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Once, I heard an Indian mystic say that if you give a flower to a scientist, the first instinct is 

to take it apart—study its parts, its functions, its design. In doing so, we uncover its structure 

but lose the soul of the flower. 

I have always feared becoming that scientist. 
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Abstract 

Forest fragmentation significantly affects biodiversity, carbon sequestration, and ecosystem 

resilience. Yet temperate forests—such as those in northern Poland within the Tuchola Forest 

Biosphere Reserve (TFBR; Polish: RBBT)—remain understudied compared with tropical 

systems. This dissertation analyzes fragmentation dynamics in the TFBR, a landscape shaped 

by monocultural forest management, strong land-use pressure, and extreme events, notably 

the August 2017 windstorm. Using satellite remote sensing at multiple resolutions (Sentinel-

2, ALOS PALSAR, Landsat-8, CORINE), advanced landscape metrics (e.g., Forest Area 

Density, FAD), and machine-learning methods, I examine multiscale and multitemporal 

patterns, ecological consequences, and monitoring strategies to support adaptive protection 

and increase resilience. 

The thesis addresses four questions: (i) How have methods for assessing forest fragmentation 

evolved? (ii) How do fragmentation and multiscale disturbances alter forest structure and 

landscape coherence? (iii) Which ecological processes dominate across fragmentation zones 

(core, transition, sparse)? (iv) Which vegetation indicators best support monitoring, 

prioritization, and conservation effectiveness? Across five articles, the dissertation: traces a 

methodological shift from patch-based metrics to connectivity-oriented approaches (Article 

1); establishes reference conditions for pre-disturbance baselines and the onset of 

fragmentation assessment (Article 2); quantifies post-2017 loss of core forest and expansion 

of edge zones (Article 3); maps susceptibility to hurricane-force winds using a proprietary 

fragmentation-risk framework that highlights interfaces with agricultural land (Article 4); and 

identifies water stress and related processes using Sentinel-2 indices and machine learning 

(Article 5). 

This work provides a scalable, open analytical framework that integrates remote sensing, 

landscape metrics, and machine learning to assess structural and functional fragmentation, 

with applications to core-area protection and corridor restoration. Limitations include the lack 

of LiDAR for 3-D validation, dependence on detailed inventory data, and computational 

constraints for large-scale modeling. Future research should incorporate voxel-based metrics, 

deep learning, and continuous validation with high-quality field data. 

The methodology is transferable beyond the Tuchola Forest Biosphere Reserve to temperate 

and boreal forests using cloud platforms (e.g., Google Earth Engine). It supports the 

Kunming–Montreal Global Biodiversity Framework (30×30 by 2030) and REDD+ MRV 

objectives, and advances SDGs 15 (Life on Land), 13 (Climate Action), and 6 (Clean Water 

and Sanitation) by providing practical elements for biodiversity conservation and climate 

adaptation in temperate forests. 

Keywords: Forest fragmentation, landscape metrics, connectivity, remote sensing, machine 

learning, Tuchola Forest, TFBR, temperate forests, conservation planning, Kunming–Montreal 

Framework, REDD+ MRV.  
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Streszczenie 

Fragmentacja lasów znacząco wpływa na bioróżnorodność, sekwestrację węgla i odporność ekosystemów, 

jednak lasy strefy umiarkowanej, takie jak te położone w północnej Polsce w granicach Rezerwatu Biosfery 

Bory Tucholskie (RBBT), pozostają niedostatecznie zbadane w porównaniu z innymi systemami, np. 

tropikalnymi. Niniejsza rozprawa analizuje dynamikę fragmentacji w RBBT, krajobrazie ukształtowanym 

przez monokulturową gospodarkę leśną, intensywną presję użytkowania ziemi oraz ekstremalne zjawiska 

klimatyczne, takie jak nawałnica z sierpnia 2017 roku. Wykorzystując teledetekcję satelitarną różnej 

rozdzielczości (Sentinel-2, PALSAR, Landsat-8, CORINE), zaawansowane metryki krajobrazowe (np. 

gęstość obszaru leśnego, ang. forest area density; FAD) oraz uczenie maszynowe, przeanalizowano wzorce 

wieloskalowe i wieloczasowe, konsekwencje ekologiczne oraz strategie monitorowania, które powinny 

wspierać adaptacyjną ochronę środowiska i zwiększać odporność ekologiczną. 

Praca odpowiada na cztery pytania badawcze: (i) Jak ewoluowały metody oceny i analizy fragmentacji 

lasów? (ii) Jak fragmentacja i wieloskalowe zaburzenia zmieniają strukturę i spójność krajobrazu leśnego? 

(iii) Jakie procesy ekologiczne dominują w wyróżnianych strefach fragmentacji, tj. strefie rdzennej, 

przejściowej i rzadkiej? (iv) Które wskaźniki wegetacji najlepiej wspierają monitorowanie oraz 

priorytetyzację i efektywność działań ochronnych? Podsumowując pięć załączonych artykułów, rozprawa 

doktorska prezentuje rozwój metodologii od metryk opartych na płatach do podejścia zorientowanego na 

spójności krajobrazu (Artykuł 1), wskazuje poziomy odniesienia przed wystąpieniem zaburzeń w 

krajobrazie i rozpoczęciem oceny fragmentacji (Artykuł 2), szacuje utratę zwartych (rdzennych) obszarów 

leśnych i ekspansję stref krawędziowych w krajobrazie po wystąpieniu nawałnicy w 2017 roku (Artykuł 

3), wskazuje (mapuje) obszary wysokiego ryzyka na skutki huraganowych wiatrów, spowodowane 

bliskością gruntów rolnych i podatną ekspozycją terenu za pomocą autorskiej koncepcji oceny krajobrazu 

z wykorzystaniem „modelu podatności na fragmentację” (ang. Fragmentation Susceptibility Modeling 

Framework) (Artykuł 4) oraz identyfikuje stres wodny i inne wybrane parametry, jako efekt dominujących 

procesów ekologicznych analizowanych przy wykorzystaniu wskaźników teledetekcyjnych opartych na 

danych obrazowych Sentinel-2 i metodach uczenia maszynowego (Artykuł 5). 

Rozprawa doktorska jest pionierskim opracowaniem, które wykorzystuje skalowalne, otwarte ramy 

analityczne, integrujące teledetekcję satelitarną, metryki krajobrazowe i uczenie maszynowe w celu 

analizy fragmentacji pod kątem struktury i funkcjonalności, zwłaszcza w kontekście celowej 

ochrony stref rdzeniowych i odbudowy korytarzy ekologicznych. W trakcie prac zauważono 

ograniczenia wynikające z braku danych LiDAR do walidacji modelu 3D, zależność wyników 

analiz od szczegółowych danych inwentaryzacyjnych oraz ograniczenia obliczeniowe w 

tworzonym modelowaniu wielkoskalowym. Przyszłe badania nad podjętą problematyką, zwłaszcza 

w zakresie ekologicznym, powinny już wykorzystywać metryki oparte na wokselach, uczenie 

głębokie i ciągłą walidację modelu w oparciu o dokładne dane terenowe. 

Opracowana metodologia ma zastosowanie także poza obszarem analizy – Rezerwatem Biosfery Bory 

Tucholskie, w monitorowanie lasów umiarkowanych i borealnych z wykorzystaniem danych satelitarnych 

i platform chmurowych (np. Google Earth Engine; GEE). Narzędzia te wspierają globalne ramy 

różnorodności biologicznej zawarte w ramach Porozumienia Kunming-Montreal (2022), które zakłada 

odbudowę do 2030 roku 30% zdegradowanych ekosystemów i ochronę 30% obszarów lądowych, oraz 

działania zapisane w protokole REDD+ (Reducing Emissions from Deforestation and Forest 

Degradation) w celu pomiaru i monitorowania pokrywy leśnej oraz zapasów węgla z wykorzystaniem 

mechanizmu MRV (Measurement, Reporting and Verification) dla łagodzenia zmian klimatycznych. 

Praca doktorska wspiera Cele Zrównoważonego Rozwoju ONZ (ang. Sustainable Development Goals UN; 

SDG) w szczególności SDG 15 (Życie na lądzie), SDG 13 (Działania w dziedzinie klimatu) oraz SDG 6 

(Czysta woda i warunki sanitarne), dostarczając praktycznych elementów strategii dla ochrony 

bioróżnorodności i adaptacji klimatycznej w lasach strefy umiarkowanej. 

Słowa kluczowe: fragmentacja lasów, metryki krajobrazowe, spójność krajobrazu, teledetekcja 

satelitarna, uczenie maszynowe, Bory Tucholskie, RBBT, lasy strefy umiarkowanej, ochrona 

krajobrazu, Porozumienie Kunming-Montreal, REDD+, MRV.  
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Chapter 1: Introduction 

Forest fragmentation—the rearrangement of forest into smaller, more isolated patches—

reshapes ecological processes even when total forest area stays constant. By changing patch 

size, isolation, and edge exposure (“fragmentation per se”), it intensifies light and wind at 

boundaries, elevates vapor-pressure deficits, and raises fire and biotic stress (Arroyo-Rodríguez 

et al., 2017; Fletcher et al., 2018; Fahrig, 2019; Ma., et al. 2023). Globally, edge proximity is 

now pervasive—more than two-thirds of forests lie within ~1 km of an edge—so edge-mediated 

impacts are rarely local anomalies but system-wide constraints (Siegel et al., 2024). Against 

this backdrop, the Tuchola Forest Biosphere Reserve (TFBR) offers a stringent temperate test 

case: its even-aged Scots pine (Pinus sylvestris) monoculture and shallow rooting accentuate 

susceptibility to edge-driven moisture stress, wind exposure, and fire, especially after the 2017 

derecho (Wulder et al., 2009; Britton et al., 2024). 

This thesis positions fragmentation not only as a structural patterning problem but as a pattern 

→ process → action workflow: role-based and density metrics (MSPA, FAD) diagnose 

structure; Sentinel-2 vegetation indices (e.g., NDRE for pigment stress; NDMI/NDWI for 

moisture) capture functional responses; and zone-specific management (protect, buffer, restore) 

follows logically for Core, Transitional, and Rare areas. Articles 1–5 build this case across 

scales and sensors, and here I frame the ecological motivation, methodological evolution, TFBR 

context, conservation implications, and the research questions, objectives, and hypotheses that 

guide the work. 

