8494 0.0070 −0.0002 0.038 b b I
(6, e, 3) (5, e, 4) −7.5543 −8.5397 0.9854 0.9843 0.9839 0.0015 0.0004 0.055 b b I
(2, e, 1) (1, e, 1) −23.8943 −24.9180 1.0237 1.0198 1.0183 0.0054 0.0015 0.014 b b I
(5, e, 1) (4, e, 2) −16.6900 −17.7488 1.0588 1.0431 1.0432 0.0156 −0.0001 0.112 b b I
(5, e, 8) (4, e, 9) 1.9565 0.8470 1.1095 1.1133 1.1133 −0.0038 0.0000 0.012 r r II
(1, e, 2) (2, e, 1) −22.3258 −23.7016 1.3758 1.3821 1.3823 −0.0065 −0.0002 0.065 b b I
(3, e, 1) (2, e, 1) −22.0775 −23.7016 1.6241 1.6190 1.6195 0.0046 −0.0005 0.020 b b I
(6, e, 3) (6, f , 1) −7.5543 −9.6337 2.0794 2.0727 2.0728 0.0066 −0.0001 0.049 b b I
(6, e, 1) (5, e, 2) −13.1534 −15.2574 2.1040 2.0860 2.0863 0.0177 −0.0003 0.110 b b I
(4, e, 1) (3, e, 1) −19.6713 −21.8854 2.2141 2.2092 2.2098 0.0043 −0.0006 0.027 b b I
(6, f , 1) (6, e, 2) −9.8408 −12.2488 2.4080 2.4030 2.4031 0.0049 −0.0001 0.034 b b I
(1, f , 1) (1, e, 1) −22.1601 −24.9180 2.7579 2.7641 2.7642 −0.0063 −0.0001 0.305 b b I
(5, e, 1) (4, e, 1) −16.6900 −19.4800 2.7900 2.7840 2.7840 0.0060 0.0000 0.033 b b I
(2, f , 1) (2, e, 1) −20.9054 −23.7016 2.7962 2.8028 2.8028 −0.0066 0.0000 0.485 b b I
(3, f , 1) (3, e, 1) −19.0321 −21.8854 2.8533 2.8599 2.8599 −0.0066 0.0000 0.635 b b I
(3, f , 6) (3, e, 9) 2.5286 −0.3390 2.8676 2.8711 2.8703 −0.0027 0.0008 0.121 b b II
(3, e, 4) (2, e, 3) −13.5613 −16.4471 2.8858 2.8947 2.8959 −0.0101 −0.0012 0.016 b b I
(4, f , 1) (4, e, 1) −16.5518 −19.4800 2.9282 2.9353 2.9352 −0.0070 0.0001 0.745 b b I
(5, f , 1) (5, e, 1) −13.4805 −16.4999 3.0194 3.0268 3.0268 −0.0074 0.0000 0.813 b b I
(7, f , 1) (7, e, 2) −5.6639 −8.7415 3.0776 3.0719 3.0715 0.0061 0.0004 0.030 b b I
(6, f , 1) (6, e, 1) −9.8408 −12.9648 3.1240 3.1318 3.1321 −0.0081 −0.0003 0.838 b b I
(8, e, 4) (9, e, 2) 3.8482 0.6626 3.1856 3.1909 3.1909 −0.0053 0.0000 0.520 r r II
(1, e, 2) (0, e, 1) −22.3258 −25.5279 3.2021 3.2078 3.2080 −0.0059 −0.0002 0.239 b b I
(7, f , 1) (7, e, 1) −5.6639 −8.9010 3.2371 3.2453 3.2455 −0.0084 −0.0002 0.840 b b I
(6, e, 1) (5, e, 1) −13.1534 −16.4999 3.3465 3.3401 3.3396 0.0069 0.0005 0.041 b b I
(8, f , 1) (8, e, 2) −0.9944 −4.3409 3.3465 3.3568 3.3568 −0.0103 0.0000 0.743 b b I
(9, f , 1) (9, e, 2) 4.0998 0.6626 3.4372 3.4493 3.4493 −0.0121 0.0000 0.658 r r II
(10, f , 1) (10, e, 2) 9.5043 6.0234 3.4809 3.4943 3.4943 −0.0134 0.0000 0.533 r r II
(10, e, 1) (9, e, 2) 4.1604 0.6626 3.4978 3.5201 3.5196 −0.0218 0.0005 0.650 r r II
(2, e, 2) (1, e, 1) −21.3808 −24.9180 3.5372 3.5432 3.5431 −0.0059 0.0001 0.387 b b I
(7, e, 4) (8, e, 2) −0.7719 −4.3409 3.5690 3.5741 3.5737 −0.0047 0.0004 0.559 b b I
(6, e, 4) (7, e, 2) −4.9969 −8.7415 3.7446 3.7331 3.7334 0.0112 −0.0003 0.024 b b I
(3, e, 2) (2, e, 1) −19.9315 −23.7016 3.7701 3.7764 3.7766 −0.0065 −0.0002 0.528 b b I
(8, e, 1) (7, e, 2) −4.9597 −8.7415 3.7818 3.7782 3.7766 0.0052 0.0016 0.010 b b I
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Tabela XVIII: Kontynuacja.

final initial Ef Ei ∆Etheo ∆E′gen ∆E′obs ∆Et-o ∆Eg-o Itheo tf ti etap
(7, e, 1) (6, e, 1) −9.0888 −12.9648 3.8760 3.8649 3.8649 0.0111 0.0000 0.092 b b I
(6, e, 4) (7, e, 1) −4.9969 −8.9010 3.9041 3.9065 3.9065 −0.0024 0.0000 0.579 b b I
(4, e, 2) (3, e, 1) −17.9618 −21.8854 3.9236 3.9300 3.9298 −0.0062 0.0002 0.649 b b I
(8, e, 1) (7, e, 1) −4.9597 −8.9010 3.9413 3.9516 3.9515 −0.0102 0.0001 0.857 b b I
(7, e, 4) (8, e, 1) −0.7719 −4.7716 3.9997 3.9867 3.9870 0.0127 −0.0003 0.069 b b II
(5, e, 2) (4, e, 1) −15.4668 −19.4800 4.0132 4.0205 4.0205 −0.0073 0.0000 0.743 b b I
(7, e, 2) (6, e, 1) −8.9371 −12.9648 4.0277 4.0440 4.0441 −0.0164 −0.0001 0.782 b b I
(6, e, 2) (5, e, 1) −12.4531 −16.4999 4.0468 4.0567 4.0565 −0.0097 0.0002 0.802 b b I
(9, e, 1) (8, e, 1) −0.5643 −4.7716 4.2073 4.2028 4.2028 0.0045 0.0000 0.076 b b II
(5, e, 4) (6, e, 1) −8.7402 −12.9648 4.2246 4.2270 4.2267 −0.0021 0.0003 0.519 b b I
(4, e, 3) (5, e, 1) −12.0895 −16.4999 4.4104 4.4067 4.4069 0.0035 −0.0002 0.197 b b I
(4, e, 4) (4, f , 1) −11.8743 −16.3385 4.4642 4.4629 4.4627 0.0015 0.0002 0.056 b b I
(9, f , 1) (9, e, 1) 4.0998 −0.3901 4.4899 4.4797 4.4797 0.0102 0.0000 0.125 r b II
(10, e, 1) (9, e, 1) 4.1604 −0.3901 4.5505 4.5505 4.5510 −0.0005 −0.0005 0.147 r b II
(4, e, 4) (5, e, 1) −11.8743 −16.4999 4.6256 4.6358 4.6358 −0.0102 0.0000 0.252 b b I
(3, e, 3) (4, e, 1) −14.6281 −19.4800 4.8519 4.8485 4.8482 0.0037 0.0003 0.352 b b I
(1, e, 9) (0, e, 4) 2.4520 −2.4600 4.9120 4.9095 4.9095 0.0025 0.0000 0.058 r b II
(1, f , 4) (1, e, 7) 3.0613 −1.9674 5.0287 5.0258 5.0270 0.0017 −0.0012 0.058 b b II
(2, e, 11) (1, e, 6) 2.8576 −2.2157 5.0733 5.0806 5.0806 −0.0073 0.0000 0.048 r b II
(10, f , 1) (10, e, 1) 9.5043 4.3180 5.1863 5.1737 5.1737 0.0126 0.0000 0.175 r r II
(3, e, 11) (4, e, 6) 3.0187 −2.1622 5.1809 5.1826 5.1826 −0.0017 0.0000 0.095 r b II
(2, e, 3) (3, e, 1) −16.6645 −21.8854 5.2209 5.2159 5.2160 0.0049 −0.0001 0.247 b b I
(3, e, 4) (3, f , 1) −13.5613 −18.8169 5.2556 5.2543 5.2547 0.0009 −0.0004 0.111 b b I
(5, e, 7) (6, e, 4) 0.6615 −4.7993 5.4608 5.4562 5.4562 0.0046 0.0000 0.179 r b II
(1, e, 3) (2, e, 1) −18.0572 −23.7016 5.6444 5.6389 5.6389 0.0055 0.0000 0.142 b b I
(3, e, 5) (2, e, 3) −10.6993 −16.4471 5.7478 5.7526 5.7526 −0.0048 0.0000 0.269 b b I
(4, e, 5) (3, e, 3) −8.5961 −14.4108 5.8147 5.8199 5.8198 −0.0051 0.0001 0.269 b b I
(2, e, 5) (1, e, 3) −11.9949 −17.8387 5.8438 5.8479 5.8479 −0.0041 0.0000 0.240 b b I
(5, e, 5) (4, e, 4) −5.7721 −11.6574 5.8853 5.8769 5.8768 0.0085 0.0001 0.106 b b I
(2, e, 4) (2, f , 1) −14.7980 −20.6888 5.8908 5.8908 5.8907 0.0001 0.0001 0.099 b b I
(10, f , 2) (10, e, 2) 11.9727 6.0234 5.9493 5.9516 5.9516 −0.0023 0.0000 0.140 r r II
(5, e, 5) (4, e, 3) −5.7721 −11.8185 6.0464 6.0543 6.0538 −0.0074 0.0005 0.154 b b I
(1, e, 4) (0, e, 2) −12.4643 −18.5471 6.0828 6.0852 6.0855 −0.0027 −0.0003 0.167 b b I
(4, e, 6) (5, e, 4) −2.4346 −8.5397 6.1051 6.1030 6.1030 0.0021 0.0000 0.252 b b I
(0, e, 2) (1, e, 1) −18.7663 −24.9180 6.1517 6.1458 6.1459 0.0058 −0.0001 0.055 b b I
(4, e, 7) (5, e, 4) −2.3276 −8.5397 6.2121 6.2139 6.2141 −0.0020 −0.0002 0.221 b b I
(6, e, 5) (5, e, 4) −2.3085 −8.5397 6.2312 6.2320 6.2321 −0.0009 −0.0001 0.244 b b I
(3, e, 6) (4, e, 4) −5.3670 −11.6574 6.2904 6.2778 6.2772 0.0132 0.0006 0.173 b b I
(6, e, 5) (7, e, 2) −2.3085 −8.7415 6.4330 6.4260 6.4261 0.0069 −0.0001 0.111 b b I
(1, e, 5) (2, e, 3) −10.0099 −16.4471 6.4372 6.4398 6.4398 −0.0026 0.0000 0.211 b b I
(2, f , 2) (2, e, 2) −14.7223 −21.1642 6.4419 6.4428 6.4439 −0.0020 −0.0011 0.141 b b I
(3, e, 6) (4, e, 3) −5.3670 −11.8185 6.4515 6.4552 6.4559 −0.0044 −0.0007 0.266 b b I
(5, e, 5) (6, e, 2) −5.7721 −12.2488 6.4767 6.4718 6.4726 0.0041 −0.0008 0.103 b b II
(2, e, 6) (3, e, 3) −7.9364 −14.4108 6.4744 6.4763 6.4764 −0.0020 −0.0001 0.339 b b II
(3, f , 2) (3, e, 2) −13.2383 −19.7162 6.4779 6.4776 6.4788 −0.0009 −0.0012 0.240 b b II
(7, e, 5) (8, e, 1) 1.7289 −4.7716 6.5005 6.4891 6.4897 0.0108 −0.0006 0.091 r b I
(7, e, 5) (6, e, 4) 1.7289 −4.7993 6.5282 6.5271 6.5275 0.0007 −0.0004 0.220 r b I
(4, f , 2) (4, e, 2) −11.2177 −17.7488 6.5311 6.5299 6.5303 0.0008 −0.0004 0.318 b b I
(8, f , 2) (8, e, 2) 2.2394 −4.3409 6.5803 6.5860 6.5861 −0.0058 −0.0001 0.059 b b I
(5, f , 2) (5, e, 2) −8.6531 −15.2574 6.6043 6.6013 6.6015 0.0028 −0.0002 0.375 b b I
(1, f , 2) (1, e, 3) −11.2283 −17.8387 6.6104 6.6098 6.6099 0.0005 −0.0001 0.173 b b I
(4, e, 5) (5, e, 2) −8.5961 −15.2574 6.6613 6.6567 6.6559 0.0054 0.0008 0.086 b b I
(2, f , 3) (2, e, 3) −9.7850 −16.4471 6.6621 6.6620 6.6619 0.0002 0.0001 0.270 b b I
(6, f , 2) (6, e, 2) −5.5471 −12.2488 6.7017 6.6971 6.6970 0.0047 0.0001 0.411 b b I
(4, f , 3) (4, e, 4) −4.9341 −11.6574 6.7233 6.7102 6.7106 0.0127 −0.0004 0.158 b b I
(3, f , 3) (3, e, 3) −7.6732 −14.4108 6.7376 6.7379 6.7379 −0.0003 0.0000 0.344 b b I
(7, f , 2) (7, e, 2) −1.9105 −8.7415 6.8310 6.8242 6.8240 0.0070 0.0002 0.433 b b I
(4, f , 3) (4, e, 3) −4.9341 −11.8185 6.8844 6.8876 6.8877 −0.0033 −0.0001 0.242 b b I
(5, f , 3) (5, e, 4) −1.6084 −8.5397 6.9313 6.9291 6.9291 0.0022 0.0000 0.431 b b I
(8, f , 2) (8, e, 1) 2.2394 −4.7716 7.0110 6.9986 6.9983 0.0127 0.0003 0.398 b b I
(3, e, 5) (4, e, 2) −10.6993 −17.7488 7.0495 7.0446 7.0444 0.0051 0.0002 0.058 b b I
(6, f , 3) (6, e, 4) 2.2568 −4.7993 7.0561 7.0529 7.0528 0.0033 0.0001 0.440 b b I
(9, e, 3) (8, e, 2) 2.7767 −4.3409 7.1176 7.1152 7.1154 0.0022 −0.0002 0.129 r b II
(7, f , 4) (7, e, 4) 6.6012 −0.5790 7.1802 7.1760 7.1760 0.0042 0.0000 0.408 r b II
(7, e, 5) (7, f , 1) 1.7289 −5.4616 7.1905 7.1843 7.1840 0.0065 0.0003 0.529 r b I
(2, f , 2) (1, f , 1) −14.7223 −21.9428 7.2205 7.2208 7.2207 −0.0002 0.0001 0.354 b b I
(9, f , 2) (9, e, 1) 6.8776 −0.3901 7.2677 7.2504 7.2503 0.0174 0.0001 0.359 r b I
(2, e, 4) (1, e, 2) −14.7980 −22.1084 7.3104 7.3101 7.3104 0.0000 −0.0003 0.392 b b I
(6, e, 5) (6, f , 1) −2.3085 −9.6337 7.3252 7.3204 7.3202 0.0050 0.0002 0.507 b b I
(3, f , 2) (2, f , 1) −13.2383 −20.6888 7.4505 7.4495 7.4486 0.0019 0.0009 0.417 b b I
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Tabela XVIII: Kontynuacja – koniec.

final initial Ef Ei ∆Etheo ∆E′gen ∆E′obs ∆Et-o ∆Eg-o Itheo tf ti etap
(5, e, 5) (5, f , 1) −5.7721 −13.2698 7.4977 7.4938 7.4928 0.0049 0.0010 0.445 b b I
(9, e, 3) (8, e, 1) 2.7767 −4.7716 7.5483 7.5278 7.5275 0.0208 0.0003 0.917 r b II
(7, e, 3) (6, e, 2) −4.6052 −12.2488 7.6436 7.6331 7.6329 0.0107 0.0002 0.960 b b I
(9, f , 2) (8, f , 1) 6.8776 −0.7987 7.6763 7.6662 7.6663 0.0100 −0.0001 0.531 r b I
(5, f , 2) (4, f , 1) −8.6531 −16.3385 7.6854 7.6825 7.6829 0.0025 −0.0004 0.520 b b I
(6, e, 3) (5, e, 2) −7.5543 −15.2574 7.7031 7.6942 7.6939 0.0092 0.0003 0.900 b b I
(8, f , 2) (7, f , 1) 2.2394 −5.4616 7.7010 7.6938 7.6939 0.0071 −0.0001 0.555 b b I
(6, f , 3) (7, f , 1) 2.2568 −5.4616 7.7184 7.7101 7.7102 0.0082 −0.0001 0.293 b b I
(6, f , 2) (5, f , 1) −5.5471 −13.2698 7.7227 7.7191 7.7188 0.0039 0.0003 0.548 b b I
(7, f , 2) (6, f , 1) −1.9105 −9.6337 7.7232 7.7186 7.7188 0.0044 −0.0002 0.560 b b I
(5, e, 3) (4, e, 2) −10.0155 −17.7488 7.7333 7.7260 7.7260 0.0073 0.0000 0.805 b b I
(4, e, 5) (4, f , 1) −8.5961 −16.3385 7.7424 7.7379 7.7379 0.0045 0.0000 0.352 b b I
(4, e, 4) (3, e, 2) −11.8743 −19.7162 7.8419 7.8402 7.8402 0.0017 0.0000 0.275 b b I
(5, f , 3) (6, f , 1) −1.6084 −9.6337 8.0253 8.0175 8.0175 0.0078 0.0000 0.268 b b I
(3, e, 5) (3, f , 1) −10.6993 −18.8169 8.1176 8.1122 8.1119 0.0057 0.0003 0.237 b b I
(1, f , 3) (1, e, 5) −1.5878 −9.7488 8.1610 8.1596 8.1596 0.0014 0.0000 0.108 b b II
(4, f , 3) (5, f , 1) −4.9341 −13.2698 8.3357 8.3271 8.3271 0.0086 0.0000 0.227 b b I
(2, f , 5) (2, e, 6) 0.7854 −7.6772 8.4626 8.4563 8.4563 0.0063 0.0000 0.105 b b II
(4, e, 10) (3, e, 6) 3.3774 −5.1146 8.4920 8.5022 8.5025 −0.0105 −0.0003 0.055 r b II
(1, e, 6) (1, f , 2) −2.4177 −10.9385 8.5208 8.5179 8.5178 0.0030 0.0001 0.059 b b II
(3, f , 3) (4, f , 1) −7.6732 −16.3385 8.6653 8.6559 8.6560 0.0093 −0.0001 0.174 b b I
(2, e, 5) (2, f , 1) −11.9949 −20.6888 8.6939 8.6873 8.6870 0.0069 0.0003 0.132 b b I
(0, e, 5) (1, e, 5) −0.9173 −9.7488 8.8315 8.8193 8.8193 0.0122 0.0000 0.046 b b II
(2, f , 7) (1, f , 3) 7.5715 −1.3592 8.9307 8.9340 8.9340 −0.0033 0.0000 0.127 r b II
(5, f , 5) (4, f , 3) 4.3134 −4.6539 8.9673 8.9651 8.9649 0.0024 0.0002 0.104 r b II
(2, f , 3) (3, f , 1) −9.7850 −18.8169 9.0319 9.0216 9.0216 0.0103 0.0000 0.114 b b I
(3, e, 3) (2, e, 1) −14.6281 −23.7016 9.0735 9.0687 9.0691 0.0044 −0.0004 0.022 b b I
(1, e, 6) (0, e, 3) −2.4177 −11.5268 9.1091 9.1010 9.1010 0.0081 0.0000 0.083 b b II
(4, f , 5) (3, f , 3) 1.8968 −7.3889 9.2857 9.2848 9.2848 0.0009 0.0000 0.161 b b I
(4, e, 8) (5, e, 3) −0.4052 −9.7361 9.3309 9.3304 9.3310 −0.0001 −0.0006 0.014 b b I
(3, e, 7) (3, f , 2) −3.5349 −12.9548 9.4199 9.4175 9.4179 0.0020 −0.0004 0.044 b b I
(3, f , 5) (2, f , 3) −0.0724 −9.4975 9.4251 9.4245 9.4245 0.0006 0.0000 0.172 b b I
(1, f , 2) (2, f , 1) −11.2283 −20.6888 9.4605 9.4492 9.4491 0.0114 0.0001 0.054 b b I
(1, e, 4) (1, f , 1) −12.4643 −21.9428 9.4785 9.4698 9.4697 0.0088 0.0001 0.074 b b I
(2, e, 7) (1, e, 4) −2.6522 −12.2008 9.5486 9.5453 9.5453 0.0033 0.0000 0.283 b b I
(9, e, 4) (8, e, 3) 8.6876 −0.8900 9.5776 9.5741 9.5741 0.0035 0.0000 0.142 r b II
(2, f , 4) (1, f , 2) −1.3429 −10.9385 9.5956 9.5956 9.5955 0.0001 0.0001 0.152 b b I
(3, e, 8) (2, e, 5) −2.0187 −11.7332 9.7145 9.7118 9.7118 0.0027 0.0000 0.365 b b I
(5, f , 5) (5, e, 5) 4.3134 −5.5053 9.8187 9.8135 9.8133 0.0054 0.0002 0.213 r b II
(4, f , 4) (4, e, 4) −1.7868 −11.6574 9.8706 9.8666 9.8668 0.0038 −0.0002 0.087 b b I
(3, f , 4) (3, e, 4) −3.4009 −13.2835 9.8826 9.8818 9.8820 0.0006 −0.0002 0.085 b b I
(5, f , 4) (5, e, 3) 0.2889 −9.7361 10.0250 10.0254 10.0254 −0.0004 0.0000 0.184 b b I
(4, e, 8) (3, e, 5) −0.4052 −10.4369 10.0317 10.0300 10.0298 0.0019 0.0002 0.376 b b I
(4, f , 4) (4, e, 3) −1.7868 −11.8185 10.0317 10.0440 10.0438 −0.0121 0.0002 0.054 b b I
(6, f , 4) (6, e, 3) 2.8640 −7.2798 10.1438 10.1431 10.1432 0.0006 −0.0001 0.215 b b I
(4, f , 5) (4, e, 5) 1.8968 −8.3314 10.2282 10.2234 10.2234 0.0048 0.0000 0.244 b b I
(7, f , 3) (7, e, 3) 5.9283 −4.3333 10.2616 10.2618 10.2619 −0.0003 −0.0001 0.233 r b I
(5, e, 8) (4, e, 5) 1.9565 −8.3314 10.2879 10.2850 10.2850 0.0029 0.0000 0.379 r b I
(5, e, 8) (5, f , 2) 1.9565 −8.3712 10.3277 10.3230 10.3230 0.0047 0.0000 0.258 r b I
(3, f , 5) (3, e, 5) −0.0724 −10.4369 10.3645 10.3602 10.3603 0.0042 −0.0001 0.186 b b I
(2, f , 4) (2, e, 5) −1.3429 −11.7332 10.3903 10.3871 10.3872 0.0031 −0.0001 0.097 b b I
(4, e, 8) (4, f , 2) −0.4052 −10.9347 10.5295 10.5235 10.5237 0.0058 −0.0002 0.199 b b I
(7, e, 6) (6, e, 3) 3.4489 −7.2798 10.7287 10.7241 10.7241 0.0046 0.0000 0.924 r b I
(5, e, 6) (4, e, 4) −0.9211 −11.6574 10.7363 10.7270 10.7270 0.0093 0.0000 0.458 b b I
(6, e, 6) (5, e, 3) 1.0058 −9.7361 10.7419 10.7370 10.7370 0.0049 0.0000 0.858 r b I
(4, e, 6) (3, e, 4) −2.4346 −13.2835 10.8489 10.8370 10.8371 0.0118 −0.0001 0.297 b b I
(5, e, 6) (4, e, 3) −0.9211 −11.8185 10.8974 10.9044 10.9028 −0.0054 0.0016 0.294 b b I
(3, e, 8) (3, f , 2) −2.0187 −12.9548 10.9361 10.9268 10.9268 0.0093 0.0000 0.100 b b I
(4, e, 7) (3, e, 4) −2.3276 −13.2835 10.9559 10.9479 10.9477 0.0082 0.0002 0.326 b b I
(3, e, 7) (2, e, 4) −3.5349 −14.5156 10.9807 10.9774 10.9770 0.0037 0.0004 0.522 b b I
(3, f , 4) (2, f , 2) −3.4009 −14.4388 11.0379 11.0355 11.0354 0.0025 0.0001 0.504 b b I
(4, f , 4) (3, f , 2) −1.7868 −12.9548 11.1680 11.1640 11.1641 0.0039 −0.0001 0.573 b b I
(7, f , 3) (6, f , 2) 5.9283 −5.2668 11.1951 11.1898 11.1896 0.0055 0.0002 0.668 r b I
(5, f , 4) (4, f , 2) 0.2889 −10.9347 11.2236 11.2185 11.2186 0.0050 −0.0001 0.632 b b I
(6, f , 4) (5, f , 2) 2.8640 −8.3712 11.2352 11.2293 11.2293 0.0059 0.0000 0.672 b b I
(2, e, 6) (3, e, 2) −7.9364 −19.7162 11.7798 11.7716 11.7714 0.0084 0.0002 0.018 b b II
(2, e, 7) (2, f , 2) −2.6522 −14.4388 11.7866 11.7748 11.7754 0.0112 −0.0006 0.031 b b I
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Rysunek 37: Porównanie widm teoretycznego i doświadczalnego w podczerwieni otrzymanych

dla kompleksu ortoD2–CO w temperaturze T = 49 K. Linie ciągłe oznaczają widmo zarejestrowa-

ne (niebieskie, w górnym i środkowym rzędzie każdego panelu) oraz widmo teoretyczne (czerwone,

dolny rząd) obliczone w ramach tej pracy. W środkowym rzędzie zredukowane jest tło tam, gdzie

jest to możliwe. Linie pionowe wskazują: energie przejść z eksperymentu (górny rząd: czarne by-

ły wyznaczone w [18] i są podane z eksperymentalnymi intensywnościami, zielone były określone

tam jako „dodatkowe”, podane z arbitralnymi intensywnościami, czerwone to nowe przypisania),

energie przejść odtworzone z poziomów eksperymentalnych (środkowy rząd), gdzie czarne odpowia-

dają przejściom zinterpretowanym w artykule [18], a czerwone w bieżącej pracy; teoretyczne energie

przejść obliczone w tej pracy (najniższy rząd), gdzie linia ciągła odpowiada przejściu pomiędzy

dwoma stanami związanymi, a linia przerywana pomiędzy stanami, z których przynajmniej jeden

jest rezonansem; długość pionowych linii w rzędach środkowym i najniższym odpowiadają obliczo-

nym intensywnościom; pokazane są tylko przejścia z intensywnościami względnymi większymi od

0.01. Czarne strzałki w środkowym rzędzie: łączą przejścia eksperymentalne przypisane w [18] z ich

odpowiednikami wygenerowanymi z eksperymentalnych poziomów energetycznych. Zielone strzałki

w środkowym rzędzie: łączą przejścia teoretyczne wymienione (ale nie przypisane) w [18] z ich odpo-

wiednikami znalezionymi w tej pracy. Czerwone strzałki w środkowym rzędzie: łączą przejścia eks-

perymentalne wyznaczone w tej pracy z ich odpowiednikami wygenerowanymi z eksperymentalnych

poziomów energetycznych. Niebieskie strzałki w najniższym rzędzie: łączą przejścia teoretyczne z ich

odpowiednikami generowanymi z wyjściowego zbioru poziomów energii eksperymentalnych [18]. Ró-

żowe strzałki w najniższym rzędzie: łączą przejścia teoretyczne z ich odpowiednikami generowanymi

z końcowego zbioru poziomów energii eksperymentalnych, gdy przynajmniej jeden z tych pozio-

mów został wyznaczony w obecnej pracy. Romby w najniższym rzędzie: teoretyczne odpowiedniki

nowoprzypisanych przejść prowadzące do wyznaczenia nowych energii eksperymentalnych. Gwiazd-

ki: linie pochodzące od różnych izotopologów cząsteczki CO. Zero energii: 2143.2711 cm−1, czyli

energia przejścia oscylacyjnego v2 = 1 ← 0 w izolowanej cząsteczce CO. Obszary ciemnożółte:

fragmenty widma, w których silne linie pochodzące od przejścia w cząsteczce CO uniemożliwiają

pomiary widma H2–CO za pomocą spektrometru FTIR. Obszary te były próbkowane inną techniką

[18], która pozwoliła zarejestrować przejścia oznaczone pionowymi kreskami. Ich intensywności są

jednak wyznaczone znacznie mniej dokładnie niż te zmierzone techniką FTIR. Skala intensywności

zmienia się dla różnych paneli w taki sposób, aby uczynić każdy fragment widma możliwie czytelny.
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Rysunek 38: Eksperymentalne i teoretyczne oscylacyjno-rotacyjne poziomy energetyczne dla
ortoD2–CO i v2 = 0. Poziomy teoretyczne (oznaczone na niebiesko) są podane względem stanu o
najniższej energii, (J, P, nJ,P , v2) = (0, e, 1, 0), wynoszącej −25.5279 cm−1. Poziomy energetyczne
wyznaczone w pracy [18] (na czarno) i w obecnej pracy (na czerwono) podane są względem najniższej
energii eksperymentalnej odpowiadającej stanowi (0, e, 1, 0). Zielona linia ciągła oznacza granicę
dysocjacji dla stanów o parzystości spektroskopowej e, podczas gdy granica dysocjacji dla stanów
f , oznaczona zieloną linia przerywaną, jest podniesiona o 3.845 cm−1.
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Rysunek 39: Szerokości rezonansów Γ (w skali logarytmicznej) w funkcji energii całkowitej Etot
dla ortoD2–CO, z cząsteczką CO w stanie wibracyjnym v2 = 0. Każdy punkt odpowiada jednemu
scharakteryzowanemu rezonansowi. Kolory punktów określają ich parzystość spektroskopową P :
czerwony oznacza f , a niebieski e. Czarne punkty wskazują stany, które nie zostały wyznaczone
z analizy eksperymentu. Pionowe linie w każdym panelu oddzielają grupy rezonansów z różnymi
wartościami całkowitego momentu pędu J i wyznaczają odcinki na osi poziomej, w ramach których
określić możemy energie odpowiadające każdemu punktowi. Czarna (czerwona) linia w każdym
panelu wyznacza próg Γ wynoszący 10−2 (10−4) cm−1.
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VIII. Adiabatyczna metoda uwzględniania niesztywności cząsteczek

Porównanie widm otrzymanych z obliczeń w przybliżeniu sztywnych rotatorów z zasto-

sowaniem powierzchni uśrednionej po drganiach cząsteczek V TEav (oznaczmy to podejście

4D+⟨V ⟩) z wynikami obliczonymi w podejściu pełnowymiarowym pokazało, że dla kom-

pleksów paraH2–CO i ortoH2–CO są one praktycznie nierozróżnialne [19, 27, 28]. Pojawia

się naturalne pytanie, czy podobnej zgodności możemy oczekiwać dla innych kompleksów.

Układ H2–CO charakteryzuje się tym, że energia oddziaływania jest dużo mniejsze od ener-

gii wiązania cząsteczek wchodzących w jego skład. W celu przeprowadzenia oszacowania

tej relacji przyjmijmy, że minimum energii oddziaływania powierzchni V TEav wynosi 92 cm−1

[16], natomiast energie wiązania w cząsteczkach H2 i CO wynoszą, dla geometrii równo-

wagowych, odpowiednio 38000 cm−1 [30] i 90000 cm−1 [61]. Zatem energia oddziaływania

jest odpowiednio 400 i 1000 razy mniejsza od energii wiązania dla H2 i CO. Przy tak dużej

dysproporcji możemy założyć, że fakt, że cząsteczki znajdują się w kompleksie ma znikomy

wpływ na drgania samych cząsteczek, czyli funkcje falowe opisujące ruch tych cząsteczek

w kompleksie różnią się niewiele od funkcji falowych opisujących ruch odseparowanych czą-

steczek, a takie właśnie funkcje używaliśmy do obliczania V TEav . Powyższy przypadek jest

przykładem sytuacji, gdy sprzężenie ruchów wewnątrzmolekularnych i międzymolekularnego

jest niewielkie. Można przypuszczać, że dla kompleksów tego typu podejście oparte na przy-

bliżeniu sztywnych rotatorów i powierzchniach uśrednionych powinno dawać wyniki bardzo

zbliżone do otrzymanych z obliczeń pełnowymiarowych. Aby przekonać się o prawdziwości

naszych przypuszczeń, wskazane jest wykonanie testów numerycznych dla innych od H2–CO

kompleksów charakteryzujących się podobną relacją energii oddziaływania i energii wiązań.

Testy takie nie są prostym zadaniem, gdyż trzeba, po pierwsze, dysponować wiarygodną

powierzchnią energii oddziaływania, po drugie, trzeba wykonać kosztowne pełnowymiarowe

obliczenia dynamiczne, na końcu zaś obliczenia dynamiczne w przybliżeniu sztywnych czą-

steczek z wykorzystaniem powierzchni uśrednionych po drganiach cząsteczek. Całość tych

działań stanowi solidny, niezależny projekt naukowy, który, po znalezieniu stosownego kom-

pleksu, z pewnością będzie przeprowadzony w naszej grupie badawczej.

Inne pytanie, które rodzi się, gdy obserwujemy sukces podejścia 4D+⟨V ⟩, to czy podobną

skuteczność zaobserwujemy dla kompleksu, w którym sprzężenie ruchów wewnątrz- i między-

molekularnych jest silniejsze niż dla H2–CO. Schemat testów jest w tym przypadku dokładnie

taki sam, jak dyskutowany powyżej. W poszukiwaniu układu odpowiedniego do tego typu
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testów, trafiliśmy na kompleks HF–HF, który nie tylko spełnia warunek silnego sprzężenia,

ale istnieje w literaturze wiarygodna, pełnowymiarowa powierzchnia energii oddziaływania

oraz wyniki pełnowymiarowych obliczeń dynamicznych [62]. Mając takie dane wyjściowe,

możemy przeprowadzić studia modelowe różnych metod o zredukowanym wymiarze, czy-

li korzystających z przybliżenia sztywnych rotatorów w obliczeniach dynamicznych, ale w

oparciu o powierzchnie energii oddziaływania otrzymane w różny sposób. Uprzedzając nieco

omówienie wyników testów dla HF–HF powiedzmy, że powierzchnia uśredniona po drga-

niach cząsteczek w taki sposób, jak to robiliśmy dla H2–CO nie daje aż tak dobrej zgodności

z wynikami pełnowymiarowymi, jak to miało miejsce dla tamtego kompleksu. W związku z

tym zaproponowaliśmy i przetestowaliśmy nieco bardziej zaawansowaną metodę uśredniania,

biorącą pod uwagę fakt, że w kompleksie cząsteczki drgają w polu partnera i ma to wpływ

na efektywną powierzchnię.