1.1 Background and Motivation 

Forests sustain biodiversity, carbon storage, and hydrological regulation (Mazziotta et al., 

2025). Yet land-use pressures and intensifying disturbances reconfigure forest into smaller, 

more exposed units that disrupt connectivity and processes (Fahrig, 2003; Fletcher et al., 2018). 

Temperate systems like TFBR remain under-represented relative to tropical case studies, even 

though their even-aged pine structure (>90%) increases edge sensitivity and limits rooting 

depth, amplifying moisture stress and fire risk compared to mixed deciduous stands (Wulder et 

al., 2009; Britton et al., 2024). Leveraging high-resolution remote sensing (Sentinel-2; 

PALSAR), fixed-window density (FAD), role-based morphology (MSPA), and interpretable 

machine learning, this thesis develops scalable, auditable monitoring tools aligned with 

Kunming–Montreal targets and REDD+ MRV (Haneda et al., 2025; Mazziotta et al., 2025). 

Definitions & Parameters used throughout the thesis (authoritative summary) 

 Forest definition / MMU: FAO/HRL-FTY — ≥ 0.5 ha, ≥ 10% canopy cover, trees ≥ 5 

m at maturity. 

 Edge width (for edge-based metrics/MSPA): 100 m; “core” is ≥ 200 m from edges. 

 FAD/FOS rolling window (harmonised): Sentinel-2 10 m: 51×51 px (~510 m); 

Landsat-8 30 m: 17×17 px (~510 m); CORINE 100 m: 5×5 px (~500 m). Sensitivity: ± 

20% reported. 

 FAD zones: Core ≥ 90%, Transitional 40–60%, Rare ≤ 10% forest cover. 
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 Compositing (Sentinel-2): Medoid, leaf-on DOY ~180–260; S2 cloud/shadow mask 

+ snow filter; despiking via robust z-score. 

 Change detection (where applied): LandTrendr on NDVI/NDMI with standard 

segmentation and recovery constraints (full params: Appendix A). 

 Model evaluation: Spatial block CV (k = 5) + held-out test (by year/area); metrics 

AUC, Kappa (and OOB-R² where relevant); permutation FI + PDP/ICE. 

1.2 Ecological Impacts of Fragmentation 

Edge environments alter light, wind, and moisture regimes, accelerating pigment decline and 

desiccation, and increasing vulnerability to fire and pests (Arroyo-Rodríguez et al., 2017; 

Fletcher et al., 2018). Figure 1 illustrates this as an “iceberg” cascade: the visible ecological 

changes at edges trigger knock-on effects below the waterline—shifts in biodiversity, losses in 

ecosystem services (carbon, water, recreation), risks to people, and long-term evolutionary 

consequences. In TFBR, the 2017 derecho sharply expanded edges and reduced cores, 

compromising interior-dependent species and services like carbon and hydrological buffering 

(Ahmad et al., 2025). While small patches can act as stepping-stones for mobile taxa, population 

stability of interior specialists still requires large, connected cores (Blake & Karr, 1984; Fahrig 

et al., 2019). To avoid confounding composition with configuration, I stratify the landscape into 

Core, Transitional, and Rare zones using FAD, then read functional responses with Sentinel-2 

indices: NDRE and CIred-edge/GARI for pigment dynamics, NDMI/NDWI for canopy water 

status, and NDVI/EVI for greenness/biomass (Lausch et al., 2016; Wang et al., 2010; Xue & 

Su, 2017). 

 

Figure 1: Fragmentation’s “iceberg” of impacts: edge-driven microclimate changes → visible 

ecological effects → deeper consequences for biodiversity, ecosystem services, society, and 

evolution. 
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1.3 Evolution of Fragmentation Analysis 

Methods progressed from patch/edge/shape metrics (e.g., FRAGSTATS) and neutral landscape 

models to role-based morphology (MSPA), fixed-window density (FAD/FOS), and 

connectivity graphs that generalize to policy scales (McGarigal, 1995; Vogt et al., 2007; Vogt 

& Riitters, 2017). Advances in remote sensing (Sentinel-2; lidar for canopy height/structure) 

and change detection (VCT, LandTrendr) enable multi-decadal, multi-sensor tracking of 

structural change (Maier et al., 2006; Zald et al., 2016; Kennedy et al., 2018). Open, scriptable 

tools (landscapemetrics, PyLandStats, GuidosToolbox; Google Earth Engine) make workflows 

auditable and scalable, addressing long-standing issues of scale dependence and reporting 

inconsistency when paired with explicit parameter disclosure (Hesselbarth et al., 2019; Bosch, 

2019; Vogt et al., 2022). This thesis adopts that open pipeline to link structure and function in 

TFBR. 

1.4 Tuchola Forest Context 

Designated a UNESCO Biosphere Reserve in 2010, Tuchola Forest Biosphere Reserve spans 

post-glacial lowlands and wetlands but is dominated by even-aged Scots pine (~96–97%), 

creating homogeneous canopies and shallow rooting that amplify edge effects and reduce 

resilience (Jastrzębski et al., 2010; Ahmad et al., 2025). Superimposed windstorms (e.g., 2017 

derecho; see photo 1 and 2) intensified fragmentation, particularly along cropland–forest and 

road interfaces. TFBR’s core–buffer–transition zoning provides a natural scaffold for FAD-

based stratification and for testing how fragmentation alters ecological processes across zones. 

 

Photo 1: View of the landscape of the Tuchola Forest after a catastrophic storm in August 2017 

(courtesy of Daniel Jańczyk) 
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Photo 2: View of the landscape of the Tuchola Forest after a catastrophic storm in August 2017 

(courtesy of Daniel Jańczyk) 

1.5 Conservation Implications 

A zone-specific reading of fragmentation (see photo 3) translates directly into action: Core 

zones require strict protection (≥ 200 m from edges) to maintain interior conditions as described 

by Pfeifer., et al. (2017) and carbon stocks; Transitional zones benefit from buffers and 

ecological corridors to stabilize pigment and moisture dynamics; Rare zones—highly 

fragmented and edge-exposed—call for passive rewilding and stepping-stones, with species 

mixes that improve rooting depth and moisture retention. Early-warning signals from NDRE 

(pigment) and NDMI/NDWI (moisture) help target interventions before structural decline is 

visible. These tools align with Kunming–Montreal Targets 2 and 3 and strengthen REDD+ 

MRV by providing reproducible, high-resolution condition and risk layers for temperate forests 

(Ye et al., 2020; Haneda et al., 2025; Mazziotta et al., 2025). 
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Photo 3: View of the forest landscape of the Tuchola Forest demarcating the Core, Transitional, 

and Rare areas based on canopy continuity vs. openings from field study by the author (not a 

computed FAD surface) (photo: Mieczysław Kunz). 

1.6 Research Questions, Objectives, and Hypotheses 

This thesis synthesizes five empirical articles (2016–2024) analyzing TFBR’s forest 

fragmentation using remote sensing datasets (CORINE Land Cover, Landsat-8, PALSAR, 

Sentinel-2), landscape metrics, and ecological ground data (Polish Forest Data Bank) 

(Pekkarinen et al., 2009; Altunel & Celik, 2025). 

Research Questions (RQ): 

 RQ1: How have forest fragmentation definitions and measurement methods evolved, 

and which are most effective for temperate forest landscapes? 

 RQ2: How do fragmentation dynamics (e.g., core loss, edge expansion) and the 2017 

derecho affect ecological processes across TFBR’s Core, Transitional, and Rare zones? 

 RQ3: What are the ecological impacts of fragmentation on vegetation health and 

ecosystem function across TFBR’s fragmentation zones? 

 RQ4: Which Sentinel-2-derived vegetation indices, integrated with machine learning, 

best support monitoring and prioritized conservation (e.g., core protection, transitional 

buffering, rare restoration) in TFBR? 
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Objectives (O): 

 O1: Synthesize the evolution of fragmentation analysis to establish a methodological 

foundation for temperate forests (Article 1). 

 O2: Quantify temporal and spatial fragmentation changes in TFBR driven by the 2017 

derecho (Articles 2–3). 

 O3: Assess fragmentation’s ecological impacts on vegetation health and ecosystem 

function across Core, Transitional, and Rare zones using FAD zoning (Articles 2–4). 

 O4: Develop Fragmentation Susceptibility Models using Bayesian Weight-of-Evidence 

(WoE) and machine learning to predict risk from drivers like cropland proximity and 

windstorm exposure (Article 4). 

 O5: Identify sensitive Sentinel-2-derived vegetation indices (e.g., NDWI, GNDVI, 

EVI) using machine learning to support conservation prioritization (Article 5). 

Hypotheses (H): 

 H1: Fragmentation increased post-2017 derecho, reducing core forest areas and 

expanding edge zones, as measured by FAD and MSPA. 

 H2: Vegetation health, assessed via NDWI, GNDVI, and EVI, is negatively correlated 

with fragmentation intensity, particularly in Transitional and Rare zones. 

 H3: Advanced landscape metrics (e.g., FAD, MSPA) and Bayesian WoE models, 

integrated with PALSAR and Sentinel-2 data, accurately predict fragmentation 

susceptibility, guiding conservation. 

 H4: Sentinel-2-derived indices (NDWI, GNDVI, EVI), combined with machine 

learning, robustly predict ecological conditions across TFBR’s zones, enhancing 

monitoring. 

 

Figure 2: Conceptual roadmap for forest fragmentation monitoring in Tuchola Forest. The 

framework highlights five research goals: identifying unknown ecological impacts, quantifying 

temporal change, assessing vegetation health, building analytical tools, and informing 

sustainable forest management. 
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1.7 Structure of the Thesis 

Here I outline how the thesis unfolds and how the embedded articles fit together. The structure 

moves from concepts to context, from methods to results, and finally to synthesis. Part I 

motivates the problem and situates this work within the methods literature; Part II details the 

TFBR study area and analytical workflow that underpin all analyses; Part III compiles the 

empirical articles into a coherent narrative of dynamics, drivers, and monitoring; and Part IV 

integrates findings, limitations, and implications for management and policy. This roadmap is 

intended to help readers navigate cross-references between chapters and articles and to see how 

each component contributes to the overarching research aims. 

The thesis is organized into four parts: 

 Part I: Conceptual Framework (Chapters 1): Introduces fragmentation impacts, 

research objectives, and a systematic methodological review (Article 1). 

 Part II: Study Area and Analytical Framework (Chapters 2–3): Describes TFBR’s 

ecological context and outlines methodologies, datasets, and analytical tools. 

 Part III: Empirical Analyses (Articles 2–5, Chapter 4): Presents findings on 

fragmentation dynamics, disturbance impacts, susceptibility mapping, and ecological 

monitoring. 

 Part IV: Conclusions (Chapter 5): Integrates insights, evaluates contributions and 

limitations, and provides recommendations for research and management. 

This synthesis advances understanding of temperate forest fragmentation, delivering actionable 

tools for sustainable management and global conservation goals. 
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Chapter 2: The Tuchola Forest Biosphere Reserve  

The Tuchola Forest Biosphere Reserve (TFBR), designated by UNESCO in 2010, is a key case 

study for analyzing forest fragmentation dynamics in temperate landscapes. This chapter details 

TFBR’s geographical, ecological, and conservation contexts, emphasizing its postglacial 

landscape, pine-dominated monoculture, and UNESCO zonation as a framework for studying 

fragmentation and climatic disturbances. Detailed ecological analyses, such as Forest Area 

Density (FAD) zoning and vegetation stress, are deferred to Articles 2–5 (Chapter 5), aligning 

with the thesis’s empirical findings. By highlighting TFBR’s unique features, this chapter 

underscores its significance for global temperate forest research and conservation policies, 

including the Kunming–Montreal Global Biodiversity Framework and REDD+ MRV protocols 

(Haneda et al., 2025; Mazziotta et al., 2025). 

2.1 Geographical Context 

The TFBR spans 3,195 km² across Poland’s Pomeranian and Kuyavian-Pomeranian 

voivodeships, covering 22 communes (Nienartowicz et al., 2010; Nienartowicz & Kunz, 2018), 

see figure 4. Its postglacial lowland landscape, featuring sandy outwash plains, lakes, and peat 

bogs, creates a distinctive ecological setting for fragmentation studies (Kistowski, 2020). 

Organized into a core zone (78.8 km², including Tuchola Forest National Park and 25 nature 

reserves), a buffer zone (1,046 km²), and a transition zone (2,069 km²), TFBR’s UNESCO 

zonation, shown in Figure 3, supports multi-scale fragmentation analyses and restoration 

planning (Kunz & Nienartowicz, 2013; Kunz, 2020). The reserve’s six physical regions—

Wysoczyzna Świecka, Równina Charzykowska, Pojezierze Kaszubskie, Pojezierze 

Starogardzkie, Bory Tucholskie (Tuchola Forest), and Dolina Brdy—host diverse ecological 

conditions, with Bory Tucholskie as the forested core and Dolina Brdy supporting critical 

wetlands (Kistowski, 2020). This structure positions TFBR as a model for assessing temperate 

forest responses to land-use and climatic pressures (Kunz & Nienartowicz, 2021; Ahmad et al., 

2025). 
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Figure 4: Map of the Tuchola Forest Biosphere Reserve (TFBR) with detailed research areas. 

2.2 Ecological Characteristics 

Dominated by a Scots pine (Pinus sylvestris) monoculture (96.8% of forest cover), TFBR’s 

historical forestry practices amplify its vulnerability to fragmentation and climatic disturbances 

like the 2017 derecho (Jastrzebski et al., 2010; Ahmad et al., 2025). This homogeneity, unlike 

mixed temperate or tropical forests, intensifies edge effects and connectivity loss, reducing 

resilience (Fahrig, 2003; Blanchard et al., 2023). The 2017 derecho exacerbated core forest loss 

and edge expansion, with impacts analyzed in Articles 2–4 (Chapter 5) (Taszarek et al., 2019; 

Mazziotta et al., 2025). TFBR’s biodiversity, including unique wetlands and lobelia lakes, 



Sanjana Dutt – Forest Fragmentation Dynamics in Tuchola Forest, Poland. A Multiscale Analysis Using RS 

 

Page | 25  
 

supports vital ecological functions, but fragmented patches threaten species like the hazel 

grouse, facing dispersal barriers (Rutkowski et al., 2016; Peterson et al., 2025). These traits 

make TFBR a compelling case for studying disturbance-driven fragmentation, with global 

implications (Kunz et al., 2023; Saura, 2021). 

 

Photo 4. Disturbance evidence in TFBR (field view). Basal charring on even-aged Scots pine 

(Pinus sylvestris) with scattered windthrow indicates recent fire activity and edge-amplified 

stress typical of Transitional/Rare FAD zones (photo: Sanjana Dutt). 

2.3 Conservation Challenges and Policy Context 

TFBR faces conservation challenges from its pine monoculture, climatic stressors, and 

pressures from agriculture and forestry (Referowska-Chodak & Kornatowska, 2021; Ahmad et 

al., 2025). As a Natura 2000 site, it reflects Poland’s biodiversity commitments, but the lack of 

legal status for biosphere reserves limits management (Referowska-Chodak & Kornatowska, 

2021). The thesis’s tools, including fragmentation susceptibility mapping and vegetation 

monitoring (Articles 4–5), offer solutions, aligning with global policies: 
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Photo 5. Timber extraction in TFBR. Harvest operations create new/temporary edges and 

access tracks that can influence fragmentation metrics and spectral signals (photo: Sanjana 

Dutt). 

 Kunming–Montreal Global Biodiversity Framework (2022): Targets 2 (30% 

ecosystem restoration) and 3 (30% protected areas) are supported by TFBR’s need for 

ecological corridors and core zone protection. The thesis’s remote sensing and machine 

learning tools (Articles 4–5) prioritize conservation actions, such as mapping high-risk 

zones (Mazziotta et al., 2025; Ye et al., 2020). 

 REDD+ MRV Protocols: These require precise forest cover and carbon stock 

monitoring. The thesis’s integration of Sentinel-2 and PALSAR data (Articles 4–5) 

enhances REDD+ compliance in temperate forests (Haneda et al., 2025). 

 United Nations Sustainable Development Goals (SDGs): The research supports SDG 

15 (Life on Land) via habitat conservation, SDG 13 (Climate Action) through carbon 

mapping, and SDG 6 (Clean Water) by linking fragmentation to hydrological resilience 

(Haneda et al., 2025; Mazziotta et al., 2025). 

These alignments position TFBR as a model for integrating local and global conservation 

efforts, providing scalable tools for temperate forest management, see photo 5.  
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Chapter 3: Materials, Methods, and Analytical Framework 

We quantify forest fragmentation in the Tuchola Forest Biosphere Reserve (TFBR) using a 

scalable, open workflow that links structure (FAD/MSPA and classical landscape metrics) to 

function (Sentinel-2 vegetation indices) and to action (susceptibility mapping and zone-specific 

guidance), refer to figure 5. All parameters affecting scale and comparability (minimum 

mapping unit, edge width, rolling-window sizes, compositing policies, resampling rules, and 

cross-validation design) are declared here to ensure full reproducibility and policy-grade 

reporting. Choices are aligned with Kunming–Montreal Targets 2 and 3 and with REDD+ MRV 

practices. 

 

Figure 5: Conceptual workflow for forest fragmentation analysis in the Tuchola Forest 

Biosphere Reserve. The framework illustrates the stepwise integration of satellite inputs, 
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preprocessing, classification, landscape metrics, advanced analytics, spatial tools, ground 

validation, and ecological interpretation to produce spatially explicit outputs that inform 

conservation planning. 

3.1 Evolution of Fragmentation Analysis 

Early work emphasized patch/edge/shape statistics (e.g., FRAGSTATS), which are replicable 

but weakly linked to connectivity and processes. Subsequent advances introduced (i) role-

based morphology (MSPA) that distinguishes core/edge/bridge roles; (ii) fixed-scale density 

(e.g., Forest Area Density, FAD) that standardizes configuration across sensors and eras; and 

(iii) connectivity indicators and graph/circuit analogues that generalize to corridor planning. 

In parallel, disturbance “feeders” (LandTrendr, VCT, CCDC) stabilized time-series diagnostics, 

and open pipelines (R, Python, GEE) made analyses auditable at scale. This study adopts that 

trajectory: MSPA + FAD for structural diagnostics, paired with interpretable ML on Sentinel-

2 indices to read zone-specific functional responses in Core, Transitional, and Rare contexts. 

3.2 Datasets and Satellite Platforms 

We use multi-sensor data to span regional (100 m), local (30 m) and fine (10–20 m) scales: 

 CORINE Land Cover (1990–2018, 100 m) — regional baselines for 

composition/configuration, cautioning under-detection of fine fragmentation. Use: 

Article 2 baselines. 

 Landsat-8 OLI (30 m) — local trajectories for the 2017 derecho context; 

atmospherically corrected (Collection 2 L2), cloud/shadow masked, composited to 

annual leaf-on medoids. Use: Article 3. 

 ALOS PALSAR (25 m, L-band SAR) — structure under clouds/debris; radiometric 

calibration to γ⁰, terrain correction, and Refined-Lee speckle filtering prior to 

FAD/MSPA and susceptibility modeling. Use: Article 4. 

 Sentinel-2 MSI (10–20 m, L2A) — fine-scale VIs and FAD zoning; QA60 + 

cloud/shadow masks; leaf-on medoid composites (DOY ≈ 180–260) to harmonize 

phenology. Bands: B2 (Blue), B3 (Green), B4 (Red), B5–B7 (Red-edge), B8 (NIR), 

B11/B12 (SWIR). Use: Article 5. 

 Polish Forest Data Bank (BDoL) — stand attributes for validation/interpretation 

(degradation, moisture/site type, age), acknowledging variable thematic granularity. 

Preprocessing common to all rasters. Reprojection to EPSG:2180 (PUWG 1992); alignment to 

a common extent/grid; resampling rules: nearest-neighbour for categorical (classes/MSPA), 

bilinear for continuous (indices); explicit data lineage and parameter files. Compositing policy 

(optical). Annual medoid of leaf-on stack to suppress outliers; sensitivity ±DOY 20 d reported. 

Rolling-window harmonization. FAD/FOS windows standardized at ~500 m across sensors: 

 Sentinel-2 (10 m): 51×51 px, 

 Landsat-8 (30 m): 17×17 px, 
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 CORINE (100 m): 5×5 px. 

Edge width = 100 m; Core defined as ≥200 m from edge. Sensitivity ±20% reported. 