VIII.A. Redukcja wymiaru zagadnienia dynamicznego

Rozważmy ogólny przykład kompleksu złożonego z dwóch cząsteczek dwuatomowych.

Jego geometrię można opisać sześcioma parametrami, np., używanymi wcześniej współrzęd-

nymi Jacobiego (R, θ1, θ2, ϕ, r1, r2). Wprowadźmy indeks zbierający współrzędne międzymo-

lekularne Q = (R, θ1, θ2, ϕ), który będziemy stosować tam, gdzie pozwoli to uczynić zapis

bardziej zwartym.

Pełnowymiarowy opis dynamiki kompleksów van der Waalsa jest bardzo złożony i czaso-

chłonny, a największym kompleksem opisywanym w ten sposób w literaturze jest dimer wody

[63]. Kompleks ten cieszy się szczególnym zainteresowaniem ze strony badaczy w związku ze

znaczeniem wody, w tym również jej oddziaływań, w różnych zastosowaniach. Tymczasem

pełnowymiarowe obliczenia dla innych kompleksów, nawet dużo mniej skomplikowanych, jak

dwóch cząsteczek dwuatomowych, są ciągle nieliczne i dalekie od rutynowych. Tym bardziej

więc istnieje potrzeba wypracowania metod mniej kosztownych, które pozwolą na badania dla

szerszej grupy kompleksów. Dla przypadków, dla których jest to możliwe, należy te metody

skonfrontować z obliczeniami pełnowymiarowymi. Poniżej omówimy redukcję zagadnienie

pełnowymiarowego do problemu sztywnych rotatorów dla układu złożonego z dwóch czą-

steczek dwuatomowych. Nasza analiza inspirowana jest rozumowaniem przeprowadzonym

w pracy [10] dla przypadku oddziaływania atomu z cząsteczką dwuatomową. Oddziałujące

cząsteczki oznaczać będziemy A i B, a wielkości odpowiadające cząsteczce A (B) oznaczać

będziemy indeksem 1 (2).
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Zdefiniujmy najpierw hamiltonian dla ruchu jąder w cząsteczce dwuatomowej, której geo-

metria opisana jest przez ri, i = 1, 2,:

ĥi(ri) = −
1
2µi

∂2

∂r2i
+ Ui(ri) +

j2i
2µir2i

, (57)

gdzie ji jest operatorem momentu pędu, µi jest masą zredukowaną, a Ui(ri) potencjałem dla

cząsteczki i. Jeśli wprowadzimy hamiltonian dla cząsteczki, która się nie obraca

ĥ
(0)
i (ri) = −

1
2µi

∂2

∂r2i
+ Ui(ri), (58)

to ĥi(ri) można wyrazić jako

ĥi(ri) = ĥ
(0)
i (ri) +

j2i
2µir2i

. (59)

W przypadku pełnowymiarowym (6D) hamiltonian dla kompleksu dwóch cząsteczek dwu-

atomowych ma postać

Ĥ = − 1
2µ

∂2

∂R2
+
(J − j1 − j2)2

2µR2
+ V (r1, r2, R, θ1, θ2, ϕ) + ĥ1(r1) + ĥ2(r2), (60)

gdzie J jest operatorem całkowitego momentu pędu, a µ jest masą zredukowaną całego

kompleksu. Wykorzystując hamiltoniany (59), można zapisać H w postaci

Ĥ = − 1
2µ

∂2

∂R2
+
(J − j1 − j2)2

2µR2
+

j21
2µ1r21

+
j22
2µ2r22

+V (r1, r2, R, θ1, θ2, ϕ)+ ĥ
(0)
1 (r1)+ ĥ

(0)
2 (r2).

(61)

Przyjmijmy, że χ(0)i (ri) jest oscylacyjną funkcją falową dla cząsteczki i otrzymaną z równania

Schrödingera dla hamiltonianu ĥ
(0)
i (ri), a E(0)i odpowiadającą jej energią. Następnie wyko-

najmy uśrednienie wyrażenia (61) po drganiach cząsteczek, korzystając z iloczynu funkcji

falowych |χ(0)1 χ
(0)
2 ⟩. Otrzymamy

Ĥ4D =−
1
2µ

∂2

∂R2
+
(J − j1 − j2)2

2µR2
+B1j21 +B2j

2
2 (62)

+ ⟨χ(0)1 χ
(0)
2 |V (r1, r2, R, θ1, θ2, ϕ)|χ

(0)
1 χ

(0)
2 ⟩+ E

(0)
1 + E

(0)
2 ,

gdzie Bi =
1
2µi

〈
χ
(0)
i

∣∣∣∣∣ 1r2i
∣∣∣∣∣χ(0)i

〉
jest stałą rotacji dla cząsteczki i. Energia potencjalna kom-

pleksu, która pojawia się w równaniu (62), składa się z uśrednionej energii oddziaływania

Vav oraz energii oscylacji cząsteczek E
(0)
1 i E(0)2 . Dwa ostatnie wkłady są stałe i nie zależą

od współrzędnych międzymolekularnych Q. Jeśli założymy, że uśredniona energia oddziały-

wania znika w granicy odległości międzymolekularnej dążącej do nieskończoności, to energie

E
(0)
i , i = 1, 2, mogą być wyłączone z dalszych rozważań. Możemy wtedy zdefiniować energię

oddziaływania uśrednioną po drganiach odseparowanych cząsteczek jako

Vav(R, θ1, θ2, ϕ) = ⟨χ(0)1 χ
(0)
2 |V (r1, r2, R, θ1, θ2, ϕ)|χ

(0)
1 χ

(0)
2 ⟩. (63)
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W uśrednieniu wykonywanym w równaniu (62) jest jedno istotne przybliżenie: używamy

funkcje falowe χ(0)i otrzymane dla odizolowanych cząsteczek. Nie bierzemy więc pod uwa-

gę faktu, że cząsteczka drga w potencjale modyfikowanym przez oddziaływanie z partnerem.

Przybliżenie to jest dobrze uzasadnione gdy oddziaływanie pomiędzy cząsteczkami jest słabe

w porównaniu z energią wiązań w cząsteczkach. Taka sytuacja ma miejsce np. dla komplek-

su H2–CO, dla którego minimum energii oddziaływania leży około 92 cm−1 poniżej granicy

dysocjacji dla kompleksu i, jak szacowaliśmy na początku rozdziału VIII, jest to 400 razy

mniej niż energia wiązania w H2 i 1000 razy niż energia wiązania w CO. Dla H2–CO pokaza-

no [19, 28], że obliczenia 4D z potencjałem uśrednionym (63) dają wyniki bardzo zbliżone do

tych otrzymanych z obliczeń pełnowymiarowych. Jeśli jednak oddziaływanie międzymoleku-

larne jest stosunkowo silne, nie wiemy czy przybliżenie oparte na uśrednianiu z funkcjami χ(0)i
jest nadal wiarygodne. Aby sprawdzić tę kwestię, wykonaliśmy testy dla kompleksu HF–HF,

ponieważ w tym przypadku minimum energii oddziaływania to około 1600 cm−1, podczas

gdy minimum krzywej energii potencjalnej dla cząsteczki HF wynosi około 50000 cm−1 [61].

Zatem energia oddziaływania jest tylko 30 razy słabsza od energii wiązania. W takim przy-

padku drgania wewnątrzcząsteczkowe mają co prawda nadal znacznie większą energię (i są

szybsze) niż międzymolekularne, więc separacje tych dwóch typów drgań jest uzasadniona,

ale rodzi się pytanie, czy sposób realizacji tej separacji zastosowany w równaniu (62) będzie

również prowadził do bardzo wysokiej zgodności wyników 4D+⟨V ⟩ i 6D.

Aby złagodzić przybliżenie zastosowane w równaniu (62), zaproponowaliśmy nowe po-

dejście, które lepiej opisuje rzeczywistą fizyczną sytuację w rozważanym kompleksie. Jeśli

spojrzymy na wybraną cząsteczkę, np. A, to jej wewnętrzne drganie jest zdeterminowane

przede wszystkim przez krzywą energii potencjalnej, która jest jednak modyfikowana przez

oddziaływanie z drugą cząsteczką. W proponowanym, nowym podejściu załóżmy, że skła-

dowa związana z oddziaływaniem jest uśredniona po drganiach (niezaburzonych) drugiej

cząsteczki. Jednocześnie wpływ oddziaływania będzie różny w zależności od tego, w jakiej

odległości znajduje się partner oddziaływania i jak rozważana cząsteczka jest zorientowana

kątowo względem partnera. Ruchy wewnętrzne cząsteczki A są znacznie szybsze od zmiany

konfiguracji międzymolekularnych, więc możemy mówić o drganiu tej cząsteczki dla wybra-

nej konfiguracji reprezentowanej przez indeks zbiorczy Q. Hamiltonian nieobracającej się

cząsteczki A może być więc zapisany jako

ĥ
(Q)
1 (r1) = −

1
2µ1

∂2

∂r21
+ U1(r1) + ⟨χ(0)2 |V (r1, r2, Q)|χ

(0)
2 ⟩. (64)

W naszych rozważaniach uśredniamy V (r1, r2, Q) po drganiach cząsteczki 2 opisywanych
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przez funkcję χ
(0)
2 , ale niewiele różne wyniki powinien dać model, gdy zamiast potencja-

łu uśrednionego użyjemy V (r1, r2,0, Q), czyli przyjmiemy konkretną wartość zmiennej r2, w

tym wypadku uśrednioną po drganiach cząsteczki 2, czyli r2,0 = ⟨χ(0)2 |r2|χ
(0)
2 ⟩. Jak widać,

ĥ
(Q)
1 (r1) różni się od ĥ(0)1 (r1) zdefiniowanego w równaniu (58) ostatnim członem. Zależy on, po

wycałkowaniu po zmiennej r2, od zmiennych r1 i Q. Zatem, rozwiązanie równania Schrödin-

gera dla problemu z hamiltonianem ĥ
(Q)
1 , reprezentowane przez funkcję falową χ(Q)1 (r1) oraz

energię E(Q)1 , zależy nie tylko od r1, ale także w sposób parametryczny od Q, co jest zazna-

czone przez odpowiedni indeks górny. Oczywiście, można zdefiniować analogiczne wielkości

ĥ
(Q)
2 (r2), χ

(Q)
2 (r2) i E(Q)2 dla cząsteczki numer 2 drgającej w polu cząsteczki 1. W dalszych

rozważaniach będziemy zakładać, że wszystkie funkcje falowe odpowiadające cząsteczkom

χ
(0)
1 (r1), χ

(0)
2 (r2), χ

(Q)
1 (r1) i χ(Q)2 (r2), i = 1, 2, są znormalizowane.

Powróćmy teraz do postaci hamiltonianu (61), który po uśrednieniu po drganiach (nie-

zaburzonych) cząsteczek, dał nam hamiltonian 4D w przybliżeniu sztywnych rotatorów

(62), oraz uśredniony potencjał Vav (63). Uśrednienie całego wyrażenia (61) po drga-

niach reprezentowanych przez χ
(Q)
1 (r1) i χ(Q)2 (r2) jest możliwe, ale pojawią się wyrażenia

1
2µi

〈
χ
(Q)
i

∣∣∣∣∣ 1r2i
∣∣∣∣∣χ(Q)i

〉
, które zależą od Q, więc uśredniony hamiltonian, który otrzymaliby-

śmy, nie byłby hamiltonianem odpowiadającym zagadnieniu dynamicznemu w przybliżeniu

sztywnych rotatorów. W szczególności, nie pojawiłyby się stałe rotacji Bi, które są niezależ-

ne od geometrii międzymolekularnej Q, więc powstały operator nie byłby hamiltonianem w

przybliżeniu sztywnych rotatorów. Po prawej stronie równości w wyrażeniu (61) są jeszcze

trzy człony zależne od r1 lub r2: V (r1, r2, R, θ1, θ2, ϕ), ĥ
(0)
1 (r1) i ĥ(0)2 (r2). Możemy ich sumę

uśrednić po tych zmiennych z funkcją falową |χ(Q)1 χ
(Q)
2 ⟩ i wtedy, korzystając ze związków

(59) i (64), otrzymamy

⟨χ(Q)1 χ
(Q)
2 |V (r1, r2, Q) + ĥ

(0)
1 (r1) + ĥ

(0)
2 (r2)|χ

(Q)
1 χ

(Q)
2 ⟩

= ⟨χ(Q)1 χ
(Q)
2 |V (r1, r2, Q)|χ

(Q)
1 χ

(Q)
2 ⟩

+ ⟨χ(Q)1 χ
(Q)
2 |ĥ

(Q)
1 (r1)− ⟨χ

(0)
2 |V (r1, r2, Q)|χ

(0)
2 ⟩|χ

(Q)
1 χ

(Q)
2 ⟩

+ ⟨χ(Q)1 χ
(Q)
2 |ĥ

(Q)
2 (r2)− ⟨χ

(0)
1 |V (r1, r2, Q)|χ

(0)
1 ⟩|χ

(Q)
1 χ

(Q)
2 ⟩ (65)

= ⟨χ(Q)1 χ
(Q)
2 |V (r1, r2, Q)|χ

(Q)
1 χ

(Q)
2 ⟩

+ E(Q)1 − ⟨χ
(Q)
1 χ

(0)
2 |V (r1, r2, Q)|χ

(Q)
1 χ

(0)
2 ⟩+ E

(Q)
2 − ⟨χ

(0)
1 χ

(Q)
2 |V (r1, r2, Q)|χ

(0)
1 χ

(Q)
2 ⟩

W granicy gdy cząsteczki są rozsunięte do nieskończoności mamy lim
R→∞

E
(Q)
i = E

(0)
i , i = 1, 2,

więc, jeśli wybierzemy, podobnie jak dla uśredniania prowadzącego do Vav, sumę energii czą-

steczek E(0)1 +E
(0)
2 jako energię odniesienia, to powierzchnia energii oddziaływania uśredniona
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według powyższej reguły ma postać

Vad(Q) = ⟨χ(Q)1 χ
(Q)
2 |V (r1, r2, Q)|χ

(Q)
1 χ

(Q)
2 ⟩

+
(
E
(Q)
1 − ⟨χ

(Q)
1 χ

(0)
2 |V (r1, r2, Q)|χ

(Q)
1 χ

(0)
2 ⟩ − E

(0)
1

)
(66)

+
(
E
(Q)
2 − ⟨χ

(0)
1 χ

(Q)
2 |V (r1, r2, Q)|χ

(0)
1 χ

(Q)
2 ⟩ − E

(0)
2

)
.

Indeks dolny „ad” w nazwie tego potencjału nawiązuje do terminu „adiabatyczny”. Termin

ten używany jest w kontekście separacji ruchu elektronów i jąder atomowych przy wyprowa-

dzaniu wzorów na ruch jąder w cząsteczce [64], do określenia przypadku, gdy uwzględniamy

wpływ ruchu jąder na energię elektronową. Człon opisujący ten efekt jest zaniedbywany

w przybliżeniu Borna–Oppenheimera. W naszym przypadku, uśrednianie potencjału ener-

gii oddziaływania z funkcjami falowymi odseparowanych cząsteczek można porównać do

przybliżenia Borna–Oppenheimera, natomiast jeśli uwzględnimy oddziaływanie z partnerem

podczas obliczania drgań cząsteczki, to podejście takie możemy porównać do przybliżenia

adiabatycznego. Stąd uśrednianie potencjału w wyrażeniu (66) będziemy nazywać adiaba-

tycznym.

Reasumując tę część podkreślmy, że chcemy przetestować metodę opartą na przybliże-

niu sztywnych rotatorów z użyciem potencjału energii oddziaływania Vad i skonfrontować

ją z obliczeniami opartymi o inne powierzchnie zależne tylko od współrzędnych międzymo-

lekularnych, w tym przede wszystkim Vav. Możemy więc stwierdzić, że różnica pomiędzy

wynikami otrzymanymi z potencjałów Vad i Vav będzie wynikała z uwzględnienia efektów

adiabatycznych.

VIII.B. Algorytm uśredniania adiabatycznego

Uśrednianie adiabatyczne potencjału, zaproponowane powyżej, przetestowałem na przy-

kładzie kompleksu HF–HF. Wykonałem obliczenia 4D w przybliżeniu sztywnych rotatorów

dla różnych potencjałów o zredukowanym wymiarze, zależących wyłącznie od zmiennych

międzymolekularnych Q. Wykonane testy można określić jako modelowe, gdyż w każdym

przypadku punktem startowym był potencjał pełnowymiarowy V (r1, r2, R, θ1, θ2, ϕ), a uzy-

skane energie stanów oscylacyjno-rotacyjnych porównywałem z wynikami z obliczeń pełno-

wymiarowych z pracy [62], które będziemy traktowali jako „ścisłe”.

Jeśli efekt adiabatyczny jest istotny, to powinien on ujawnić się w obliczeniach dla HF–

HF, gdyż energia oddziaływania jest w tym przypadku dość duża w porównaniu z energią
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drgań cząsteczek. Co więcej, silna anizotropia energii oddziaływania czyni ten system szcze-

gólnie wymagającym dla metod przybliżonych. Powierzchnia użyta do testów, opublikowana

w [62], składa się z energii oddziaływania, nazwijmy ją dla potrzeb tego rozdziału V6D, oraz

dwóch potencjałów dla cząsteczek, U1 i U2, które są równe. V6D będziemy traktować jako

powierzchnię modelową do otrzymywania przybliżonych powierzchni energii oddziaływania

4D. Potencjały Ui, i = 1, 2, zostały użyte wszędzie tam, gdzie były wykonywane oblicze-

nia właściwości (energie, funkcje falowe, uśrednione długości wiązań) dla cząsteczek. Au-

torzy pracy [62] deklarują, że ich obliczenia były dobrze uzbieżnione, a dokładność energii

oscylacyjno-rotacyjnych jest lepsza niż 0.001 cm−1 dla wszystkich publikowanych stanów,

nawet wysokowzbudzonych. Zaprezentowana tam argumentacja nie jest w pełni przekonują-

ca, niemniej potencjalnie niewielkie odstępstwa od zadeklarowanej dokładności nie powinny

mieć istotnego wpływu na wyciągane przez nas wnioski dotyczące dokładności różnych przy-

bliżeń. Dlatego przyjmiemy energie oscylacyjno-rotacyjne z [62], oznaczane przez nas dalej

indeksem górnym „6D”, jako punkt odniesienia w naszych porównaniach energii z obliczeń

4D.

Dysponując pełnowymiarową powierzchnią energii oddziaływania V6D, możemy wygene-

rować wszystkie powierzchnie 4D, które chcemy przetestować, bez konieczności dopasowy-

wania ich modelu analitycznego. Możemy po prostu obliczać np. energie uśrednione „w locie”,

czyli dla siatki geometrii międzymolekularnych, które są konieczne do wykonania obliczeń

oscylacyjno-rotacyjnych. W procedurze uśredniania po drganiach cząsteczek trzeba rozwią-

zać problemy własne dla hamiltonianów bez i z partnerem oddziaływania, odpowiednio (58)

i (64). Aby wykonać to zadanie, użyliśmy programu do obliczeń oscylacyjno-rotacyjnych dla

cząsteczek TRIATOM [65], który generował wartości funkcji falowej dla drgającej cząstecz-

ki dwuatomowej na siatce punktów w zmiennej wewnątrzmolekularnej. W ogólności, dla

różnych cząsteczek możemy mieć siatki o różnych liczbach punktów, oznaczmy je N1 i N2,

odpowiednio dla cząsteczek A i B. Mamy zatem N1×N2 punktów siatki w dwóch wymiarach,

które oznaczamy poniżej symbolem qkl = (r1,k, r2,l). Rozwiązując równania Schrödingera dla

izolowanych cząsteczek z hamiltonianami ĥ(0)i (ri), i = 1, 2, otrzymujemy funkcje falowe χ(0)i
i energie własne E(0)i . Następnie, dla każdej wartości zbioru współrzędnych Q potrzebnej w

obliczeniach oscylacyjno-rotacyjnych, możemy zastosować następujący schemat postępowa-

nia:

1. Rozwiązujemy problem własny z hamiltonianem (64) dla cząsteczki A. Najpierw musi-

my obliczyć ⟨χ(0)2 |V (r1, r2, Q)|χ
(0)
2 ⟩ dla punktów siatki r1,k, k = 1, . . . , N1, a następnie
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dodać te wartości do wartości U1(r1) wygenerowanych dla tej samej siatki wartości r1.

Wynikiem obliczeń jest χ(Q)1 i E(Q)1 .

2. Powtarzamy powyższy krok, ale dla cząsteczki B, z wpływem cząsteczki A uwzględnio-

nym przez dodanie do U2(r2) wyrażenia ⟨χ(0)1 |V (r1, r2, Q)|χ
(0)
1 ⟩ dla każdego z punktów

siatki r2,k, k = 1, . . . , N2. W efekcie otrzymamy χ(Q)2 i E(Q)2 .

3. Obliczamy Vad(Q), zgodnie ze wzorem (66), z otrzymanymi χ(0)i , χ(Q)i , E(0)i i E(Q)i ,

i = 1, 2.

Jednowymiarowe obliczenia potrzebne do otrzymania χ
(Q)
i i E(Q)i nie są czasochłonne. W

omawianym przypadku HF–HF są one znacznie szybsze niż wielokrotne wołanie procedury

obliczania potrzebnych wartości energii oddziaływania. W punktach 1 i 2 naszego algorytmu

używamy niezaburzonych funkcji falowych χ(0)i , i = 1, 2, aby obliczyć ⟨χ(0)1 |V (r1, r2, Q)|χ
(0)
i ⟩.

Moglibyśmy jednak umieścić te dwa punkty w pętli i otrzymać samouzgodnione wartości

χ
(Q)
i i E(Q)i . Co jest ważne, nie potrzebowalibyśmy żadnych nowych wartości V (r1, r2, Q)

poza tymi, które już zostały obliczone w pierwszej iteracji.

Dla kompleksu HF–HF dysponujemy powierzchnią modelową V6D, więc wartości poten-

cjału Vad(Q) mogą być obliczone dla dowolnej wartości współrzędnych Q wymaganych przez

program używany do obliczeń oscylacyjno-rotacyjnych. Jeśli, dla jakiegoś kompleksu, peł-

nowymiarowa powierzchnia energii oddziaływania nie jest dostępna, można wybrać zbiór

współrzędnych międzymolekularnych Q wystarczających do tego, aby potem dopasować

analityczny model powierzchni energii oddziaływania. Dla tego zbioru można zastosowań

powyższy algorytm biorąc potrzebne wartości energii oddziaływania bezpośrednio z obli-

czeń ab initio. Następnie należy dopasować powierzchnię energii oddziaływania. Otrzyma-

na powierzchnia może być użyta albo do obliczeń oscylacyjno-rotacyjnych w przybliżeniu

sztywnych rotatorów, albo do obliczania innych właściwości fizykochemicznych, np. współ-

czynników wirialnych [66].

VIII.C. Uśrednianie z wykorzystaniem rozwinięcia Taylora

Obliczanie powierzchni energii oddziaływania Vad zgodnie z algorytmem podanym w roz-

dziale VIII.B jest możliwe bez konstruowania powierzchni pełnowymiarowej. Jednakże, aby

otrzymać adiabatycznie uśrednioną energię oddziaływania dla jednego punktu w dziedzinie

wszystkich konfiguracji międzymolekularnych Q, trzeba wykonać obliczenia ab initio energii
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oddziaływania dla N1 ×N2 punktów siatki qkl. Nawet jeśli wybierzemy umiarkowaną liczbę

punktów, np. Ni = 10, energia oddziaływania musi być obliczona dla 100 wartości qkl. To

czyni obliczenia potrzebne do otrzymania Vad dwa rzędy wielkości bardziej czasochłonny-

mi od tych potrzebnych do otrzymania powierzchni ze sztywnymi cząsteczkami, np. V (r0).

Takie skalowanie może uniemożliwić zastosowanie bardzo zaawansowanych metod ab initio

i dużych baz funkcyjnych. Aby złagodzić koszty obliczeń możemy adaptować do oblicza-

nia Vad przybliżenie, które było używane wcześniej w naszej grupie do konstrukcji Vav, np.

dla kompleksów Ar–HF, N2–HF, czy H2–CO [15, 16, 26, 67]. To przybliżenie opiera się na

rozwinięciu pełnowymiarowej powierzchni energii oddziaływania w szereg Taylora (Taylor

expansion, TE) względem współrzędnych wewnątrzmolekularnych,w naszym przypadku r1

i r2, wokół pewnych wartości odniesienia, odpowiednio r1,c i r2,c. Jeśli ograniczymy się do

wyrazów drugiego rzędu w r1 i r2, to otrzymamy

VTE(Q, r1, r2) = V00(Q) + V10(Q) · (r1 − r1,c) + V01(Q) · (r2 − r2,c)+

+
1
2
V20(Q) · (r1 − r1,c)2 +

1
2
V02(Q) · (r2 − r2,c)2 + V11(Q) · (r1 − r1,c)(r2 − r2,c),

(67)

gdzie

V00(Q) ≡ V (Q, r1,c, r2,c), V10(Q) ≡ ∂V

∂r1

∣∣∣∣∣
r1=r1,c

, V01(Q) ≡ ∂V

∂r2

∣∣∣∣∣
r2=r2,c

,

V20(Q) ≡ ∂2V

∂r21

∣∣∣∣∣
r1=r1,c

, V02(Q) ≡ ∂2V

∂r22

∣∣∣∣∣
r2=r2,c

, V11Q ≡ ∂2V

∂r1∂r2

∣∣∣∣∣
r1=r1,c,r2=r2,c

.

Jeśli do obliczania Vkl(Q), kl = 00, 10, 01, 20, 02 i 11, użyjemy najprostszych wzorów metody

różnic skończonych, np. takich jak w pracy [16], to energię oddziaływania musimy obliczyć

tylko dla 6 par wartości współrzędnych (r1, r2) dla każdej wartości Q. Stąd, w przypadku

oddziaływania dwóch cząsteczek dwuatomowych, obliczenia ab initio prowadzące do VTE

byłyby tylko 6 razy bardziej kosztowne niż obliczenia potrzebne do otrzymania powierzchni

4D ze sztywnymi cząsteczkami.

Uśrednienie wyrażenia z równania (67) z funkcjami falowymi dla cząsteczek χ
(X)
1 (r1) i

χ
(Y )
2 (r2), gdzie X,Y mogą być równe 0 dla cząsteczki, której ruch jest niezaburzony przez
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partnera, albo Q gdy jest zaburzony, prowadzi do następujących wzorów

⟨χ(X)1 χ
(Y )
2 |VTE(Q, r1, r2)|χ

(X)
1 χ

(Y )
2 ⟩ = V00(Q)

+ V10(Q) · (⟨χ(X)1 |r1|χ
(X)
1 ⟩ − r1,c) + V01(Q) · (⟨χ

(Y )
2 |r2|χ

(Y )
2 ⟩ − r2,c)

+
1
2
V20(Q) · (⟨χ(X)1 |r21|χ

(X)
1 ⟩ − 2⟨χ

(X)
1 |r1|χ

(X)
1 ⟩r1,c + r21,c) (68)

+
1
2
V02(Q) · (⟨χ(Y )2 |r22|χ

(Y )
2 ⟩ − 2⟨χ

(Y )
2 |r2|χ

(Y )
2 ⟩r2,c + r22,c)

+ V11(Q) · (⟨χ(X)1 |r1|χ
(X)
1 ⟩ − r1,c)(⟨χ

(Y )
2 |r2|χ

(Y )
2 ⟩ − r2,c).

Aby w podejściu adiabatycznym (66) sformułować spójne przybliżenie bazujące na rozwi-

nięciu Taylora należy wziąć pod uwagę, że problem własny dla hamiltonianów ĥ
(Q)
i , równanie

(64), powinien być również obliczony w ramach przybliżenia Taylora, poprzez użycie VTE,

równanie (67), zamiast V w definicji (64). Nazwijmy energie otrzymane w takim przybliżeniu

E
(Q)
i,TE, i = 1, 2. Zatem, jeśli podstawimy VTE zamiast V , to po przekształceniach adiabatycz-

nie uśredniona powierzchnia Vad z równania (66) może być wyrażona w przybliżeniu TE

jako

V TEad (Q) = E
(Q)
1,TE + E

(Q)
2,TE − E

(0)
1 − E

(0)
2 − ⟨χ

(0)
1 χ

(0)
2 |VTE(Q, r1, r2)|χ

(0)
1 χ

(0)
2 ⟩

+ V11(Q) · (⟨χ(Q)1 |r1|χ
(Q)
1 ⟩ − ⟨χ

(0)
1 |r1|χ

(0)
1 ⟩)(⟨χ

(Q)
2 |r2|χ

(Q)
2 ⟩ − ⟨χ

(0)
2 |r2|χ

(0)
2 ⟩).

(69)

Jest warte podkreślenia, że w ostatecznym wzorze (69) nie ma explicite zależności

od wartości geometrii odniesienia r1,c i r2,c, ale energie E
(Q)
1,TE i E

(Q)
2,TE oraz człon

⟨χ(0)1 χ
(0)
2 |VTE(Q, r1, r2)|χ

(0)
1 χ

(0)
2 ⟩ zależą od nich, ponieważ rozwinięcie w szereg potencjału

oddziaływania jest wykonane wokół tych punktów.

Warto też wspomnieć, że w przypadku zwykłego uśrednienia potencjału rozwiniętego w

szereg Taylora (67), odpowiadającego (63), wzór (68) zredukuje się do

⟨χ(0)1 χ
(0)
2 |VTE(Q, r1, r2)|χ

(0)
1 χ

(0)
2 ⟩ = V00(Q)

+ V10(Q) · (⟨χ(0)1 |r1|χ
(0)
1 ⟩ − r1,c) + V01(Q) · (⟨χ

(0)
2 |r2|χ

(0)
2 ⟩ − r2,c)

+
1
2
V20(Q) · (⟨χ(0)1 |r21|χ

(0)
1 ⟩ − 2⟨χ

(0)
1 |r1|χ

(0)
1 ⟩r1,c + r21,c) (70)

+
1
2
V02(Q) · (⟨χ(0)2 |r22|χ

(0)
2 ⟩ − 2⟨χ

(0)
2 |r2|χ

(0)
2 ⟩r2,c + r22,c)

+ V11(Q) · (⟨χ(0)1 |r1|χ
(0)
1 ⟩ − r1,c)(⟨χ

(0)
2 |r2|χ

(0)
2 ⟩ − r2,c).

Potencjał otrzymany z powyższego wzoru będziemy nazywać V TEav . To właśnie potencjał na

tym poziomie przybliżenia, wprowadzony w rozdziale II.E, był używany do obliczeń roz-

proszeniowych dla H2–CO omówionych w rozdziałach III-IV. W testach numerycznych dla
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kompleksu HF–HF, które prezentujemy w rozdziale VIII.E, geometrie, wokół których roz-

wijamy w szereg, przyjmiemy równe ri,c = ⟨χ(0)i |ri|χ
(0)
i ⟩, dla i = 1, 2. Wtedy wzór (70)

dodatkowo się uprości do postaci

V TEav (Q) = V00(Q) +
1
2
V20(Q) · (⟨χ(0)1 |r21|χ

(0)
1 ⟩ − r21,c) +

1
2
V02(Q) · (⟨χ(0)2 |r22|χ

(0)
2 ⟩ − r22,c). (71)

Wiodący człon w tym rozwinięciu, V00(Q), będzie, zgodnie ze wzorem (68), równy

V (Q, ⟨χ(0)1 |r1|χ
(0)
1 ⟩, ⟨χ

(0)
2 |r2|χ

(0)
2 ⟩), czyli wartości energii oddziaływania obliczonej dla uśred-

nionych geometrii cząsteczek. Odpowiada on więc powierzchni energii oddziaływania ozna-

czanej w dalszej części naszych rozważań V⟨r⟩. Stąd, przy powyższym wyborze wartości r1,c

i r2,c, różnica pomiędzy powierzchniami V TEav i V⟨r⟩ wynika z dwóch wyrazów kwadratowych

w zmiennych r1 i r2.

Metoda TE otwiera też możliwości poprawy jakości ostatecznej powierzchni energii od-

działywania o zredukowanym wymiarze. Człon wiodący w rozwinięciu, V00(Q), może być

obliczony na najwyższym możliwym poziomie teorii, co wiążę się z kosztami, natomiast po-

chodne V ij(Q), i+ j > 0, mogą być obliczane na niższym, bardziej ekonomicznym poziomie

teorii. Czyniąc takie przybliżenie zakładamy, że kształt energii oddziaływania jest modelo-

wany poprawnie już w tych bardziej ekonomicznie dostępnych obliczeniach. Takie podejście

zostało użyte do konstrukcji powierzchni V TEav dla H2–CO w pracach [15, 16], a wyniki obli-

czeń dynamicznych bardzo dobrze zgadzały się z doświadczeniem. W pracy [23] otrzymano

analogiczną powierzchnię uśrednioną bez opcji oszczędnościowej, a porównanie wyników z

poprzednimi pracami pokazało, że zastosowane przybliżenie ma bardzo niewielki wpływ na

dokładność otrzymanego widma. W obu przypadkach rozbieżności w stosunku do widma

doświadczalnego były praktycznie takie same.

VIII.D. Problem wyboru stałych rotacji

Stałe rotacji dla oddziałujących cząsteczek są nieodłącznym elementem obliczeń oscyla-

cyjno-rotacyjnych prowadzonych dla kompleksów van der Waalsa w przybliżeniu sztywnych

rotatorów. Wartości stałych rotacji mogą być wzięte z eksperymentów albo mogą być obliczo-

ne jeśli powierzchnia energii potencjalnej dla danej cząsteczki jest dostępna. Obliczenie stałej

rotacji jest proste dla cząsteczki dwuatomowej, jeśli użyjemy wyrażenia B =
1
2µ

〈
χ
∣∣∣∣ 1r2

∣∣∣∣χ〉
[10], gdzie µ jest masą zredukowaną cząsteczki, a χ jest jej wibracyjną funkcją falową. Oczy-

wiście, wartość B zależy od stanu oscylacyjnego rozważanej cząsteczki. W obu przypadkach,

stałej eksperymentalnej i teoretycznej, zakładamy, że cząsteczki są izolowane. Jeśli jednak
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rozważamy cząsteczki w kompleksie van der Waalsa, to założenie takie wprowadza pewne

przybliżenie, bo cząsteczki drgają i obracają się w polu partnera oddziaływania.