Alternative datasets, such as Dynamic World (10 m, Sentinel-2, near real-time), World Cover 

(10 m, Sentinel-2), and Esri Land Cover (10 m, Sentinel-2), offer high accuracy for forest 

classes (72–75%) but were not used due to limited historical coverage for TFBR’s long-term 

analysis (Brown et al., 2022, 2023; Venter et al., 2022; Altunel & Celik, 2025). MODIS (250–

1000 m) and Sentinel-1 (10 m, SAR) were excluded for coarser resolution or limited spectral 

bands for vegetation analysis (Radeloff et al., 2024). High-resolution platforms like 

PlanetScope or Pléiades Neo were considered but deemed cost-prohibitive (Mazziotta et al., 

2025). Preprocessing, including atmospheric correction and cloud masking, was conducted 

using Google Earth Engine (GEE), chosen over proprietary platforms like ENVI or ArcGIS for 

scalability and accessibility (Mutanga & Kumar, 2019; Zhao et al., 2021). Specific dataset 

applications are detailed in Articles 2–5. 

Table 1: Evolution of toolsets and datasets for forest fragmentation analysis (1990–2025). 

Period Tools/Datasets Characteristics Thesis Application 

1990–2000 
FRAGSTATS, 

Landsat 

Patch-based,  

coarse resolution 

Baseline metrics  

(Article 2) 

2000–2010 
GuidosToolbox, 

MODIS 

Landscape connectivity 

focus 

Connectivity analysis  

(Article 3) 

2010–2025 
GEE, Sentinel-2, 

PALSAR 

High-resolution,  

process-oriented 

Susceptibility modeling, 

ecological monitoring 

(Articles 4–5) 

3.3 Landscape Metrics 

Landscape metrics quantify TFBR’s fragmentation patterns across core, buffer, and transition 

zones using the R package landscapemetrics (Kupfer, 2012; McGarigal et al., 2012, as cited in 

Ahmad et al., 2025). Key metrics include Number of Patches (NP), Edge Density (ED), and 

Shannon’s Diversity Index (SHDI), with FAD zoning classifying areas into Core (≥90% forest 

cover), Transitional (40–60%), and Rare (≤10%) zones (Riitters et al., 2000, as cited in Article 

3). MSPA, implemented via GuidosToolbox, enhances core-edge-bridge analysis, supporting 

connectivity assessments (Vogt & Riitters, 2017; Ye et al., 2020). Functional metrics, such as 

least cost distance and graph-based connectivity (e.g., node degree, centrality), were evaluated 

but not used due to data constraints and TFBR’s focus on structural patterns (Kupfer, 2012; 

Fletcher et al., 2018). Alternatives like ArcGIS or QGIS were considered but excluded for open-

source preference. Metric calculations and ecological implications are detailed in Articles 3–5. 

3.4 Remote Sensing Analysis 

Remote sensing datasets were processed to map forest cover, detect disturbances, and assess 

ecological conditions. Sentinel-2 and PALSAR data generate FAD maps and monitor structural 

changes, while Landsat-8 provides temporal context for the 2017 derecho’s impacts (Articles 
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3–4) (Altunel & Celik, 2025; Radeloff et al., 2024). GEE facilitates cloud-free composite 

generation and time-series analysis, outperforming proprietary platforms due to its scalability 

and open access (Mutanga & Kumar, 2019; Zhao et al., 2021). Dynamic World’s near real-time 

capabilities and probability scores were considered but not used due to TFBR’s historical focus 

(Brown et al., 2022, 2023). Sentinel-1 and GOES were excluded for lower optical resolution or 

regional focus (Radeloff et al., 2024). Change detection algorithms, including LandTrendr for 

NDVI breakpoints, are detailed in Articles 2–5 (Mazziotta et al., 2025). 

3.5 Statistical and Machine Learning Methods 

Here I outline the statistical and machine-learning toolbox used in this thesis and the principles 

guiding model selection, training, and evaluation. Section 3.5.1 motivates the use of tree-based 

ensembles for high-dimensional, non-linear relationships in Sentinel-2 and ancillary predictors, 

while Section 3.5.2 introduces a Bayesian Weight-of-Evidence approach to quantify driver 

contributions and produce interpretable susceptibility maps. Across methods, I specify data 

partitioning, cross-validation, and performance metrics, and indicate how model outputs are 

interpreted alongside vegetation indices (Section 3.6) and integrated into the end-to-end 

pipeline (Section 3.7). This subchapter thus links algorithms to ecological questions, balancing 

predictive accuracy with transparency and reproducibility. 

We framed prediction problems for four Forest Ecological Attributes (FEAs): Degradation 

(ordinal), Moisture content (ordinal), Site type (ordinal), Stand age (continuous). 

3.5.1 Ensembles 

 Extra Trees (ET) for primary modeling (robust to high-dimensional, non-linear 

interactions; fast; low variance through randomized splits). 

 LightGBM (LGBM) as a secondary comparator (gradient-boosted trees). 

 Hyperparameters: tuned via Bayesian or coarse-to-fine grid (trees, max depth, min 

samples per split/leaf, subsampling where applicable). 

 Class imbalance: stratified sampling / class weights for ordinal FEAs. 

3.5.2 Spatial evaluation & interpretability 

 Leakage control: spatial block cross-validation (k=5) + held-out test split by year/area. 

 Metrics: AUC and Cohen’s Kappa for ordinal FEAs, OOB-R²/MAE for stand age; 

distributional diagnostics (boxplots of normalized errors). 

 Explanations: Permutation Feature Importance (FI), Partial Dependence (PDP) and ICE; 

interpretation is zone-aware (Core vs Transitional vs Rare). 

3.5.3 Bayesian Weight-of-Evidence (WoE) 

For fragmentation susceptibility, WoE quantifies the log-odds contribution of drivers (e.g., 

distance to cropland/roads, wind speeds, slope, tree height/age). Categories are constructed to 

minimize multicollinearity (checked by correlation matrices) and maximize monotonic 

interpretability. Outputs: susceptibility map + ROC/Kappa validation.  
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3.6 Vegetation Indices 

Vegetation indices, derived from Sentinel-2, monitor ecological health across TFBR’s 

fragmentation zones. We standardize VI usage and terminology (Sentinel-2 bands in 

parentheses): 

 NDVI = (B8−B4)/(B8+B4) — greenness/biomass; saturates at high LAI. 

 EVI = 2.5·(B8−B4)/(B8+6·B4−7.5·B2+1) — greenness with aerosol/soil correction; 

less saturation. 

 GNDVI = (B8−B3)/(B8+B3) — chlorophyll-leaning greenness 

 NDRE = (B8−B5)/(B8+B5) [alt: B6/B7] — early pigment stress, red-edge sensitive 

(pine-appropriate). 

 CIred-edge = (B8/B5) − 1 [alt: B6/B7] — chlorophyll proxy, very sensitive. 

 NDMI = (B8−B11)/(B8+B11) — canopy water status; we use this as the moisture 

index.  

 GARI = (B8 − [B3 − (B2 − B4)])/(B8 + [B3 − (B2 − B4)]) — pigment stress, 

atmospherically resistant. 

Detailed analyses and conservation applications are presented in Article 5. 

3.7 Analytical Integration 

The analytical framework integrates datasets, metrics, and models to address RQs 1–4 (Chapter 

1), as summarized in Table 2. Figure 6 illustrates the pipeline, from data acquisition to 

conservation recommendations, ensuring traceability across Articles 2–5. The framework 

supports Kunming–Montreal Targets 2 and 3 and REDD+ MRV by providing scalable tools for 

temperate forest management, addressing edge effects and connectivity thresholds (Haneda et 

al., 2025; Peterson et al., 2025; Saura, 2021). 

 

Figure 6: Conceptual framework linking the five core research articles. Article 1 provides the 

methodological foundation, while Articles 2–5 apply and extend specific techniques (e.g., FAD, 
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RF, WOE, NDVI/GNDVI) to map fragmentation dynamics, model susceptibility, and assess 

ecological condition. 

Table 2: Summary of Articles’ Contributions and Methodological Links 

Article Focus Data Methods Key outputs 
Links to other 

articles 

1 
Methodological 

evolution 

Literature 

review 

Systematic 

review, synthesis 

Tool and index 

evolution 

Framework for 

2–5; justifies tool 

selection 

2 

Regional LU/LC 

change (1990–

2018) 

CORINE 

FAD 

(GuidosToolbox), 

NP, ED, SHDI 

(FRAGSTATS) 

62% to 55% 

Intact decline, 

SHDI rise to 1.6 

Baseline for 

Articles 3–5 

3 

Local 

fragmentation 

(Brusy) 

Landsat-8 

FAD, RF (GEE), 

NDVI, ED (Patch 

Analyst) 

12% Intact loss, 

67% ED 

increase 

Supplies inputs to 

4, supports 

validation in 5 

4 
Fragmentation 

susceptibility 

PALSAR, 

Dynamic 

World 

WOE, RF, FAD 

High-risk 

Patchy zones 

mapped 

Extends 2–3, 

inputs ecological 

zones for 5 

5 

Vegetation 

stress and  

index analysis 

Sentinel-2 

Extra Trees, 

NDWI, GNDVI, 

SVH 

25% canopy 

loss, stress in 

Patchy zones 

Synthesizes 2–4; 

applies ST/STV 

framework 

 

3.8 Methodological Gaps and Future Directions 

Limitations include the absence of LiDAR for 3D canopy analysis, reliance on Polish Forest 

Data Bank for validation, and computational constraints in large-scale machine learning 

(Blanchard et al., 2023; Haneda et al., 2025). Emerging methods, such as deep learning (e.g., 

convolutional neural networks), voxel-based LiDAR for carbon stock estimation, and graph-

based connectivity metrics, could enhance TFBR’s monitoring capabilities, as discussed in 

Chapter 4 (Brown et al., 2022; Kupfer, 2012; Mazziotta et al., 2025). Dynamic World and GEE 

advancements offer potential for real-time integration, while small patch conservation could 

boost biodiversity, per landscape-scale findings (Riva & Fahrig, 2023; Venter et al., 2022). 

These gaps highlight opportunities to refine tools and support global conservation efforts 

(Peterson et al., 2025). 
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Chapter 4: Synthesis, Contributions, and Future Directions 

This chapter synthesizes findings from five empirical articles (Articles 1–5, Chapter 5) 

examining forest fragmentation in the Tuchola Forest Biosphere Reserve (TFBR), a temperate 

landscape shaped by the 2017 derecho, intensive forestry, and agricultural pressures. 

Addressing four research questions (RQs) through a multi-scale framework integrating remote 

sensing (CORINE, Landsat-8, PALSAR, Sentinel-2), landscape metrics (e.g., Forest Area 

Density [FAD]), and advanced analytics (machine learning, Bayesian modeling), it highlights 

ecological impacts and methodological advancements. Contributions to science and 

conservation are outlined, alongside limitations and future research directions, aligning with 

global policy frameworks like the Kunming–Montreal Global Biodiversity Framework and 

REDD+ MRV protocols (Haneda et al., 2025; Mazziotta et al., 2025). 