Postanowiliśmy sprawdzić, czy ten efekt może być w jakiś sposób uwzględniony w oblicze-

niach z przybliżeniem sztywnych rotatorów. Problem wyboru wartości stałych rotacji został

zauważony, gdy wykonywano przybliżone obliczenia dynamiczne, np. dla dimeru HF [68]

czy dimeru H2O [69]. Tutaj zajmujemy się tym problemem poprzez wykonanie eksperymen-

tu numerycznego dla powierzchni adiabatycznie uśrednionej Vad. Przetestujemy procedurę

uzyskiwania „efektywnej” stałej rotacji stosując następujący algorytm. Najpierw obliczamy

wartość B dla każdej z konfiguracji międzymolekularnych Q dwukrotnie: dla cząsteczek A

i B z odpowiednimi funkcjami falowymi χ(Q)i , i = 1, 2. Następnie obliczamy średnią aryt-

metyczną tych wartości po wszystkich geometriach Q, a wynik oznaczamy Bad. Uśrednienie

może być ograniczone do tylko pewnego podzbioru geometrii Q, dla których energia od-

działywania jest mniejsza niż wybrany próg Ethr. Staraliśmy się znaleźć fizyczną motywacją

dla wyboru konkretnej wartości Ethr. W związku z tym przetestowaliśmy trzy koncepcje. W

pierwszej przyjęliśmy wartość Ethr zbliżoną do energii najwyższego poziomu energetycznego,

który interesuje nas w obliczeniach. W drugiej koncepcji wybraliśmy wartość Ethr tak, aby

leżała w połowie odległości pomiędzy poziomami najniższym i najwyższym rozważanym. W

trzeciej wybraliśmy wartość Ethr zbliżoną do energii najniższego stanu. Potrzebne w tych roz-

ważaniach energie poziomów energetycznych można oszacować z przybliżonych, wstępnych

obliczeń. Oczywiście, taki sposób znajdowania B ma ograniczone znaczenie praktyczne, ze

względu na dużą liczbę geometrii użytych w procesie uśredniania. Jednakże w praktycznych

realizacjach uśrednianie prowadzące do Bad może być wykonane dla zbioru geometrii Q po-

trzebnych do opracowania powierzchni energii oddziaływania, równolegle do tych obliczeń

i bez dodatkowych kosztów. Co więcej, Bad może być obliczone również wtedy, gdy stosu-

jemy metodę TE w celu uzyskania V TEad . W rozdziale VIII.E prezentujemy jak modyfikacja

wartości stałej rotacji Bad wpływa na obliczone widma oscylacyjno-rotacyjne kompleksu.

VIII.E. Testy numeryczne dla kompleksu HF–HF

Wybór kompleksu HF–HF jako systemu do testów nowej metody uśredniania adiabatycz-

nego wynikał z dwóch powodów. Po pierwsze, jest to bardzo wymagający układ testowy,

gdyż energia oddziaływania jest stosunkowo silna, powierzchnia jest bardzo anizotropowa,

amplitudy drgań wewnętrznych cząsteczek są stosunkowo duże, a energia oddziaływania

silnie zależy od zmiany geometrii cząsteczek. Po drugie, dla dimeru HF istnieje obszerna
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literatura, dotycząca zarówno strony eksperymentalnej, jak i teoretycznej, np. [62, 68, 70–

87]. Tak ożywione zainteresowanie na przestrzeni ostatnich dziesięcioleci wynikało głównie

z tego, że dimer ten był traktowany jako prostszy prekursor dimeru wody. Siła i charakter

oddziaływania są w obu przypadkach podobne, a dimer HF–HF był istotnie łatwiejszy w

interpretacji wyników. Doświadczenie zdobyte w jego badaniu było potem z powodzeniem

wykorzystane w eksploracji dimeru wody, który jest oczywiście znacznie ważniejszy z uwagi

na szczególna pozycję, która woda zajmuje w zrozumieniu otaczającej nas przyrody.

Geometrię kompleksu HF–HF możemy parametryzować współrzędnymi Jacobiego (rys. 40)

używając tej samej konwencji oznaczeń jak w pracy [62], gdzie wprowadzono powierzchnie

V6D. Przy takiej definicji geometrii, jeśli F(i) i H(i) są atomami tworzącymi i-tą cząsteczkę,

to geometrii liniowej F(1)-H(1)· · ·F(2)-H(2) odpowiadają wartości kątów (θ1, θ2) = (0◦, 0◦),

a ϕ=0◦ dla współliniowych cząsteczek z H(1) i H(2) wskazującymi ten sam kierunek.

H

F

H

F

R

r1

r2

θ1

θ2

ϕ

1

Rysunek 40: Współrzędne Jacobiego dla kompleksu HF–HF.

W pracach dotyczących dynamiki kompleksu HF–HF używa się terminologii określającej

poszczególne sześć drgań normalnych układu, wywodzącej się z traktowania tego kompleksu

jako związanego wiązaniem wodorowym. Mamy więc mody rozciągające i zginające, których

angielskie nazwy są następujące: free-H monomer stretch (ν1), bound-H monomer stretch

(ν2), in-plane anti-geared bend (ν3), van der Waals stretch (ν4), in-plane geared bend (ν5)

i out-of-plane torsion (ν6) [71, 74, 75, 78, 79, 88–91]. W związku z tym, charakteryzując

poszczególne oscylacyjno-rotacyjne stany kwantowe, używa się zbioru przybliżonych liczb
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kwantowych (ν1, ν2, ν3, ν4, ν5, ν6). Ponieważ w naszym przypadku rozważać będziemy kom-

pleks z cząsteczkami w ich podstawowych stanach oscylacyjnych, więc do jednoznacznego

wskazanie stanu wystarczy skrócony opis za pomocą (ν3, ν4, ν5, ν6). Stany kwantowe będące

rozwiązaniami równania Schrödingera dla ruchu jąder w kompleksie HF–HF należą do jed-

nej z reprezentacji nieprzywiedlnych grupy G4, więc odpowiadające im poziomy energetyczne

będziemy prezentować w blokach numerowanych nazwami tych reprezentacji: A+, A−, B+ i

B−.

W dalszej części tego rozdziału omówmy szereg testów wykonanych dla trzech powierzchni

o zredukowanym wymiarze (4D) i zależących jedynie od współrzędnych międzymolekular-

nych Q, biorących pod uwagę efekty niesztywności molekuł na trzy sposoby. (i) Powierzchnia

V⟨r⟩ otrzymana jest z V6D poprzez przyjęcie r1= r2= ⟨r⟩, gdzie ⟨r⟩ jest uśrednioną po drga-

niach długością wiązania H-F w odseparowanej cząsteczce. (ii) Powierzchnia Vav powstaje

z V6D poprzez uśrednienie po drganiach cząsteczek, gdy użyjemy oscylacyjnych funkcji fa-

lowych odseparowanych cząsteczek. (iii) Powierzchnia uśredniona adiabatycznie, Vad, otrzy-

mana zgodnie z algorytmem podanym w rozdziale VIII.C. Aby otrzymać, w ramach naszych

testów, powierzchnie V⟨r⟩, Vav i Vad, użyliśmy pełnowymiarowej powierzchni energii oddzia-

ływania V6D z pracy [62]. Obliczone energie 4D będziemy porównywać z wynikami obliczeń

6D z tamtej pracy, więc w celu zapewnienia możliwie wysokiej zgodności wszystkich kompo-

nentów obliczeń, tam gdzie to było konieczne przy konstrukcji Vav i Vad, używaliśmy krzywej

energii potencjalnej dla cząsteczki HF, UHF, również zaczerpniętej z pracy [62]. Także stałe

rotacji dla HF, wykorzystywane w obliczeniach oscylacyjno-rotacyjnych 4D, zostały obliczo-

ne z takim samym potencjałem dla cząsteczki.

Obliczenia oscylacyjno–rotacyjne w przybliżeniu sztywnych rotatorów dla kompleksu HF–

HF zostały wykonane z użyciem programu dimer456, udostępnionego przez Ada van der

Avoirda z Uniwersytetu Radbouda w Nijmegen [92]. W odróżnieniu od programu BOUND,

który wykorzystaliśmy wcześniej do analizy widm kompleksu H2–CO i jego izotopologów,

program dimer456 rozwiązuje równanie Schrödingera w układzie odniesienia związanym z

kompleksem, a nie w układzie laboratoryjnym. Kolejną istotną różnicą jest sposób wyznacza-

nia stanów związanych: zamiast procedury dopasowywania funkcji falowych propagowanych

od małych i dużych odległości R, znanej z programu BOUND, zastosowano standardową dia-

gonalizację hamiltonianu w bazie zbudowanej z iloczynu funkcji kątowych i radialnych. Te

drugie zostały otrzymane z wykorzystaniem metody DVR [93] (Discrete Variable Represen-
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tation) w wariancie sinc [94] przez rozwiązanie równania własnego dla operatora:

− 1
2µ

∂2

∂R2
+ Veff(R),

gdzie Veff(R) = Vmetoda(R;Qmin) + αR. Tutaj Vmetoda(R;Qmin) (metoda = ⟨r⟩, av, lub ad)

oznacza przekrój przez czterowymiarowy potencjał dla współrzędnych kątowych zamrożo-

nych w geometrii odpowiadającej minimum, a dodatkowy wyraz liniowy z parametrem α

pełni jedynie rolę technicznego członu stabilizującego obliczenia. Diagonalizacja wykonywa-

na była przy użyciu algorytmu Davidsona [95], który umożliwia obliczenie wybranej liczby

najniższych wartości własnych hamiltonianu, bez konieczności rozwiązywania całego proble-

mu.

Uważa się, że takie podejście pozwala łatwiej uzbieżnić obliczenia dla kompleksów ze sto-

sunkowo silną energią oddziaływania. Niemniej oba programy i obie metody powinny prowa-

dzić do takich samych energii oscylacyjno-rotacyjnych. Udało nam się tak dobrać parame-

try definiujące dokładność obliczeń, aby wszystkie otrzymane energie oscylacyjno-rotacyjne

miały dokładność lepszą niż 0.001 cm−1. Zostało to potwierdzone w testach zbieżności wy-

konanych programem dimer456, a ponadto potwierdziliśmy to w niezależnych obliczaniach

programem BOUND [46]. W obliczeniach 4D, gdy obie cząsteczki są w podstawowych stanach

oscylacyjnych, użyliśmy stałej rotacji B0 = 20.5598 cm−1, obliczonej dla krzywej energii

potencjalnej UHF z pracy [62].

W tym miejscu wyjaśnijmy, w jaki sposób prezentowane są obliczone w naszych testach

energie oscylacyjno-rotacyjne. Dla obliczeń wykonanych z dowolną powierzchnią 4D przyj-

mujemy, że zero energii oddziaływania występuje dla cząsteczek rozsuniętych do nieskończo-

ności. Stanowi to także zerową energię odniesienia dla poziomów energetycznych. Stąd, np.,

energia stanu podstawowego obliczona z powierzchnią uśrednioną adiabatycznie Vad, zapre-

zentowana w tabeli XIX (str. 180), wynosi −1035.341 cm−1. Energie otrzymane z metody

(albo przybliżenia) „M ” będziemy oznaczać EM . Znaczenie terminu „metoda” lub „przybliże-

nie” jest tutaj szersze niż tylko użycie odpowiedniej powierzchni energii oddziaływania, bo

definiuje także jaka stała rotacji była wykorzystana w obliczeniach. Jeśli ta stała jest inna niż

B0, to nazwa odpowiedniej stałej rotacji pojawia się w nazwie metody. Z kolei energie otrzy-

mane z obliczeń 6D w pracy [62], oznaczmy je E6D, są określone względem energii oscylacyj-

nych stanów podstawowych rozseparowanych cząsteczek, a energia oscylacyjno-rotacyjnego

stanu podstawowego kompleksu jest równa −1037.512 cm−1 [62].

Zazwyczaj posługujemy się nie bezwzględnymi wartościami energii otrzymanymi z obli-

czeń, ale wartościami względem stanu podstawowego, co wynika z zastosowań w spektro-
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skopii, gdy ważne są energie przejść. Więcej informacji na ten temat pojawi się poniżej,

ale już teraz wprowadźmy oznaczenie dla energii względnej. Jeśli EM,i jest energią i-tego

stanu obliczonego metodą M , a EM,(0000) jest energią stanu podstawowego otrzymanego z

tych obliczeń, to energię względną oznaczmy EM,i = EM,i − EM,(0000). Analogicznie, energia

względna z obliczeń 6D wynosi E6D,i = E6D,i−E6D,(0000). Odnosząc się do energii względnych

bez wskazywania konkretnego stanu, będziemy posługiwać się symbolami EM i E6D.

Nasze testy wykonaliśmy nie tylko dla powierzchni Vad, która jest naszym szczególnym

obiektem zainteresowania, ale także dla innych powierzchni 4D zdefiniowanych w rozdzia-

le VIII.C: V⟨r⟩, Vav, V TEav i V TEad , z których część jest już znana w literaturze. Dzięki temu

uzyskamy wszechstronny wgląd w dokładność każdego przybliżenia. Wyniki przedstawiamy

w kilku tabelach i na rysunku. Część informacji w kolejnych tabelach może się powtarzać, ale

staraliśmy się tak zestawić dane w każdej z nich, aby można było wygodnie przedyskutować

jakiś konkretny aspekt zastosowanych przybliżeń. W pojedynczej tabeli mogą się również

pojawić dane, które na pierwszy rzut oka wydają się nadmiarowe. Na przykład w tabeli XIX

podajemy zarówno energie E6D i E⟨r⟩, jak i ich różnicę E⟨r⟩−E6D. Choć oczywiście wystar-

czą dwie z tych trzech wartości, aby wyznaczyć trzecią, to taki celowy „nadmiar” pozwala

korzystać z dowolnej wielkości bez potrzeby dodatkowych przeliczeń.

Omawianie wyników testów rozpocznijmy od porównania dokładności poziomów ener-

getycznych obliczonych z trzech powierzchni: V⟨r⟩, Vav i Vad. Wartości otrzymanych energii

oscylacyjno-rotacyjnych zebrane są w tabeli XIX (str. 180), a graficzna prezentacja tych wy-

ników, pomagająca śledzić relacje pomiędzy metodami, znajduje się na rysunku 41 (str. 185).

Z kolei w tabeli XX (str. 181) znajdują się dane pozwalające spojrzeć na wyniki w sposób

bardziej syntetyczny, poparty wskaźnikami statystycznymi. Energie E⟨r⟩, Eav i Ead, otrzyma-

ne odpowiednio z obliczeń dla powierzchni V⟨r⟩, Vav i Vad, podane są względem odpowiednich

energii stanu podstawowego. Taki sposób prezentacji danych jest bardzo typowy w literatu-

rze, gdzie zazwyczaj wyniki takie odnosi się do spektroskopii, a tam porównuje się przejścia

pomiędzy poziomami energetycznymi, więc pominięcie pewnego stałego przesunięcia nie ma

niekiedy znaczenia.

Z sytuacją taką mamy do czynienie np. w przejściach w H2–CO w zakresie milimetro-

wym [16], gdy w stanie początkowym i końcowym stany oscylacyjne obu cząsteczek nie

zmieniają się. Z drugiej strony, dla tego samego układu, gdy obserwujemy przejścia w pod-

czerwieni [15] towarzyszące zmianom stanu oscylacyjnego w CO, stany podstawowe dla przy-

padków H2–CO(v2=0) i H2–CO(v2=1) są nieco różne (opisują przesunięcie ku czerwieni (red-
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shift)) i trzeba to uwzględnić w energii przejścia. Położenie stanu podstawowego silnie zależy

od głębokości potencjału, dlatego jego zmiana może służyć jako wskaźnik zmian tego para-

metru. Dla potencjałów V⟨r⟩, Vav i Vad, energie stanu podstawowego w kompleksie HF–HF

wynoszą odpowiednio −1024.653 cm−1, −1029.611 cm−1 i −1035.341 cm−1, podczas gdy

wartość otrzymana z obliczeń 6D to −1037.512 cm−1. Widać więc, że gdy przesuwamy się

w sekwencji coraz bardziej zaawansowanych przybliżeń, energia stanu podstawowego jest

coraz bliższa wartości odniesienia. W niektórych zastosowaniach, np. obliczaniu właściwości

termodynamicznych czy obliczeniach rozproszeniowych, poprawna efektywna głębokość po-

tencjału ma zasadnicze znaczenie. Dlatego poza danymi prezentującymi energie względem

odpowiednich energii stanu podstawowego, na rysunku 41 oraz w tabeli XX zaprezentowano

także różnice pomiędzy bezwzględnymi wartościami energii oscylacyjno-rotacyjnych obliczo-

nych metodami przybliżonymi oraz energiami otrzymanymi z obliczeń 6D. Aby rozróżnić

te dwa sposoby prezentacji wyników, nadajmy im nazwy. Przywołajmy wprowadzone wcze-

śniej oznaczenia: symbolem EM,i oznaczamy energię względną i-tego poziomu obliczonego

metodą M (EM,i = EM,i − EM,(0000)). Wtedy pierwszy z omawianych powyżej sposobów po-

równania z wynikami 6D, nazwijmy go „α”, możemy zapisać jako różnicę (EM,i−E6D,i), a

drugi, który będziemy określać jako „β”, odpowiada różnicy (EM,i−E6D,i). Różnice w tabe-

li XIX prezentowane są według schematu α. W tabeli tej umieściliśmy energie tylko tych

stanów oscylacyjno-rotacyjnych, dla których podano energie 6D w pracy [62].

Pierwsza rzecz, która rzuca się w oczy to ujemne wartości różnicy E⟨r⟩−E6D z tej tabeli

dla wszystkich poziomów energetycznych. Przypomnijmy, że energie stanu podstawowego

dla tych przypadków wynoszą −1024.653 cm−1 dla V⟨r⟩ i −1037.512 cm−1 dla V6D. Z połą-

czenia tych dwóch informacji można wywnioskować, że potencjał V⟨r⟩ jest efektywnie zbyt

płytki, co powoduje podniesienie poziomu podstawowego oraz mniejsze odległości pomiędzy

kolejnymi poziomami energetycznymi E⟨r⟩ i poziomem podstawowym, niż ma to miejsce dla

E6D. Jeśli analizujemy tylko różnice energii, to może wydawać się nieco zaskakujące, że ich

wartości są wyraźnie większe dla bloków symetrii A− i B−, niż dla A+ i B+. Wartości śred-

niego odchylenia kwadratowego (RMSE, tabela XX) w pierwszej grupie są około dwóch razy

większe niż w drugiej. Sprawa się wyjaśnia, gdy spojrzymy na względne wartości energii.

Najmniejsza wartość E⟨r⟩ z bloku A− wynosi 409.858 cm−1 ponad najniższą wartość z bloku

symetrii A+, czyli stanu podstawowego. Zatem poziomy E⟨r⟩ z bloków symetrii A− i B− leżą

stosunkowo wysoko w studni potencjału i ich błąd względem E6D jest statystycznie większy

niż dla bloków A+ i B+.
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Wartości różnic Eav−E6D są nadal, poza dwoma wyjątkami, ujemne, ale amplituda róż-

nic jest zdecydowanie mniejsza niż dla E⟨r⟩−E6D. Świetnie prezentowane jest to w części α

rysunku 41. Widać, że zgodność z energiami odniesienia wyników uzyskanych z Vav systema-

tycznie rośnie w porównaniu z wynikami z V⟨r⟩. Błąd maksymalny spada z -6.649 cm−1 do

-3.263 cm−1, a RMSE z 3.800 cm−1 do 1.597 cm−1.

Kolejną poprawę dokładności obserwujemy dla energii otrzymanych z Vad. Nie jest to

oczywiste tylko na podstawie analizy tabeli XIX, gdyż różnice Ead−E6D są teraz w więk-

szości dodatnie i trudno je porównać z Eav−E6D, ale w sukurs przychodzi nam rysunek 41

i tabela XX. Z tej ostatniej wynika, że w blokach A+ i B+ wartość RMSE spadła dwukrot-

nie w porównaniu z Eav−E6D, a dla pozostałych bloków symetrii RMSE też jest niższy, ale

np. dla B− poprawa jest już tylko na poziomie 11%. Dodatnie wartości Ead−E6D dla wielu

poziomów świadczą o tym, że odległości pomiędzy poziomami obliczonymi z Vad są często

większe, niż dla poziomów z V6D. Sugeruje to, że powierzchnia Vad może być efektywnie zbyt

głęboka, z czym nie do końca zgadza się wartość energii stanu podstawowego wynosząca dla

obliczeń z Vad −1035.341 cm−1, która jest nadal powyżej wartości −1037.512 cm−1 z obliczeń

6D.

Spójrzmy więc na dyskutowane wyniki z nieco innej perspektywy i przeanalizujmy relacje

pomiędzy energiami E⟨r⟩, Eav i Ead, a energiami E6D, korzystając ze schematu β porówny-

wania. W części β rysunku 41 widzimy, że punkty odpowiadające energiom EM leżą zgodnie

z hierarchią przybliżeń, czyli najdalej od wyników 6D są energie E⟨r⟩, bliżej znajdują się ener-

gie Eav, a najbliżej Ead. Co więcej, zmiany są systematyczne bez żadnych wyjątków. Z tych

zmian wynika też pośrednio, że głębokość potencjałów rośnie i zbliża się coraz bardziej do

pewnej optymalnej wartości. Powyższe obserwacje jakościowe mają swoje odzwierciedlenie

w statystyce. Wartości całkowitego RMSE dla różnic EM−E6D, podane w części β tabeli XX,

wynoszą 9.615 cm−1, 6.660 cm−1 i 3.035 cm−1, odpowiednio dla E⟨r⟩, Eav i Ead. Skuteczność

powierzchni Vad w przewidywaniu poziomów energetycznych jest dobra i przewyższa inne

testowane metody, jednak wciąż pozostawia margines na dalsze udoskonalenia.

W rozdziale VIII.D sygnalizowaliśmy problem wyboru wartości stałej rotacji, która po-

została w naszych obliczeniach taka, jak to wynikało ze zwykłego, nieadiabatycznego uśred-

niania po drganiach odizolowanych cząsteczek. We wszystkich obliczeniach dla komplek-

su HF–HF, których wyniki analizowaliśmy do tego miejsca, używaliśmy stałej rotacji dla

cząsteczki HF równej B0 = 20.5598 cm−1, otrzymanej z obliczenia wartości wyrażenia

B =
1
2µ

〈
χ0

∣∣∣∣ 1r2
∣∣∣∣χ0〉 z funkcją falową χ0 dla wibracyjnego stanu podstawowego tej cząsteczki.
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Teraz omówmy testy z innymi stałymi rotacji, zmodyfikowanymi według różnych przepisów,

które zaproponowaliśmy w rozdziale VIII.D. W tych trzech algorytmach obliczania stałej

rotacji używamy informacji o energii najwyższego i najniższego interesującego nas poziomu

energetycznego. Informacje te nie muszą być bardzo precyzyjne, przyjmijmy więc, że energia

stanu najwyższego jest równa Eh = −200 cm−1, natomiast najniższego El = −1000 cm−1.

Stąd możemy wyznaczyć trzy energie progowe EIthr = Eh, EIIthr = (Eh+El)/2 i EIIIthr = El.

Wartości tych zostały wykorzystane w trzech, omówionych w rozdziale VIII.D, procedurach

znajdowania uśrednionej, efektywnej wartości stałej rotacji. W rezultacie otrzymaliśmy trzy

stałe rotacji: BIad=20.5031 cm−1, BIIad=20.4605 cm−1 i BIIIad =20.4261 cm−1.

Wyniki obliczeń oscylacyjno-rotacyjnych 4D z użyciem powierzchni Vad i czterech różnych

stałych rotacyjnych B0, BIad, BIIad i BIIIad przedstawiamy w tabeli XXI (str. 182) oraz na ry-

sunku 41, natomiast w tabeli XX możemy znaleźć dane statystyczne ilustrujące dokładność

poszczególnych metod. Pierwsza obserwacja, która rzuca się w oczy, to bardzo duża wrażli-

wość dokładności otrzymywanych poziomów energetycznych na wartość zastosowanej stałej

rotacji. Na przykład, obliczenia dla metod Vad i Vad(BIIIad ) różnią się tylko użyciem innych

stałych rotacji, odpowiednio B0 i BIIIad , a wartość RMSE dla wszystkich obliczonych stanów

spada z 1.128 cm−1 do 0.387 cm−1, jeśli jako miary użyjemy RMSE(α), albo z 3.035 cm−1 do

0.540 cm−1, jeśli jako miary użyjemy RMSE(β). Tak istotna redukcja odchyleń od wyników

6D wynika ze zmiany stałej rotacji o zaledwie 0.1337 cm−1, co stanowi 0.65% wartości B0.

Zmiany dokładności poziomów energetycznych na skutek zmiany stałej rotacji są bardzo

systematyczne. Szczególnie dobrze widać to na rysunku 41. Obliczone energie stają się nie

tylko coraz bliższe energiom z obliczeń 6D, ale amplitudy różnic stają się bardzo jednorodne

w ramach danej metody. Porównanie w panelu β pokazuje, że sekwencja energii Ead, E Iad, E IIad
i E IIIad systematycznie zbliża się do energii E6D. Porównując wykresy z paneli α i β widać też,

dlaczego warto korzystać z obydwu schematów porównań jednocześnie. Np., stan n = 11 z

bloku A+ wydaje się w ogóle nie odczuwać zmiany stałej rotacji, gdyż jego wartości Ead,

EIad, EIIad i EIIIad z obliczeń wszystkimi czterema metodami korzystającymi z potencjału Vad

praktycznie się nie zmieniają. Jednak w części β można zauważyć systematyczną zmianę

w sekwencji energii Ead, E Iad, E IIad i E IIIad . Skąd wynika ta zmiana obrazu? Otóż w panelu α

prezentujemy energie względne, jeśli więc, podczas zmiany stałej rotacji, zmiany dla stanu

n = 11 są podobne jak dla stanu podstawowego, n = 1 w tym samym bloku symetrii,

to energie względne będą się niewiele zmieniać. Jeśli takie rozumowanie jest poprawne, to

pojawia się kolejne pytanie, dlaczego właśnie stan n = 11 wykazuje takie podobieństwo do
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stanu podstawowego.

Wiemy, że stan podstawowy charakteryzowany jest przybliżonymi liczbami kwantowymi

(ν3, ν4, ν5, ν6) = (0, 0, 0, 0), a stan n = 11 liczbami (0, 4, 0, 0). Oznacza to, że ν4 = 4, a ta

liczba kwantowa odpowiada wzbudzeniu van der Waalsa. Zatem, w przybliżeniu, stan n = 11

różni się od stanu n = 1 dość silnym wzbudzeniem w modzie drgań van der Waalsa, nato-

miast mody związane z obrotami podukładów są w obu przypadkach podobne. Stąd zmiany

stałych rotacji w równaniach metody sztywnych rotatorów mają znikomy wpływ na różnicę

energii rozważanych stanów. Dodatkowym potwierdzeniem takiego wytłumaczenia jest fakt,

że dla stanu n = 7 energie przedstawione w panelu α również są słabo zależne od zmiany

stałej rotacji, a stan ten charakteryzowany jest liczbami kwantowymi (0, 3, 0, 0), czyli znowu

jest wzbudzony w modzie drgań van der Waalsa w stosunku do stanu podstawowego. Idąc

tropem liczb kwantowych możemy też zracjonalizować fakt, że największe zmiany energii,

przy zmianie stałej rotacji, zachodzą w bloku A+ dla stanów n = 10 i n = 12. Stanom tym

odpowiadają odpowiednio zbiory liczb kwantowych (0, 0, 6, 0) i (1, 0, 0, 0), czyli są wzbudzo-

ne w modach zginających, odpowiednio ν5 = 6 i ν3 = 1, dla których zmiana stałej rotacji

jest istotna. Reasumując dyskusję problemu wyboru stałej rotacji należy podkreślić, że opty-

malny wybór wartości tej stałej ma kluczowe znaczenie dla dokładności obliczanych energii

z powierzchnią Vad. Spośród zaproponowanych przez nas algorytmów obliczania stałej ro-

tacji najlepiej sprawdził się wariant III, ale potrzebne są testy dla innych kompleksów aby

potwierdzić wyższość tego wariantu, albo znaleźć jakąś uniwersalną alternatywę opartą o

rozważania teoretyczne.

Kolejnym zagadnieniem, którym zajęliśmy się w naszych testach, było zbadanie wpły-

wu przybliżenia Taylora, zastosowanego w konstrukcji powierzchni Vav i Vad, na dokładność

powstałych powierzchni. Powierzchnie V TEav i V TEad zdefiniowane zostały w rozdziale VIII.C,

natomiast podczas testów numerycznych odpowiadające im energie generowane były na bie-

żąco z powierzchni V6D. Obliczenia oscylacyjno-rotacyjne przeprowadziliśmy ze stałą rotacji

B0.

Zestawienie wyników znajduje się w tabeli XXII (str. 183). Wartości różnicy ETEav −Eav
są bardzo małe. Największa wartość −0.107 cm−1 występuje dla stanu n = 11 z bloku A−,

ale wartość energii Eav dlatego stanu to 867.741 cm−1, więc taka rozbieżność jest rzeczy-

wiście bardzo mała. Wysoka zgodność energii ETEav i Eav znajduje swoje odzwierciedlenie w

bardzo zbliżonych rozbieżnościach obu tych energii względem E6D, które zmierzone warto-

ściami RMSE(α) wynoszą odpowiednio 1.662 cm−1 i 1.597 cm−1, tabela XX. Równie świetną
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zgodność obserwujemy porównując energie ETEav i Eav z E6D. Tym razem RMSE(β) wynosi

odpowiednio 6.736 cm−1 i 6.660 cm−1. Porównując energie ETEad i Ead widzimy, że najwięk-

sza różnica −0.211 cm−1, występuje ponownie dla stanu n = 11 z bloku A−. Jest ona co

prawda 2 razy większa niż dla ETEav i Eav, ale nadal bardzo mała w zestawieniu z energią

Ead dla tego stanu. Generalnie różnice ETEad −Ead są około dwa razy większe od ETEav −Eav.

Jeśli zmierzymy za pomocą RMSE(α) odległości energii ETEad i Ead od E6D, to wartości tego

wskaźnika wynoszą odpowiednio 1.023 cm−1 i 1.128 cm−1. Do nieco mniejszej wartości dla

ETEad niż dla Ead nie należy przywiązywać zbyt dużej wagi, gdyż jest to efekt używania ener-

gii względnych. Gdy przeanalizujemy wartości RMSE(β) dla porównania ETEad i Ead z E6D,

tabela XX, to dostaniemy odpowiednio 3.174 cm−1 i 3.035 cm−1, czyli statystycznie Ead są

bliższe E6D niż ETEad . Widać to też na rysunku 41, gdzie w panelu β punkty odpowiadające

ETEad są konsekwentnie dalej od E6D niż punkty reprezentujące energie Ead.

Jednym z najbardziej czułych wskaźników dokładności powierzchni energii oddziaływania

jest ich zdolność do precyzyjnego opisu rozszczepień tunelowych, czyli rozszczepień pozio-

mów energetycznych wynikających z tunelowania pomiędzy równoważnymi, z punktu wi-

dzenia symetrii, fragmentami potencjału, odseparowanych barierami energetycznymi. Takie

rozszczepienia są bardzo gorącym tematem, np. w badaniach dimeru wody [69], ale również

dla dimeru fluorowodoru są standardowo dyskutowane. W tabeli XXIII (str. 184) zebra-

ne są wartości rozszczepień tunelowych obliczonych w ramach różnych przybliżeń 4D i są

zestawione z wartościami odniesienia z obliczeń 6D [62].

Wartość rozszczepienia ∆(ν0) jest bardzo dobrze odtwarzana przez wszystkie przybliżenia

4D. Pewnym zaskoczeniem jest jednak to, że największe różnice w porównaniu z wynikami

6D obserwujemy dla V TEad i Vad. Jednak wartości tych odchyleń nie są duże, gdyż wynoszą

odpowiednio 0.022 cm−1 i 0.021 cm−1, co stanowi tylko 3% wartości odniesienia 0.665 cm−1.

Niedokładność metody Vad jest wyraźnie zredukowana jeśli użyjemy zmodyfikowanej stałej

rotacji i w metodzie Vad(BIIIad ) wynosi tylko 0.007 cm−1. Co ciekawe, najdokładniej rozważane

rozszczepienie odtwarza potencjalnie najbardziej przybliżona metoda V⟨r⟩. Na przeciwnym

krańcu dokładności znajduje się odtwarzanie rozszczepienia ∆(ν3), którego wartość, otrzy-

mana z obliczeń 6D, jest równa −0.325 cm−1. Wartości obliczone z V⟨r⟩ i Vav są odpowiednio

prawie trzy albo ponad dwa razy większe. W przypadku Vad błąd spada do 0.135 cm−1,

co stanowi 42% poprawnej wartości. Kolejną poprawę obserwujemy, gdy użyjemy zmody-

fikowanych stałych rotacji, a największa jest dla przypadku Vad(BIIIad ), gdy rozbieżność jest

zredukowana do 0.084 cm−1, czyli 26% wartości dokładnej. Rozszczepienie ∆(ν3) jest więc
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bardzo wymagające i trudne do odtworzenia w obliczeniach 4D, a na jego wartość silnie

wpływa nie tylko jakość powierzchni energii oddziaływania, ale także odpowiedni dobór sta-

łej rotacji.

O tym jak wrażliwe na jakość powierzchni energii oddziaływania jest rozszczepienie∆(ν3),

świadczą też doniesienia literaturowe mówiące o jego wartości obliczonej z innych potencja-

łów. I tak, dla potencjału SQSBDE [72] otrzymano wartość 15.01 cm−1 [77], a dla SO-3 [68]

wyniosła ona 2.65 cm−1 [81]. Szczególnie duża rozbieżność z wynikami otrzymanymi z SO-3

jest znamienna, gdyż wartości pozostałych rozszczepień obliczonych z tego potencjału zga-

dzają się dobrze z tymi uzyskanymi z obliczeń 6D w pracy [62]. Niestety, nie ma danych

eksperymentalnych dla ∆(ν3), które pozwoliłyby rozstrzygnąć, która z powierzchni jest lep-

sza w kontekście dyskutowanego rozszczepienia.