4.1 Synthesis of Key Findings 

This section integrates evidence across Articles 1–5 to answer RQs 1–4, merging structural 

diagnostics (FAD, MSPA, connectivity) with functional signals from Sentinel-2 vegetation 

indices and SAR–optical comparisons. Regionally (CORINE), intact forest declined even 

before 2017; locally (Landsat-8), the derecho accelerated edge expansion and patch 

proliferation; at fine scale (Sentinel-2), Transitional and Rare FAD zones carry the brunt of 

pigment decline (NDRE/GARI) and moisture stress (NDMI/NDWI). SAR (PALSAR) 

improves classification of Rare/Patchy states under post-disturbance/cloudy conditions, while 

interpretable ensembles (Extra Trees/LightGBM) expose zone-specific processes that translate 

directly into management actions. 

4.1.1 Cross-Scale Ecological and Methodological Patterns 

RQ1: Methodological evolution (Article 1).  

The field has moved from patch/edge/shape + fractal descriptors to role-based morphologies 

(MSPA), fixed-window density (FAD/FOS), and connectivity graphs, implemented in 

reproducible, open pipelines (R/Python/GEE). This shift matters for temperate forests because 

fixed-window density stabilizes policy-scale comparisons and role classes (core/edge/bridge) 

scale to regional reporting. 

RQ2 & RQ3: Processes & disturbance (Articles 2–4). 

• Regional/Landsat-8 (Brusy): Post-2017, Number of Patches +38%, Mean Patch Size −30%, 

Edge Density up, with a 177.5% increase in damaged forest and −25.2% forest cover in one 

year—classic fragmentation signatures. 

• FAD zones (S2): Core shows stable PDPs (buffered), Transitional/Rare show steep, volatile 

PDPs—consistent with edge microclimates, desiccation, nutrient drawdown. NDRE & GARI 

are strongest for early degradation in Rare; NDMI/NDRE best capture moisture dynamics 

(sharp contrasts in Rare; stable in Core). 
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• Drivers: Proximity to cropland (≤200 m), roads, high wind speeds (25–27 km/h), and 

younger/shorter stands elevate susceptibility; gentler slopes coincide with more fragmented 

patches. 

• Species context: Pine dominance buffers some responses but increases edge vulnerability; 

birch and oak exhibit higher edge sensitivity—relevant for restoration mixes. 

RQ4: Monitoring tools (Article 5). 

• Predictors: NDRE, GARI, GRNDVI flag pigment decline (degradation); NDMI/NDRE 

capture soil–canopy moisture interplay; NDVI/NDRE support site-type filtering; CVI/NDRE 

track age but can confuse rapid edge regrowth with maturity. 

• Models: Extra Trees/LightGBM + PDPs give directional, zone-aware insights. 

• Optical vs SAR: PALSAR outperforms Dynamic World for Rare/Patchy detection post-

storm; SAR–optical fusion is advantageous where clouds or debris complicate optical-only 

mapping. 

Table 3: Cross-Scale Fragmentation Patterns and Conservation Implications 

Scale Data Source Key Finding Conservation Implication 

Regional CORINE 
Gradual intact forest decline pre-

2017 (Article 2) 

Prioritize corridor 

restoration 

Local Landsat-8 
67% edge density increase post-

derecho (Article 3) 

Protect core zones (>200 

m from edges) 

Fine Sentinel-2 
25% canopy loss in Rare zones 

(Article 5) 

Monitor vegetation stress 

for restoration 

4.2 Contributions to Science and Conservation 

This thesis contributes (i) a joined-up, open workflow that ties morphology (FAD/MSPA) and 

connectivity to functional VIs via interpretable ensembles; (ii) a validated susceptibility model 

that elevates SAR where optical is limited; and (iii) a reporting canon that addresses the field’s 

L1–L5 issues (scale, regional tuning, validation, bio-links, reporting). 

4.2.1 Methodological Innovations 

 Fragmentation Susceptibility (Article 4). WoE + FAD + environmental drivers using 

PALSAR & Sentinel-2 maps high-risk zones (AUC 0.82; Kappa 0.68). Iterative 

refinement lifted ROC from 0.64 → 0.82 by removing non-forest confounders and 

multicollinear variables, and by aligning to wind severity patterns. 

 Interpretable ML for processes (Article 5). Extra Trees/LightGBM link 

NDRE/NDMI/NDVI to degradation, moisture, site type, and age, with PDPs exposing 

zone-specific response regimes (stable Core vs volatile Rare). 

 Open, reproducible stack. R/Python/GEE workflows + parameter disclosure 

(windows, edges, MMU, compositing, CV) make results auditable and portable. 
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4.2.2 Management Strategies 

 Core: Strict protection (≥200 m from edges), minimize new edges; preserve carbon & 

interior specialists. 

 Transitional: Buffers + corridors to damp pigment/moisture volatility; selective 

thinning where it moderates extremes. 

 Rare: Passive rewilding + stepping-stones, mixed-species (incl. deeper-rooted) 

plantings; prioritize patches proximate to cropland/roads and high-wind corridors. 

4.2.3 Global Policy Alignment 

Beyond local and regional insights, the thesis engages directly with international frameworks 

for biodiversity and climate action. By situating its findings within the SDGs, the Kunming–

Montreal Global Biodiversity Framework, and REDD+ MRV protocols, the research 

demonstrates how temperate forest monitoring can contribute to broader sustainability goals 

and reporting mechanisms. 

The thesis aligns with: 

 SDGs: Supports SDG 15 (biodiversity), SDG 13 (carbon mapping), and SDG 6 

(hydrological resilience) (Haneda et al., 2025). 

 Kunming–Montreal Global Biodiversity Framework (2022): Targets 2 (30% 

ecosystem restoration) and 3 (30% protected areas) are supported by tools for mapping 

high-risk zones and monitoring stress (Mazziotta et al., 2025). 

 REDD+ MRV Protocols: High-resolution mapping and vegetation index analysis track 

fragmentation-driven carbon loss, enhancing temperate forest monitoring (Haneda et 

al., 2025). 

4.3 Applicability Beyond TFBR 

The approach generalizes to temperate/boreal forests and can be adapted to tropics with region-

tuned windows/thresholds and cloud-robust SAR–optical fusion. Practical on-ramps: (i) free S2 

L2A + PALSAR mosaics; (ii) open code; (iii) a standard reporting checklist. Priorities differ: 

pine-dominated systems emphasize edge buffering; mixed broadleaf/tropical mosaics require 

stricter validation to mitigate spectral confusion and stronger graph-connectivity components. 

4.4 Limitations 

While the thesis advances both methodology and ecological understanding, several limitations 

must be acknowledged. These include data and resource constraints, methodological 

sensitivities, and reliance on existing field datasets. Recognizing these boundaries is essential 

for interpreting the findings appropriately and for charting a realistic path forward in future 

work. 
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 Data & scale. Sentinel-2 (10 m) and Landsat-8 (30 m) cannot resolve microhabitats; 

CORINE under-detects fine-scale change, and SAR–optical performance varies with 

disturbance context and cloud/debris conditions. The absence of LiDAR restricts 

explicit 3D canopy and vertical connectivity analyses (Blanchard et al., 2023; 

Pekkarinen et al., 2009). 

 Modeling choices. Treating categorical ecological attributes as continuous improves 

gradient detection and PDP interpretability, but may obscure ecological thresholds in 

edge-dominated Rare zones. Ensemble ML is computationally demanding and sensitive 

to feature sets, partitioning schemes, and hyperparameters. 

 Validation. Reliance on the Polish Forest Data Bank provides consistent labels but 

limited physiological detail; broader field/biodiversity validations would strengthen 

causal inference and reduce site-specific bias (Ahmad et al., 2025). 

 Transferability. Results are derived from a pine-dominated temperate system; applying 

thresholds, windows, and susceptibility drivers elsewhere requires regional calibration 

and local validation. 

 Parameter sensitivity. Outcomes depend on rolling-window size (FAD/FOS) and edge 

width; reported ±20% sensitivity tests bracket this uncertainty. Compositing and 

change-detection policies (e.g., BAP vs. medoid; segmentation/recovery thresholds) 

also influence detected trends. 

 Computing constraints. Large-area ML pipelines and SAR–optical fusion incurred 

processing bottlenecks that limited the breadth of model comparison and frequency of 

re-runs. 

Net effect: these limitations do not overturn the main conclusions, but they bound precision at 

fine scales, argue for expanded validation (including LiDAR/GEDI and biodiversity data), 

and motivate region-tuned parameterization before transfer to non-temperate, mixed-species 

forests. 

4.5 Future Research Directions 

To push this framework from “very good” to “decision-grade,” next steps should (i) add missing 

data dimensions (vertical structure, traits, climate), (ii) adopt richer models that link 

pattern→process→action, (iii) harden pipelines for repeatable operations at scale, and (iv) test 

generalisation across biomes and disturbance regimes. 

1) Enrich the data stack (what to add) 

 Vertical structure & biomass: GEDI L2A/L4B, ICESat-2 ATL08, country 

airborne/UAV LiDAR, ESA Biomass/CCI Aboveground Biomass → resolve edge 

regrowth vs. true maturity; quantify vertical connectivity. 
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 Traits & chemistry: PRISMA/EnMAP hyperspectral (red-edge/pigments; water 

absorption), Sentinel-3 OLCI; field leaf traits where available → tighten VI–process 

links. 

 Moisture & heat: SMAP soil moisture; ERA5-Land (met), ECOSTRESS/LST 

(thermal) → couple microclimate with edge stress. 

 SAR for all-weather change: Sentinel-1, ALOS-2 PALSAR-2; (near-term) NISAR → 

robust in cloudy/post-disturbance periods. 

 Disturbance & alerts: GLAD/Global Forest Watch, RADD, FIRMS → near-real-time 

disturbance feeders. 

 Biodiversity & field networks: GBIF/eBird occurrences, ICP Forests, national plot 

networks → external validation for L3/L4. 

2) Strengthen methods (how to model) 

 Edge–process coupling: Joint models of NDRE/NDMI/LST/soil moisture with 

distance-to-edge; estimate thresholds where stress accelerates (segmented 

regression/Bayesian change points). 

 Multi-hazard risk: Spatio-temporal models combining wind (reanalysis), drought 

(SPI/SM), biotic pressure; stack into a composite hotspot index with uncertainty. 

 Connectivity that “thinks”: Integrate MSPA with Circuitscape/Omniscape and 

graph neural networks for species-aware corridors; parameterise by dispersal 

distances. 

 Hybrid physics–ML: Couple PROSAIL/RTM simulations with Extra 

Trees/LightGBM (or NGBoost) to reduce confounding and improve extrapolation; 

report SHAP for mechanism hints. 

 Causal & design-based inference: Use design-based area estimation, spatial block 

CV, and (where data permit) difference-in-differences/causal forests to separate drivers 

from correlates. 

 Restoration optimisation: Multi-objective siting (cost, carbon, connectivity, drought 

refuge) via prioritizr/Marxan; outputs = ranked corridor/buffer portfolios. 

3) Production-grade pipelines (how to run) 

 Workflow & versioning: Snakemake/Airflow + DVC/MLflow for data/model lineage; 

containerise (Docker) for portability. 

 Cloud & cadence: Earth Engine for ingestion/compositing; batch ML on HPC/cloud 

(AWS/GCP). Publish quarterly/seasonal updates. 

 FAIR & reproducibility: Pin window sizes, edge widths, MMU, compositing 

policies, CV schemes in a machine-readable config; emit a “model card” per run 

(metrics, features, SHAP/PDP, sensitivity). 

 Policy hooks: Export KM-GBF T2/T3 indicators, REDD+ MRV layers (activity data 

+ emission factors), and NFMS-ready summaries. 
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4) Where to test next (geographies & contexts) 

 Temperate/boreal: Carpathians, Białowieża, Baltic & Scandinavian storm corridors → 

wind–edge interactions; spruce/birch–pine mixes. 

 Mediterranean: Fire-prone mosaics (Portugal/Spain/Italy) → add burn severity & 

post-fire recovery to fragmentation dynamics. 

 Tropical pilots: Western Kenya, Amazon sub-basins → high cloud; rely on SAR–

optical fusion and strong local validation. 

 Interfaces: Urban–forest fringes and cropland ecotones (your highest-risk context) for 

corridor/stepping-stone effectiveness. 

 Peatland–forest ecotones: Coupling fragmentation with hydrological stability (SDG-6 

co-benefits). 

5) Concrete, near-term studies (fit to your thesis) 

 Voxels at the edge: Fuse GEDI with S2 over TFBR to quantify vertical permeability 

vs. NDRE-inferred maturity (resolve the age misclassification in Rare zones). 

 Corridor short-list: Run Omniscape + prioritizr for TFBR Transitional zones; deliver 

a top-10 corridor list with costs and expected NDMI/NDRE gains. 

 Alert-to-action pilot: Trigger workflows from GLAD/RADD alerts → update FAD + 

risk layer within 7–14 days; produce a one-page “Ops Bulletin.” 

 Species-specific connectivity: Parameterise corridors for pine, birch, oak using 

dispersal kernels and patch quality (NDRE/NDVI + LiDAR height). 

Deliverables to aim for 

 A public checklist + config template (scale, edge, MMU, compositing, CV, 

validation). 

 A sensor/method trade-off table (PALSAR vs S2 vs CORINE) bundled with the code. 

 Quarterly risk & condition maps (Core/Transitional/Rare) with uncertainty bands. 

These additions make the framework more mechanistic, transferable, and operational, while 

staying compatible with your current stack (S2, PALSAR, FAD/MSPA, Extra Trees/WoE). 

  



Sanjana Dutt – Forest Fragmentation Dynamics in Tuchola Forest, Poland. A Multiscale Analysis Using RS 

 

Page | 39  
 

Chapter 5. Conclusions 

This chapter synthesizes the thesis into clear answers, contributions, and actionable guidance. 

First (Section 6.1), I distill what the results show by explicitly addressing each research question 

and linking structural diagnostics to functional responses and management actions. I then 

summarise methodological contributions (Section 6.2) and translate findings into practical 

strategies and policy relevance (Section 6.3). Finally, I delineate limitations and boundary 

conditions (Section 6.4) and outline a focused roadmap for future work that would elevate the 

framework to decision-grade operations (Section 6.5). 

5.1 What this thesis shows 

Forest fragmentation in the Tuchola Forest Biosphere Reserve (TFBR) is not merely a 

patterning issue but a coupled pattern → process → action problem. By combining fixed-

window density and role-based morphology (FAD, MSPA) with Sentinel-2 vegetation indices 

and interpretable machine learning, this thesis demonstrates that structural configuration 

reliably anticipates functional stress—especially in edge-dominated parts of the landscape—

and that these insights can be operationalised into concrete conservation choices. 

RQ1 — How have methods for assessing forest fragmentation evolved? 

The field has moved from patch/edge/shape metrics toward density-based diagnostics 

(FAD/FOS), role classes (MSPA), and connectivity-aware thinking, implemented in open, 

auditable pipelines (R/Python/GEE). This evolution matters for temperate systems such as 

TFBR because: 

 fixed windows stabilise comparisons across sensors and scales, 

 role classes (core/edge/bridge) translate naturally to management units, 

 explicit parameter disclosure (edge width, window size, MMU) improves 

reproducibility and reporting. 

RQ2 — How do fragmentation and the 2017 derecho change forest structure/coherence? 

Across scales, TFBR exhibits classic fragmentation signatures: core loss and edge 

proliferation, with post-2017 acceleration. Regional products (CORINE) indicate pre-storm 

erosion of intactness; Landsat-8 resolves the derecho-triggered jump in edge density and patch 

number; within Sentinel-2, FAD zoning makes the spatial redistribution of core, transitional, 

and rare states explicit. Coherence declines are strongest along cropland–forest and road 

interfaces, aligning with known exposure pathways. 

RQ3 — What ecological processes dominate Core/Transitional/Rare zones? 

Functional signals track structural context. Core zones show buffered, stable partial-

dependence responses; Transitional and Rare zones show steep, volatile responses consistent 

with edge microclimates (higher VPD, wind/light), pigment decline, and moisture stress. 

Among indices, NDRE/GARI are most sensitive to early pigment degradation, while 
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NDMI/NDWI capture canopy–soil water coupling; NDVI/EVI assist with greenness/biomass 

but can conflate rapid edge regrowth with maturity without additional constraints. 

RQ4 — Which vegetation indicators and models best support monitoring and 

prioritisation? 

An interpretable ensemble (Extra Trees / LightGBM), paired with NDRE + NDMI (± 

NDWI/NDVI) and a small set of environmental drivers, provides directional, zone-aware 

predictions suitable for decision support. PALSAR strengthens mapping of Rare/Patchy states 

under cloudy or debris-rich conditions, and SAR–optical fusion improves robustness in post-

disturbance periods. The resulting layers—stress, susceptibility, and zone maps—prioritise 

core protection, buffering and corridor restoration in Transitional, and passive rewilding 

with stepping-stones in Rare. 

5.2 Methodological contributions 

1. A joined-up, open workflow that links morphology (FAD/MSPA) and connectivity 

concepts to functional VIs via interpretable ML, with parameter transparency (edge 

width, window size, MMU, compositing, CV). 

2. Fragmentation Susceptibility Modeling Framework: Bayesian Weight-of-Evidence 

plus ensembles integrates drivers (cropland/roads/wind corridors) with SAR/optical 

features to map high-risk zones (reported AUC/Kappa indicate strong discrimination), 

offering an auditable alternative to black-box risk scores. 

3. Zone-aware interpretation: Partial-dependence/ICE curves read differently by FAD 

class, turning models into process hints (stable Core vs. volatile Rare) rather than 

opaque predictions. 

4. Operational scaling: Harmonised FAD windows across sensors (S2/L8/CORINE) and 

Earth Engine–based compositing make the approach portable across time, sensors, 

and reporting units. 

5.3 Implications for management and policy 

 Protect the interior you still have: Maintain ≥200 m edge offsets in remaining Core; 

avoid new perforations that convert Core → Transitional. 

 Stabilise the middle: In Transitional zones, buffers and corridors lower 

pigment/moisture volatility; prioritise connectors across cropland–forest breaks and 

wind corridors. 

 Repair where fragmentation dominates: In Rare zones, emphasise passive rewilding 

and stepping-stones, with deeper-rooted, mixed-species plantings to improve water 

retention and reduce edge desiccation. 

 Routine, reproducible monitoring: Publish seasonal/annual stress + susceptibility 

updates using the same parameters, enabling transparent progress toward Kunming–

Montreal Target 2 & 3 and strengthening REDD+ MRV with condition-aware layers 

for temperate forests. 
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5.4 Limitations and boundary conditions 

Precision at fine scales is bounded by sensor resolution (10–30 m), CORINE’s coarseness for 

historical baselines, and the absence of LiDAR for 3-D canopy validation. Ensemble models 

remain sensitive to feature sets, partitioning, and parameter choices; although spatial block CV 

mitigates leakage, site-specific labels from the Forest Data Bank limit physiological generality. 

Thresholds and windows are calibrated for a pine-dominated temperate system; transferring 

to other biomes requires re-tuning and local validation. None of these caveats overturn the main 

conclusions; they define where and how the framework should be extended. 