Wartości rozszczepienia ∆(ν4) są bardzo dobrze odtwarzane we wszystkich przybliżeniach

4D. Np., dla Vad rozbieżność wynosi 0.048 cm−1, co stanowi 1.6% wartości odniesienia, ale

ze stałą rotacji BIIIad różnica spada do 0.036 cm−1, czyli 1%. Z kolei wartości rozszczepienia

∆(2ν5), obliczone dla sekwencji potencjałów V⟨r⟩, Vav i Vad, są przeszacowane, a największą

różnicę, 0.229 cm−1 obserwujemy dla najbardziej złożonego przybliżenia Vad. Jednak róż-

nica ta stanowi niespełna 3% wartości ścisłej w naszych rozważaniach modelowych równej

7.878 cm−1. Użycie modeli Vad ze zmodyfikowanymi stałymi rotacji systematycznie zmniejsza

tę rozbieżność, aż do wartości 7.914 cm−1, różniącej się od odniesienia tylko o 0.5%. Warto

zauważyć, że to właśnie dla rozszczepienia ∆(2ν5) efekt użycia zmodyfikowanych stałych ro-

tacji jest najbardziej widoczny, prowadzi do największych w wymiarze bezwzględnym zmian

w porównaniu z innymi rozszczepieniami. Dla rozszczepienia tunelowego ∆(ν6), wartości ob-

liczone z przybliżeń V⟨r⟩, Vav i Vad są bardzo bliskie siebie, bo różnią się o 0.080–0.086 cm−1

od wartości odniesienia 2.284 cm−1. Używając zmodyfikowanych stałych rotacji ponownie

zbliżamy się znacząco do energii ścisłej, a dla Vad(BIIIad ) różnica wynosi tylko 0.022 cm−1, co

stanowi 1% wartości odniesienia.

W dotychczasowej dyskusji tabeli XXIII nie analizowaliśmy wpływu przybliżenia TE na

wartości obliczanych rozszczepień. Okazuje się, że metody V TEav i V TEad prowadzą do wyników

bardzo zbliżonych do swoich odpowiedników otrzymanych bez przybliżenia TE. Największa

różnica pojawia się dla ∆(ν4) pomiędzy wynikami dla V TEad i Vad, i wynosi 0.009 cm−1. Zatem

wpływ przybliżenia TE na obliczane wartości rozszczepień możne uznać za marginalny. Jest

to bardzo pozytywny sygnał w kontekście praktycznych zastosowań przybliżeń opartych na

powierzchni uśrednianej adiabatycznie.
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Jeśli rozpatrzymy sekwencją stałych rotacji, począwszy od standardowej B0 poprzez trzy

zmodyfikowane BIad, BIIad i BIIIad , to rozszczepienia obliczone z Vad stopniowo zbiegają do

wartości odniesienia. Model Vad(BIIIad ) daje, poza jednym przypadkiem, wartości rozszcze-

pień tunelowych wyraźnie najlepsze spośród wszystkich rozważanych przybliżeń. Ten jeden

wyjątek, to wartość ∆(ν1) obliczona metodą V⟨r⟩, wynosząca 0.668 cm−1, różna od warto-

ści odniesienia o tylko 0.003 cm−1. Tymczasem z metody Vad(BIIIad ) otrzymujemy różnicę

0.007 cm−1, czyli ponad dwa razy większą i wynoszącą 1%, ale w wymiarze bezwzględnym

możemy ją nadal uznawać za bardzo małą. Podobnie, we wcześniejszej analizie poziomów

energetycznych, wyniki otrzymane z modelu Vad(BIIIad ) były najbliższe wartościom odniesienia

otrzymanym z obliczeń 6D.

Testy dla kompleksu HF–HF pokazują, że metoda Vad(BIIIad ), czyli wykorzystująca w ob-

liczeniach w przybliżeniu sztywnych rotatorów potencjał Vad i stałą rotacji BIIIad o wartości

otrzymanej według algorytmu trzeciego z rozdziału VIII.D, daje wyniki bardzo dobrze zga-

dzające się z wynikami 6D. Oczywiście badania przeprowadzone dla jednego układu to za

mało, aby metodę Vad(BIIIad ) móc jednoznacznie rekomendować dla wszystkich kompleksów

van der Waalsa o charakterystyce oddziaływania podobnej do HF–HF, czyli stosunkowo sil-

nego. Potrzebne są testy dla innych układów, np. dla N2–HF również silnie reprezentowanego

w literaturze, dla którego znany jest potencjał pełnowymiarowy, ale na przeszkodzie stoi brak

pełnowymiarowych obliczeń dynamicznych.
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Tabela XIX: Oscylacyjno-rotacyjne poziomy energetyczne dla dimeru HF z monomerami w oscylacyj-

nym stanie podstawowym ν1 = ν2 = 0. Energie E6D zostały otrzymane z obliczeń pełnowymiarowych w

pracy [62], a energie E⟨r⟩, Eav i Ead zostały obliczone w przybliżeniu sztywnych rotatorów z wykorzysta-

niem powierzchni 4D, odpowiednio V⟨r⟩, Vav i Vad. Energie są podane względem energii stanów podsta-

wowych, (ν3ν4ν5ν6) = (0000), dla każdego przypadku, które wynoszą −1037.512 cm−1, −1024.653 cm−1,

−1029.611 cm−1 i −1035.341 cm−1 odpowiednio dla V6D, V⟨r⟩, Vav i Vad. Zostały też przedstawione różnice

wyników 4D i energii E6D. Jednostką energii jest cm−1.

n (ν3ν4ν5ν6) E6D E⟨r⟩ Eav Ead E⟨r⟩−E6D Eav−E6D Ead−E6D
A+

1 (0000) 0.000 0.000 0.000 0.000 0.000 0.000 0.000
2 (0100) 125.280 124.673 124.965 125.217 -0.607 -0.315 -0.063
3 (0020) 162.395 159.934 161.231 162.280 -2.461 -1.164 -0.115
4 (0200) 243.189 242.205 242.741 243.134 -0.984 -0.448 -0.055
5 (0120) 268.747 266.563 267.898 268.839 -2.184 -0.849 0.092
6 (0040) 305.427 301.480 303.450 305.250 -3.947 -1.977 -0.177
7 (0300) 358.263 356.494 357.155 358.011 -1.769 -1.108 -0.252
8 (0220) 383.749 381.478 382.859 383.907 -2.271 -0.890 0.158
9 (0140) 420.005 416.900 418.706 420.466 -3.105 -1.299 0.461

10 (0060) 445.018 441.739 444.053 445.985 -3.279 -0.965 0.967
11 (0400) 465.613 462.525 463.478 465.072 -3.088 -2.135 -0.541
12 (1000) 481.847 478.647 481.209 483.261 -3.200 -0.638 1.414

B+

1 (0010) 0.665 0.668 0.672 0.686 0.003 0.007 0.021
2 (0110) 128.264 127.714 127.926 128.248 -0.550 -0.338 -0.016
3 (0030) 170.273 167.969 169.303 170.387 -2.304 -0.970 0.114
4 (0210) 249.605 248.465 248.800 249.485 -1.140 -0.805 -0.120
5 (0130) 295.518 293.306 294.542 295.760 -2.212 -0.976 0.242
6 (0050) 339.904 337.814 339.555 340.877 -2.090 -0.349 0.973
7 (0310) 363.888 361.793 362.370 363.577 -2.095 -1.518 -0.311
8 (0230) 413.784 410.971 412.367 413.904 -2.813 -1.417 0.120
9 (0150) 463.149 460.437 462.329 464.008 -2.712 -0.820 0.859

10 (0410) 469.716 466.397 467.495 469.368 -3.319 -2.221 -0.348
11 (1010) 481.522 477.772 480.518 482.801 -3.750 -1.004 1.279

A−

1 (0001) 412.849 409.858 412.252 414.331 -2.991 -0.597 1.482
2 (0101) 532.565 528.827 531.320 533.716 -3.738 -1.245 1.151
3 (0021) 567.486 563.150 566.159 568.675 -4.336 -1.327 1.189
4 (0201) 642.188 637.456 640.128 642.954 -4.732 -2.060 0.766
5 (0121) 679.115 674.267 677.356 680.102 -4.848 -1.759 0.987
6 (0041) 712.378 709.120 712.144 714.692 -3.258 -0.234 2.314
7 (0301) 740.519 734.665 737.581 740.880 -5.854 -2.938 0.361
8 (0221) 780.879 775.119 778.354 781.474 -5.760 -2.525 0.595
9 (0141) 824.823 819.711 822.863 826.351 -5.112 -1.960 1.528

10 (0401) 827.115 821.391 824.505 827.600 -5.724 -2.610 0.485
11 (0321) 871.004 864.355 867.741 871.257 -6.649 -3.263 0.253
12 (1001) 892.775 887.501 891.569 895.154 -5.274 -1.206 2.379

B−

1 (0011) 415.132 412.228 414.616 416.698 -2.904 -0.516 1.566
2 (0111) 536.128 532.417 534.905 537.360 -3.711 -1.223 1.232
3 (0031) 600.664 597.636 600.372 602.723 -3.028 -0.292 2.059
4 (0211) 646.374 641.682 644.353 647.237 -4.692 -2.021 0.863
5 (0131) 717.334 713.546 716.330 719.016 -3.788 -1.004 1.682
6 (0311) 746.084 740.345 743.277 746.612 -5.739 -2.807 0.528
7 (0051) 807.129 805.179 807.943 810.377 -1.950 0.814 3.248
8 (0231) 821.162 816.538 819.439 822.519 -4.624 -1.723 1.357
9 (0411) 837.979 831.713 834.940 838.565 -6.266 -3.039 0.586

10 (0511) 899.635 893.299 896.470 900.101 -6.336 -3.165 0.466
11 (1011) 905.009 899.990 903.886 907.396 -5.019 -1.123 2.387

180



Tabela XX: Wartości odchylenia średniego kwadratowego RMSE oraz odchylenia maksy-
malnego poziomów energetycznych otrzymanych z obliczeń 4D w ramach różnych przybliżeń,
od odpowiednich poziomów energetycznych otrzymanych z obliczeń 6D. W pierwszej części
tabeli, α, prezentujemy wyniki dla odchyleń energii względnej EM,i od jej odpowiednika 6D,
czyli E6D,i, Te odchylenia są przedstawione w górnej części rysunku 41. Druga część tabeli,
β, dotyczy odchyleń EM,i od E6D,i. Indeks M wskazuje na metodę użytą w obliczeniach. Od-
powiadają one odchyleniom zaprezentowanym w dolnej części rysunku 41. Definicje energii
EM,i i EM,i znajdują się w rozdziale VIII.E. Jednostką energii jest cm−1.

RMSE maksymalne odchylenie

przybliżenie A+ B+ A− B− wszystkie A+ B+ A− B−
symetrie

α: (EM,i−E6D,i)

V⟨r⟩ 2.520 2.353 4.972 4.577 3.800 -3.947 -3.750 -6.649 -6.336

Vav 1.151 1.116 2.017 1.882 1.597 -2.135 -2.221 -3.263 -3.165

Vad 0.547 0.575 1.311 1.671 1.128 1.414 1.279 2.379 3.248

V TEav 1.199 1.165 2.101 1.952 1.662 -2.211 -2.299 -3.370 -3.271

V TEad 0.517 0.535 1.166 1.522 1.023 1.266 1.131 2.187 3.081

Vad(BIad) 0.346 0.325 0.710 0.942 0.633 0.802 0.687 1.319 1.994

Vad(BIIad) 0.278 0.217 0.388 0.463 0.349 -0.536 -0.422 -0.614 1.013

Vad(BIIIad ) 0.320 0.273 0.491 0.422 0.387 -0.537 -0.448 -0.911 -0.782

β: (EM,i−E6D,i)

V⟨r⟩ 10.680 10.824 8.073 8.599 9.615 12.859 12.862 9.868 10.909

Vav 6.945 6.980 6.155 6.545 6.660 7.901 7.908 7.667 8.715

Vad 2.387 2.481 3.364 3.716 3.035 3.585 3.450 4.550 5.419

V TEav 7.036 7.077 6.208 6.602 6.736 8.043 8.051 7.729 8.773

V TEad 2.570 2.671 3.472 3.826 3.174 3.725 3.590 4.646 5.540

Vad(BIad) 1.591 1.658 2.137 2.389 1.968 2.382 2.267 2.899 3.574

Vad(BIIad) 0.989 1.033 1.203 1.377 1.158 1.462 1.362 1.670 2.144

Vad(BIIIad ) 0.513 0.542 0.502 0.604 0.540 0.769 0.776 0.983 1.008
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Tabela XXI: Oscylacyjno-rotacyjne poziomy energetyczne dla dimeru HF z monomerami w oscylacyj-
nym stanie podstawowym ν1= ν2 = 0. Energie EIad, E

II
ad i EIIIad zostały obliczone w przybliżeniu sztywnych

rotatorów z użyciem powierzchni Vad i zmodyfikowanych stałych rotacji, odpowiednio BIad=20.5031 cm−1,
BIIad=20.4605 cm−1 i BIIIad =20.4261 cm−1, otrzymanych w sposób opisany w tekście. Energie Ead zostały rów-
nież otrzymane z obliczeń 4D z powierzchnią Vad, ale ze standardową stałą rotacji B0=20.5598 cm−1. Energie
podane są względem energii stanów podstawowych dla każdego przypadku, które wynoszą −1035.341 cm−1,
−1035.932 cm−1, −1036.381 cm−1 i −1036.743 cm−1, odpowiednio dla stałych rotacji B0, BIad, B

II
ad i BIIIad .

Energie E6D zostały otrzymane z obliczeń pełnowymiarowych, a energia stanu podstawowego wynosi w tym
przypadku −1037.512 cm−1. Zostały też przedstawione różnice wyników 4D i energii E6D. Jednostką energii
jest cm−1.

n (ν3ν4ν5ν6) E6D Ead EIad EIIad EIIIad Ead−E6D EIad−E6D EIIad−E6D EIIIad−E6D
A+

1 (0000) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
2 (0100) 125.280 125.217 125.187 125.167 125.148 -0.063 -0.093 -0.113 -0.132
3 (0020) 162.395 162.280 162.189 162.121 162.066 -0.115 -0.206 -0.274 -0.329
4 (0200) 243.189 243.134 243.047 242.979 242.924 -0.055 -0.142 -0.210 -0.265
5 (0120) 268.747 268.839 268.670 268.538 268.436 0.092 -0.077 -0.209 -0.311
6 (0040) 305.427 305.250 305.116 305.017 304.936 -0.177 -0.311 -0.410 -0.491
7 (0300) 358.263 358.011 357.952 357.905 357.867 -0.252 -0.311 -0.358 -0.396
8 (0220) 383.749 383.907 383.698 383.539 383.411 0.158 -0.051 -0.210 -0.338
9 (0140) 420.005 420.466 420.156 419.921 419.727 0.461 0.151 -0.084 -0.278

10 (0060) 445.018 445.985 445.472 445.086 444.779 0.967 0.454 0.068 -0.239
11 (0400) 465.613 465.072 465.072 465.077 465.076 -0.541 -0.541 -0.536 -0.537
12 (1000) 481.847 483.261 482.649 482.178 481.801 1.414 0.802 0.331 -0.046

B+

1 (0010) 0.665 0.686 0.680 0.675 0.672 0.021 0.015 0.010 0.007
2 (0110) 128.264 128.248 128.212 128.189 128.167 -0.016 -0.052 -0.075 -0.097
3 (0030) 170.273 170.387 170.214 170.085 169.980 0.114 -0.059 -0.188 -0.293
4 (0210) 249.605 249.485 249.446 249.422 249.397 -0.120 -0.159 -0.183 -0.208
5 (0130) 295.518 295.760 295.542 295.367 295.233 0.242 0.024 -0.151 -0.285
6 (0050) 339.904 340.877 340.378 339.990 339.686 0.973 0.474 0.086 -0.218
7 (0310) 363.888 363.577 363.558 363.552 363.540 -0.311 -0.330 -0.336 -0.348
8 (0230) 413.784 413.904 413.698 413.525 413.398 0.120 -0.086 -0.259 -0.386
9 (0150) 463.149 464.008 463.549 463.181 462.893 0.859 0.400 0.032 -0.256

10 (0410) 469.716 469.368 469.316 469.294 469.268 -0.348 -0.400 -0.422 -0.448
11 (1010) 481.522 482.801 482.209 481.753 481.392 1.279 0.687 0.231 -0.130

A−

1 (0001) 412.849 414.331 413.800 413.388 413.063 1.482 0.951 0.539 0.214
2 (0101) 532.565 533.716 533.219 532.832 532.527 1.151 0.654 0.267 -0.038
3 (0021) 567.486 568.675 568.040 567.546 567.157 1.189 0.554 0.060 -0.329
4 (0201) 642.188 642.954 642.508 642.160 641.886 0.766 0.320 -0.028 -0.302
5 (0121) 679.115 680.102 679.487 679.007 678.629 0.987 0.372 -0.108 -0.486
6 (0041) 712.378 714.692 713.665 712.877 712.251 2.314 1.287 0.499 -0.127
7 (0301) 740.519 740.880 740.497 740.196 739.961 0.361 -0.022 -0.323 -0.558
8 (0221) 780.879 781.474 780.928 780.500 780.165 0.595 0.049 -0.379 -0.714
9 (0141) 824.823 826.351 825.655 825.017 824.467 1.528 0.832 0.194 -0.356