5.5 Outlook: from good diagnostics to decision-grade operations 

The fastest path to a production-grade programme is to (i) add vertical structure 

(GEDI/ICESat-2/LiDAR) to separate edge regrowth from true maturity, (ii) couple stress 

drivers (soil moisture/LST/wind) with distance-to-edge to identify thresholds, (iii) harden 

pipelines (versioned configs, scheduled updates), and (iv) validate with biodiversity 

networks (ICP Forests/GBIF/eBird) to link spectral stress to living systems. In TFBR, a 

targeted follow-up could: 

 deliver a top-10 corridor short-list for Transitional zones (Omniscape + prioritizr), 

 run a quarterly “condition & risk” bulletin (NDRE/NDMI + susceptibility) with 

uncertainty bands, 

 fuse GEDI + Sentinel-2 to quantify vertical permeability across FAD classes, 

clarifying management thresholds for interior integrity.  
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ABSTRACT 26 

Context 27 
Forest fragmentation—the breakup of continuous habitat into isolated patches—alters landscape processes and 28 
biodiversity. Rapid advances in sensors and computing have diversified diagnostic methods, but comparability and 29 
ecological linkage remain uneven. 30 

Objectives 31 
Synthesize 138 methodological studies (1990–2025) to: (i) chart shifts in metric families, including emerging 3-D 32 
approaches; (ii) assess how data and processing choices shape indicator performance; and (iii) distill limits and 33 
reporting practices that improve portability. 34 

Methods 35 
We reviewed studies using lidar/TLS and Sentinel-2 inputs, change detection, and indicators implemented in 36 
landscapemetrics, GuidosToolbox, and Google Earth Engine, tracing transitions from patch/edge metrics to 37 
morphology-aware roles, connectivity, fixed-window density, and 3-D/voxel measures. 38 

Results 39 
The field is moving toward morphology-aware roles, multiscale connectivity, fixed-scale density, and vertical 40 
structure. Five recurring limits are: scale sensitivity and habitat-amount confounding; region-tuned parameters that 41 
hinder transfer; scarce field validation of global/automated products; weak or inconsistent biotic links of structural 42 
metrics; and incomplete reporting that curbs reproducibility. Gaps include uneven tropical coverage and limited 2-43 
D/3-D cross-walks. Priorities are transparent parameterization and sensitivity checks, precise documentation of 44 
spatial/detector settings, region-specific benchmarking, shareable workflows, and integration of field data. 45 

Summary 46 
Standardizing documentation, validation, and cross-scale linkages can improve the reliability of fragmentation 47 
measures for monitoring and conservation. Emphasis should be on refining and harmonizing existing methods rather 48 
than proposing new indices 49 

Keywords: forest fragmentation; landscape metrics; change detection; lidar; open-source workflows; methodological 50 
synthesis 51 
 52 

1. Introduction 53 

Forest fragmentation—the division of continuous forest into smaller, more isolated patches—creates edge 54 
environments, reshapes ecological processes, and can accelerate biodiversity loss (McGarigal & Marks, 1995; 55 

mailto:sanjana.dutt@doktorant.umk.pl
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Heilman et al., 2002; Riitters et al., 2007; Bennett & Radford, 2008). Over two-thirds of global forests now lie within 56 
1 km of an edge (Haddad et al., 2015; Siegel et al., 2024), with pressures most pronounced in tropical and subtropical 57 
regions (Lung & Schaab, 2006; Giriraj et al., 2010). Fragmentation is distinct from habitat loss: loss reduces area, 58 
whereas fragmentation concerns how a fixed amount of forest is arranged by patch size, shape, and isolation (Fahrig, 59 
2003, 2019, 2024; Fardila et al., 2017). Connectivity—the degree to which landscape structure facilitates or restricts 60 
movement—adds a further interpretive layer (Bogaert et al., 2000; Vogt et al., 2007; Lausch et al., 2015). Although 61 
patch-scale edge effects are well documented, landscape-scale responses do not always follow directly from local 62 
patterns (Fletcher et al., 2018; Fahrig, 2024), underscoring the need for scale-declared, method-transparent 63 
assessments that can be linked to ecological data where available (Bennett & Radford, 2008). 64 

Methodologically, practice has progressed from early patch/edge/shape tallies to morphology- and connectivity-aware 65 
approaches, fixed-window density measures, and first-generation 3-D/voxel indicators. FRAGSTATS and Patch 66 
Analyst established a common language for pattern quantification (McGarigal & Marks, 1995; Elkie et al., 1999). 67 
Role-based morphology—exemplified by morphological spatial pattern analysis (MSPA)—made cores, edges, 68 
bridges, corridors, and perforations legible at reporting scales (Vogt et al., 2007; Wickham et al., 2010). Advances in 69 
remote sensing, including lidar/TLS for canopy structure, together with robust time-series change detection (e.g., 70 
Vegetation Change Tracker, LandTrendr, Two-Thresholds Method), have enabled consistent disturbance trajectories 71 
that feed downstream indicators (Maier et al., 2006; Huang et al., 2010; Zald et al., 2016; Kennedy et al., 2018; 72 
Giannetti et al., 2020). Open, scriptable ecosystems and cloud platforms—landscapemetrics, PyLandStats, 73 
GuidosToolbox, and Google Earth Engine—now support auditable pipelines from data ingestion to indicators. In 74 
parallel, neutral landscape generators (e.g., Landscape Generator; flsgen) provide realistic, controlled mosaics to test 75 
sensitivity and to separate composition from configuration (van Strien et al., 2016; Peura et al., 2018; Justeau-Allaire 76 
et al., 2022). 77 

Despite this expansion in capability, five recurring issues complicate inference and comparability across studies: (i) 78 
sensitivity to grain and extent and the attendant conflation with habitat amount; (ii) regional dependence of thresholds 79 
and assumptions; (iii) gaps in external/empirical validation—especially for global products and emergent 3-D 80 
indicators; (iv) loose coupling to biological responses; and (v) incomplete parameter reporting (O’Neill et al., 1999; 81 
Hernando et al., 2017; Zatelli et al., 2019; Fletcher et al., 2018; Vergara et al., 2021; Feleha et al., 2025). Recent 82 
families—fixed-window density measures such as Forest Area Density (FAD), role-based morphology paired with 83 
graph metrics, and voxel/3-D approaches—address parts of this problem yet introduce assumptions that must be 84 
declared and tested. 85 

This review analyzes 138 methodological studies (1990–2025) to: 86 

1. map the evolution from patch-based measures to connectivity, shape complexity, fixed-window density, and 87 
emerging 3-D approaches; 88 

2. evaluate how remote sensing and time-series/change-detection methods—together with 89 
compositing/segmentation choices and cloud platforms—condition the accuracy and comparability of 90 
fragmentation indicators; and 91 

3. diagnose common limitations and summarize practical reporting elements (e.g., grain/extent, edge width, 92 
window size, detector settings, MMU, validation) that make results more portable across regions and scales. 93 

2. Methodology 94 

2.1 Literature search 95 

We followed PRISMA 2020 (Page et al., 2021) to ensure a transparent, reproducible process. We targeted peer-96 
reviewed journal articles published 1990–2025 and ran searches from 3 Oct 2024 to 9 Sep 2025 using Publish or 97 
Perish (Harzing, 2010) across Google Scholar, Scopus, and Web of Science. We limited results to English and article 98 
document types; conference papers, theses, books/chapters, and reports were excluded. Studies were included if they 99 
proposed, evaluated, or systematically applied methods/metrics/workflows for forest fragmentation (e.g., 100 
structural/configurational metrics, change-detection feeding fragmentation indicators, graph/MSPA/fixed-window/3-101 
D approaches), and excluded if purely ecological case studies without methodological contribution or non-forest 102 
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contexts unless methods were demonstrated for forests. To keep scope forest-specific we filtered out terms such as 103 
“urban,” “animal*,” and “bird*” unless paired with “forest.” Database searches returned 1,160 records; 104 
Litmaps/Connected Papers, citation chasing, and colleague recommendations added 46, for 1,206 records prior to 105 
deduplication. Title/abstract and full-text screening applied the criteria above; reasons for exclusion are shown in 106 
PRISMA Figure 1, and verbatim database search strings are provided in Supplementary Table S1. 107 

 108 

Figure 1. PRISMA 2020 flow diagram for a systematic review of methods to assess forest fragmentation (1990–109 
2025). 110 

2.2 Screening Process 111 
We removed 313 duplicate records using Rayyan (Ouzzani et al., 2016), leaving 847 unique articles. 112 
Title/abstract/keyword screening excluded 233 items without a methodological focus, 152 outside a forest context, 113 
and 251 that reported ecological impacts only without a fragmentation‐methods component. We sought 211 full texts; 114 
5 could not be retrieved, leaving 206 for full-text assessment. In parallel, we identified 46 additional records via 115 
reference tracking (Litmaps, Connected Papers) and colleague recommendations, which were included at the full-text 116 
stage. 117 
 118 
2.3 Study Selection 119 
Full texts were assessed against predefined criteria: (i) proposes, evaluates, or systematically applies methods to 120 
measure forest fragmentation (spatial/configurational metrics, remote-sensing/change-detection feeding 121 
fragmentation indicators, graph/MSPA/fixed-window/3-D approaches); (ii) forest context or forest-reporting subset; 122 
(iii) peer-reviewed journal article; (iv) publication 1990–2025; (v) English, full text available; and (vi) unique 123 
contribution. 124 
Of the 206 database-sourced articles, 96 were excluded: 24 background/narrative, 28 not methodological, 10 not 125 
forest-related, 17 redundant (repetitive case applications of standard landscape-metrics workflows—e.g., 126 
FRAGSTATS or Patch Analyst—without methodological novelty or evaluation), and 17 other reasons (insufficient 127 
methodological detail or peripheral scope). 128 
Of the 46 additional records, 12 were excluded at full text (5 impact-focused only, 5 outside scope/publication window, 129 
2 background). The final set comprised 138 methodological studies: 110 from databases and 34 from other sources 130 
(see PRISMA Figure 1). 131 
 132 
 133 
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2.4 Limitations 134 

This review is limited to English-language, peer-reviewed journal articles. While this may omit some regional 135 
contributions, English dominates publication in this domain, and citation chasing in our included papers did not 136 
repeatedly surface non-English methodological keystones. Our search emphasized method/tool terms (e.g., 137 
FRAGSTATS, GuidosToolbox) to capture studies that develop or evaluate fragmentation methods; broader ecological 138 
terms would have inflated returns with impact-only studies and diluted the methodological focus. This emphasis could 139 
favor papers that explicitly name software; we countered it through snowballing (Litmaps, Connected Papers) and 140 
colleague recommendations. By design, we prioritized methods-focused work and excluded descriptive case studies 141 
that simply reuse existing metrics, which limits ecological context but preserves a clear methods synthesis. Finally, 142 
full-text screening was conducted by one reviewer using predefined criteria and Rayyan, with co-author oversight at 143 
inclusion; this does not remove selection bias entirely, but it provides a consistent and auditable screen. 144 

3. Results 145 

3.1 Scope and Organization 146 

This review synthesizes 138 studies (1990–2025) on methodological approaches to quantifying forest fragmentation. 147 
We organize findings along three linked components: (i) data sources (remote-sensing and ground-based inputs), (ii) 148 
change-detection methods (time-series analyses that derive disturbance/transition signals), and (iii) landscape pattern 149 
indicators (metrics of configuration and connectivity). In practice, data sources feed change detection, which then 150 
supports indicator calculation (Fig. 2). The columns in Fig. 2 group periods by sensor-era shifts, showing a progression 151 
from early, primarily Landsat-based work to multi-sensor approaches that integrate increasingly higher spatial and 152 
temporal resolution sensors, including lidar, to improve temporal fidelity and structural sensitivity. 153 