10 (0401) 827.115 827.600 826.979 826.602 826.345 0.485 -0.136 -0.513 -0.770
11 (0321) 871.004 871.257 870.771 870.390 870.093 0.253 -0.233 -0.614 -0.911
12 (1001) 892.775 895.154 894.094 893.278 892.625 2.379 1.319 0.503 -0.150

B−

1 (0011) 415.132 416.698 416.143 415.712 415.371 1.566 1.011 0.580 0.239
2 (0111) 536.128 537.360 536.840 536.436 536.117 1.232 0.712 0.308 -0.011
3 (0031) 600.664 602.723 601.834 601.146 600.602 2.059 1.170 0.482 -0.062
4 (0211) 646.374 647.237 646.759 646.386 646.093 0.863 0.385 0.012 -0.281
5 (0131) 717.334 719.016 718.190 717.548 717.041 1.682 0.856 0.214 -0.293
6 (0311) 746.084 746.612 746.160 745.805 745.529 0.528 0.076 -0.279 -0.555
7 (0051) 807.129 810.377 809.123 808.142 807.363 3.248 1.994 1.013 0.234
8 (0231) 821.162 822.519 821.764 821.185 820.728 1.357 0.602 0.023 -0.434
9 (0411) 837.979 838.565 837.990 837.542 837.197 0.586 0.011 -0.437 -0.782

10 (0511) 899.635 900.101 899.618 899.230 898.917 0.466 -0.017 -0.405 -0.718
11 (1011) 905.009 907.396 906.292 905.449 904.783 2.387 1.283 0.440 -0.226
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Tabela XXII: Porównanie wartości energii teoretycznych ETEav i ETEad otrzymanych w ramach metody

TE z ich odpowiednikami obliczonymi bez tego przybliżenia, odpowiednio Eav i Ead. Energie E6D otrzy-

mano z obliczeń pełnowymiarowych w pracy [62]. Energie są podane są względem energii stanów podsta-

wowych, (ν3ν4ν5ν6) = (0000), dla każdego przypadku, które wynoszą −1037.512 cm−1, −1029.611 cm−1,

−1029.469 cm−1, −1035.341 cm−1 i −1035.053 cm−1 odpowiednio dla V6D, Vav, V TEav , Vad i V TEad . Aby uła-

twić porównanie, podano też wybrane różnice energii. Obliczenia zostały wykonane dla cząsteczek HF w ich

podstawowych stanach oscylacyjnych, ν1 = ν2 = 0. Jednostką energii jest cm−1.

n (ν3ν4ν5ν6) E6D Eav ETEav ETEav −Eav Ead ETEad ETEad −Ead
A+

1 (0000) 0.000 0.000 0.000 0.000 0.000 0.000 0.000
2 (0100) 125.280 124.965 124.937 -0.028 125.217 125.168 -0.049
3 (0020) 162.395 161.231 161.198 -0.033 162.280 162.200 -0.080
4 (0200) 243.189 242.741 242.683 -0.058 243.134 243.036 -0.098
5 (0120) 268.747 267.898 267.840 -0.058 268.839 268.741 -0.098
6 (0040) 305.427 303.450 303.411 -0.039 305.250 305.147 -0.103
7 (0300) 358.263 357.155 357.085 -0.070 358.011 357.894 -0.117
8 (0220) 383.749 382.859 382.789 -0.070 383.907 383.802 -0.105
9 (0140) 420.005 418.706 418.650 -0.056 420.466 420.345 -0.121

10 (0060) 445.018 444.053 444.004 -0.049 445.985 445.873 -0.112
11 (0400) 465.613 463.478 463.402 -0.076 465.072 464.930 -0.142
12 (1000) 481.847 481.209 481.134 -0.075 483.261 483.113 -0.148

B+

1 (0010) 0.665 0.672 0.673 0.001 0.686 0.687 0.001
2 (0110) 128.264 127.926 127.903 -0.023 128.248 128.208 -0.040
3 (0030) 170.273 169.303 169.275 -0.028 170.387 170.311 -0.076
4 (0210) 249.605 248.800 248.755 -0.045 249.485 249.405 -0.080
5 (0130) 295.518 294.542 294.491 -0.051 295.760 295.658 -0.102
6 (0050) 339.904 339.555 339.517 -0.038 340.877 340.789 -0.088
7 (0310) 363.888 362.370 362.307 -0.063 363.577 363.456 -0.121
8 (0230) 413.784 412.367 412.308 -0.059 413.904 413.795 -0.109
9 (0150) 463.149 462.329 462.274 -0.055 464.008 463.910 -0.098

10 (0410) 469.716 467.495 467.417 -0.078 469.368 469.209 -0.159
11 (1010) 481.522 480.518 480.451 -0.067 482.801 482.653 -0.148

A−

1 (0001) 412.849 412.252 412.187 -0.065 414.331 414.194 -0.137
2 (0101) 532.565 531.320 531.244 -0.076 533.716 533.559 -0.157
3 (0021) 567.486 566.159 566.073 -0.086 568.675 568.488 -0.187
4 (0201) 642.188 640.128 640.043 -0.085 642.954 642.783 -0.171
5 (0121) 679.115 677.356 677.258 -0.098 680.102 679.905 -0.197
6 (0041) 712.378 712.144 712.064 -0.080 714.692 714.539 -0.153
7 (0301) 740.519 737.581 737.490 -0.091 740.880 740.695 -0.185
8 (0221) 780.879 778.354 778.250 -0.104 781.474 781.269 -0.205
9 (0141) 824.823 822.863 822.767 -0.096 826.351 826.169 -0.182

10 (0401) 827.115 824.505 824.417 -0.088 827.600 827.427 -0.173
11 (0321) 871.004 867.741 867.634 -0.107 871.257 871.046 -0.211
12 (1001) 892.775 891.569 891.471 -0.098 895.154 894.962 -0.192

B−

1 (0011) 415.132 414.616 414.552 -0.064 416.698 416.563 -0.135
2 (0111) 536.128 534.905 534.832 -0.073 537.360 537.209 -0.151
3 (0031) 600.664 600.372 600.295 -0.077 602.723 602.555 -0.168
4 (0211) 646.374 644.353 644.272 -0.081 647.237 647.073 -0.164
5 (0131) 717.334 716.330 716.243 -0.087 719.016 718.833 -0.183
6 (0311) 746.084 743.277 743.190 -0.087 746.612 746.433 -0.179
7 (0051) 807.129 807.943 807.859 -0.084 810.377 810.210 -0.167
8 (0231) 821.162 819.439 819.349 -0.090 822.519 822.326 -0.193
9 (0411) 837.979 834.940 834.851 -0.089 838.565 838.375 -0.190

10 (0511) 899.635 896.470 896.364 -0.106 900.101 899.892 -0.209
11 (1011) 905.009 903.886 903.787 -0.099 907.396 907.193 -0.203

183



Tabela XXIII: Rozszczepienia tunelowe oscylacyjno-rotacyjnych poziomów energetycznych

otrzymane dla różnych przybliżeń 4D i ich porównanie do wartości odniesienia otrzyma-

nych z obliczeń 6D w pracy [62]. Rozszczepienia dla metody M zdefiniowane są następują-

co: ∆(ν0) = EM,(0010)−EM,(0000), ∆(ν3) = EM,(1010)−EM,(1000), ∆(ν4) = EM,(0110)−EM,(0100),
∆(2ν5)=EM,(0030)−EM,(0020) i ∆(ν6)=EM,(0011)−EM,(0001), gdzie EM,(ν3ν4ν5ν6) to energia stanu

(ν3ν4ν5ν6) obliczona metodą M . Energie wyrażone są w cm−1.

przybliżenie ∆(ν0) ∆(ν3) ∆(ν4) ∆(2ν5) ∆(ν6)

V6D 0.665 -0.325 2.983 7.878 2.284

V⟨r⟩ 0.668 -0.875 3.041 8.035 2.370

Vav 0.672 -0.691 2.961 8.072 2.364

Vad 0.686 -0.460 3.031 8.107 2.367

V TEav 0.673 -0.683 2.966 8.077 2.365

V TEad 0.687 -0.460 3.040 8.111 2.369

Vad(BIad) 0.680 -0.440 3.025 8.025 2.343

Vad(BIIad) 0.675 -0.425 3.022 7.964 2.324

Vad(BIIIad ) 0.672 -0.409 3.019 7.914 2.308
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Rysunek 41: Porównanie oscylacyjno-rotacyjnych poziomów energetycznych dla dimeru HF, otrzyma-
nych w ramach różnych przybliżeń 4D, z wartościami odniesienia otrzymanymi z obliczeń 6D [62]. W panelu
α przedstawione są różnice wartości względnych energii (EM,i − E6D,i), a w panelu β zaprezentowane są
wartości różnicy (EM,i−E6D), gdzie definicje energii EM,i i energii względnej EM,i znajdują się w rozdzia-
le VIII.E. Zostały użyte następujące symbole: pełne trójkąty dla energii otrzymanych z V⟨r⟩, kółka dla Vav,
pełne kwadraty dla Vad, okręgi dla V TEav , puste kwadraty dla V TEad , puste romby dla Vad(BIad), pełne romby dla
Vad(BIIad)i pełne pięciokąty dla Vad(BIIIad ). Liczby n numerują kolejne poziomy energetyczne w ramach każdego
bloku symetrii i odpowiadają kolejnym pozycjom w tabelach XIX–XXI. Linie łączące punkty są podane aby
ułatwić analizę rysunku.
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IX. Podsumowanie

W mojej pracy doktorskiej zająłem się kilkoma zagadnieniami, które mają wpływ na

dokładność otrzymywanych widm oscylacyjno-rotacyjnych dla kompleksów van der Waalsa,

a także na wykorzystaniu tych widm do interpretacji wyników eksperymentalnych.

Wcześniejsze badania pokazały, że dla ważnego z punktu widzenia astrofizyki i często

rozważanego kompleksu H2–CO, kluczowe znaczenie w interpretacji widm mają, poza sta-

nami związanymi, również nisko leżące rezonanse. Stosując metodę rozproszeniową, wspartą

przez metodę stabilizacji, znalazłem i scharakteryzowałem wiele rezonansów, które mogą

mieć wpływ na widma, dla pięciu izotopologów i odmian spinowych kompleksu: paraH2–CO,

HD–CO, ortoD2–CO, ortoH2–CO i paraD2–CO. Informacje uzyskane dla ortoH2–CO i

ortoD2–CO zostały wykorzystane na dalszych etapach moich badań, natomiast dla pozo-

stałych układów stworzyliśmy bazę informacji, która może być wykorzystana w przyszłości.

Tak szczegółowe badania niskoenergetycznych rezonansów dla H2–CO, które mogą mieć

znaczenie dla widm wykonane zostały po raz pierwszy.

Dużym wyzwaniem, z którym zmierzyłem się w mojej pracy, było wyznaczenie pozio-

mów oscylacyjno-rotacyjnych dla kompleksu ortoH2–CO z widma, które zostało zmierzone

w 1998 roku [14], ale do tej pory nie zostało w pełni zinterpretowane. W oparciu o poziomy

energetyczne stanów związanych, otrzymane z obliczeń pełnowymiarowych (6D) przepro-

wadzonych przez współpracowników, oraz o poziomy energetyczne stanów kwazizwiązanych

(rezonansów) otrzymanych w tej pracy, wygenerowałem widmo teoretyczne, które posłużyło

identyfikacji przejść w widmie doświadczalnym. Ogromnie pomocne w tym procesie były

obliczone intensywności teoretyczne, które okazały się kluczowe na etapie wyznaczania ener-

gii pojedynczych przejść z linii powstałych z nakładania się kilku pików indywidualnych. Po

weryfikacji i poprawieniu niektórych przypisań linii eksperymentalnych, przystąpiłem do wy-

znaczania z nich eksperymentalnych poziomów energetycznych. W tym celu wykorzystałem

algorytm, wsparty oryginalnym programem komputerowym, który pozwolił znaleźć poziomy

z już istniejących przypisań, ale także w sposób systematyczny identyfikować nowe przejścia

w widmie eksperymentalnym prowadzące do wyznaczania kolejnych poziomów. W efekcie

znalazłem wartości 84% możliwych poziomów energetycznych oraz sprawdziłem, że pozo-

stałych nie da się wyznaczyć z rozważanych widm [23]. W tej części badań udało mi się

rozwiązać problem pełnej interpretacji wyników doświadczalnych, kreatywnie wykorzystując

dokładne dane teoretyczne. Otrzymane wyniki teoretyczne mogą być też przydatne do ta-

kiego planowania przyszłych eksperymentów, aby można było z nich wyznaczyć brakujące
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poziomy eksperymentalne.

Procedury opracowane podczas zmagań z widmami dla ortoH2–CO wykorzystałem do

uzupełniającej analizy kompleksu ortoD2–CO, którego widmo eksperymentalne oraz wyzna-

czone z niego poziomy energetyczne opublikowano w pracy [18]. Energie stanów związanych

otrzymane w pracy [28] i rezonansów obliczonych w niniejszej pracy, a także wygenerowane

widmo teoretyczne, pozwoliły sprawdzić poprawność wcześniejszych przypisań oraz energii

wyznaczonych w [18]. Okazało się, że tamte wyniki są poprawne poza drobnymi wyjątkami.

Z zestawienia poziomów teoretycznych i poziomów doświadczalnych dowiedziałem się, ilu

energii poziomów doświadczalnych brakuje. Po zastosowaniu procedur opracowanych wcze-

śniej dla ortoH2–CO, udało mi się wyznaczyć wszystkie brakujące energie stanów związanych

oraz dużą część poziomów odpowiadających rezonansom.

Obliczenia dynamiczne dla kompleksu H2–CO, które wykonałem i użyłem do rozwią-

zywaniu powyższych problemów, wykorzystywały metodę sztywnych rotatorów redukującą

wymiar problemu dynamicznego (4D), i powierzchnię energii oddziaływania V TEav , otrzyma-

ną przez uśrednienie powierzchni pełnowymiarowej, dodatkowo rozwiniętej w szereg Taylora.

Wiemy, że dla rozważanego kompleksu podejście to daje wyniki bardzo zbliżone do pełno-

wymiarowych [19, 28]. Aby sprawdzić, czy taka zgodność występuje też dla innych układów,

przeprowadziłem analogiczne obliczenia stanów związanych dla kompleksu HF–HF, który

znacząco różni się od H2–CO, gdyż energia oddziaływania jest o rząd wielkości większa i

bardzo anizotropowa. Okazało się, że użycie V TEav albo powierzchni uśrednionej bez przy-

bliżenia Taylora Vav, prowadzi co prawda do wyników lepszych niż powierzchnie otrzymane

przez proste zamrożenie geometrii podukładów w powierzchni pełnowymiarowej, ale obliczo-

ne poziomy energetyczne różnią się znacznie bardziej od energii odniesienia otrzymanych z

obliczeń pełnowymiarowych, niż ma to miejsce dla H2–CO. W związku z tym zaproponowa-

liśmy bardziej zaawansowaną metodę, w której w procesie uśredniania powierzchni energii

oddziaływania uwzględniamy fakt, że cząsteczki drgają w polu oddziaływania z partnerem.

Otrzymaną w ten sposób powierzchnię Vad nazywamy adiabatyczną. Okazało się, że takie

podejście znacząco poprawia zgodność obliczanych poziomów energetycznych z pełnowymia-

rowym wzorcem. W przypadku podejścia adiabatycznego powstaje problem wyboru stałej

rotacji, którą używamy w obliczeniach sztywnych rotatorów. Zaproponowałem inny niż stan-

dardowy wybory wartości tej stałej i pokazałem, że można w ten sposób znacząco poprawić

dokładności obliczanych energii. Następnie, traktując Vad jako punkt wyjścia, zastosowa-

łem przybliżenie Taylora, w wyniku którego powstała powierzchnia V TEad . Testy pokazały,
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że obliczenia dynamiczne 4D z V TEad dawały wyniki tylko nieznacznie różniące się od energii

odniesienia, czyli otrzymanych dla powierzchni Vad. Ten fakt jest bardzo ważny z punktu

widzenia praktycznego, bo taką powierzchnię można skonstruować na wysokim poziomie ob-

liczeń ab initio bezpośrednio, bez konieczności budowy pełnowymiarowej powierzchni energii

oddziaływania, co bardzo redukuje całkowity koszt ostatecznej powierzchni.

Moje badania pokazały, że teoretyczny opis kompleksów słabo oddziałujących cząsteczek,

jeśli jest przeprowadzony z odpowiednią dokładnością i dbałością o szczegóły, może być sku-

tecznie wykorzystany do dogłębnej analizy wyników doświadczeń spektroskopowych. Roz-

ważałem istotną kwestię uwzględniania w widmie stanów kwazizwiązanych wyznaczonych z

precyzyjnych obliczeń rozproszeniowych. Zaproponowałem też nową metodę uwzględniania

wpływu niesztywności cząsteczek na energię oddziaływania międzymolekularnego przy kon-

struowaniu efektywnych powierzchni o zredukowanym wymiarze. Otwiera ona perspektywę

tworzenia powierzchni, które, w połączeniu z metodą sztywnych rotatorów, będą prowadziły

do widm o bardzo wysokiej dokładności.
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