 154 

Figure 2. Evolution of forest-fragmentation methods (1990–2025). Rows depict the chain from data sources (bottom) 155 
→ change-detection methods (middle) → landscape pattern indicators (top). Columns group eras by sensor availability 156 
and resolution, illustrating the transition from early single-sensor paradigms to multi-sensor integrations (including 157 
lidar) that enhance change detection and indicator robustness. 158 

3.2 Evolution of Landscape Pattern Indicators 159 

Initial investigations in the 1990s emphasized two-dimensional assessments of forest patches, including patch counts, 160 
area metrics, edge lengths, and core area delineations (Ripple et al., 1991; McGarigal & Marks, 1995; Jorge & Garcia, 161 
1997; Walker & Kenkel, 1998). These methodologies, while systematically replicable, offered limited insight into 162 
ecological connectivity or species dispersal potential. By the early 2000s, the introduction of effective mesh size 163 
provided a more nuanced metric for evaluating landscape subdivision (Jaeger, 2000). Subsequent developments 164 
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around 2007 incorporated role-based classifications—such as core areas, edge zones, and connective bridges—165 
enhancing the spatial resolution of forest network analyses (Vogt et al., 2007; Tejaswi, 2007). 166 

Post-2010, connectivity-focused indicators, including Probability of Connectivity (PC) and Integral Index of 167 
Connectivity (IIC), gained prominence, featuring in approximately 25% of studies, particularly for informing wildlife 168 
corridor design (Estreguil & Mouton, 2009; Ye et al., 2020; Lin et al., 2021; Ramezani & Ramezani, 2021). Recent 169 
advancements have diversified into three categories: (1) fixed-scale density metrics, exemplified by Forest Area 170 
Density (FAD), enabling inter-regional comparability (Vogt & Caudullo, 2025); (2) shape and connectivity indices, 171 
such as Forest Fragmentation Index (FFI) and Local Connectedness (LCFD), which account for patch morphology 172 
and local linkages while mitigating data inaccuracies (Alage et al., 2025); and (3) three-dimensional assessments 173 
leveraging lidar to elucidate canopy structure and vertical connectivity, addressing limitations of planar analyses (Zald 174 
et al., 2016; Nowosad & Stepinski, 2021; Remmel, 2022; Zhen et al., 2023; Lin et al., 2024). A comprehensive 175 
overview of these tools is presented in Table 1 and Supplementary Table S2. 176 

Table 1. Evolution of toolsets for forest fragmentation—concise view. Grouped by period, showing key tools, their 177 
contributions, and tags. Full details in Supplementary Table S2. 178 

Period Exemplary toolsets What it adds Key refs 

P
re

-2
0

0
0
 FRAGSTATS; Patch Analyst; 

pMAP 

Baseline patch/class metrics (area, edge, shape, 

core); early proximity/contagion (RS/GIS) 

McGarigal & Marks 

(1995); Elkie et al. (1999) 

Khoros 
Simulated patterns; metric correlation; early eco-

response tests 
Hargis et al. (1999) 

2
0

0
0
–

2
0
0

9
 

GUIDOS/APACK 
MSPA roles; moving-window (FAD/entropy); 

continental mapping (QGIS/Prog) 

Vogt et al. (2007); Wulder 

et al. (2008); Soverel et al. 

(2010) 

ERDAS/IDRISI/eCognition 

object-based image analysis (OBIA) 

segmentation; Lidar-derived metrics; early CA–

Markov 

Maier et al. (2006); 

Meddens et al. (2008) 

ArcIMS + FRAGSTATS Web-mapping + classical metrics (Web-GIS) 
Wang (2002); Southworth 

et al. (2004) 

2
0

1
0
–

2
0
1

9
 

LFT 
Core/edge/perforated/patch; morph segmentation 

(ArcGIS) 

Kopecká & Nováček 

(2010);  

Conefor + 

Circuitscape/Linkage 

Connectivity (PC/IIC/dI; circuit/least-cost 

corridors) (Graph/Circuit) 

Saura & Torné (2009); 

McRae et al. (2008) 

landscapemetrics; motif; 

PyLandStats; LecoS; 

ShrinkShape2 

Reproducible pipelines; pattern signatures; 

rotation-invariant shape (R/QGIS/Py) 

Hesselbarth et al. (2019); 

Remmel (2015) 

PolyFrag; FRAGSTATS v3.3 Vector-aware metrics; custom edge width (GIS) 
MacLean & Congalton 

(2013) 

Feeders: VCT; LandTrendr; 

CCDC; TTM 

Stable time-series disturbance detection 

(GEE/RS) 
Huang et al. (2010);  

2
0

2
0
–

2
0
2

5
 

GUIDOS—GuidosToolbox; 

GWB—Graph-Based 

Workflow 

MSPA expansions; distance/similarity (Jensen–

Shannon multiscale) (QGIS/C/GDAL) 

Vogt & Riitters (2017); 

Vogt et al. (2022); Dutt et 

al., (2024) 

FAD–FOS pipelines 
Fixed-scale density classes; policy-scale 

comparability 
Vogt & Caudullo (2025) 

Patternbits; geodiv; Intra 
Config elements & KL; gradient surface metrics; 

CWA intra-patch connectivity (R) 

Remmel (2020, 2022); 

Justeau-Allaire et al. 

(2024) 

VecLI; VARLI; 

LDTtool/LDT4QGIS 

Vector indices; composition/configuration 

change typologies; perimeter-area fixes 

(Py/QGIS) 

Yao et al. (2022); Huang 

et al. (2024) 

flsgen 
Neutral landscapes with controlled fragmentation 

(API/R/CLI) 

Justeau-Allaire et al. 

(2022) 
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ENVI+GeoDa; 

MapBiomas+IDRISI (FFCI) 

PCA/ANN/CA–MC composite fragmentation; 

forecasting (RS) 

Lin et al. (2024); Moreira 

et al. (2024); Wu et al. 

(2024) 

Fiji/ImageJ2 + ComsystanJ 
3-D voxel fragmentation; fractal dim; succolarity 

(3-D) 
Andronache (2024) 

ESIS/Imalys; AMAPVox 
Hybrid PMM–GM; TLS-PAI; phenology 

impacts (3-D/TLS) 

Selsam et al. (2024); 

Nunes et al. (2022) 

ProNet scripts 
PA-network connectivity metric; simple bounded 

index (Py/R) 
Theobald et al. (2022) 

LandTrendr (apps) 
Recent provincial apps to 2025 (feeder in 

practice) 
Qiu et al. (2025) 

3.3 Change-Detection Methods 179 

Change detection supplies the time-stamped events that feed downstream fragmentation indicators; contemporary 180 
practice matches the detector family to the disturbance regime (abrupt vs. gradual) and documents 181 
compositing/parameter choices. 182 

Trajectory segmentation: Vegetation Change Tracker (VCT) formalizes long Landsat histories with strict filtering, 183 
and LandTrendr fits piecewise trends to locate breakpoints and recovery segments at scale on cloud platforms (Huang 184 
et al., 2010; Kennedy et al., 2018). These approaches work best when long, relatively clean series are available and 185 
when both loss and recovery matter. 186 

Tri-date detectors: When time series are sparse or disturbances are short and sharp, calibrated three-date methods 187 
perform well. The Two-Thresholds Method (TTM) applies paired loss and recovery thresholds on ΔNBR (delta 188 
Normalized Burn Ratio), and 3I3D uses Sentinel-2 vector angles and magnitudes to flag clear-cuts with minimal 189 
tuning (Giannetti et al., 2020; Francini et al., 2021). 190 

Continuous/harmonic models: Continuous Change Detection and Classification (CCDC) models seasonal cycles 191 
and longer-term trends, capturing gradual or compound deviations that step/tri-date detectors may miss; 192 
implementations in Google Earth Engine enable regional coverage (Gorelick et al., 2017; Mahapatra et al., 2025). 193 

Across all families, data handling choices strongly shape outputs. Compositing strategies (e.g., Best Available Pixel 194 
vs. medoid) trade noise suppression against radiometric consistency and day-of-year proximity, which can shift 195 
estimated break timing and raise edge-adjacent false positives if not reported (Francini et al., 2023). Sensor stacks 196 
have moved from Landsat-only to Landsat+Sentinel-2, with commercial very-high-resolution small-sat constellations 197 
(e.g., Dove/Skysat) used selectively for fine-scale confirmation and lidar for canopy structure/validation (Zald et al., 198 
2016; Nunes et al., 2022). Global baselines such as Global Forest Change provide standardized context but require 199 
local checks for omission/commission—especially in coppice, selective logging, and fire landscapes (Hansen et al., 200 
2013). Recent provincial deployments (e.g., Guangdong) route detector outputs directly into fragmentation indices 201 
and driver analyses (Qiu et al., 2025). 202 

3.4 Software and Reproducibility 203 

The earliest implementations of fragmentation metrics were deeply tied to GIS workstations. In the Cascade Range, 204 
Ripple et al. (1991) used the pMAP GIS to introduce GISfrag, one of the first spatially explicit fragmentation indices, 205 
combining proximity mapping with edge removal to estimate interior habitat. By the late 1990s, ArcView GIS linked 206 
directly to FRAGSTATS outputs, allowing stand attributes to be translated into spatial metrics in boreal systems 207 
(Vernier & Cumming, 1999). National-scale studies soon followed: Heilman et al. (2002) integrated FRAGSTATS 208 
with ArcGIS and TIGER road data to derive intactness scores, while Wang (2002) prototyped ArcIMS as an early web-209 
based GIS for fragmentation services. Continuous and discrete classifications were also tested in Western Honduras, 210 
where Southworth et al. (2004) combined FRAGSTATS with local indicators of spatial association in GIS, showing 211 
how socioeconomic context shaped patterns. Remote sensing platforms were integrated next: Lung and Schaab (2006) 212 
paired ERDAS IMAGINE time-series clustering with moving-window GIS metrics in Kenyan rainforests, and Maier 213 
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et al. (2006) combined airborne laser scanning with object-based segmentation in eCognition and ArcGIS to relate 214 
canopy structure to fragmentation indices. At continental scales, Wickham et al. (2008) advanced multi-scale forest 215 
density mapping using GIS-based moving windows on NLCD data, highlighting scale sensitivity. 216 

Legacy metric calculators such as FRAGSTATS and Patch Analyst codified patch/class metrics and seeded 217 
reproducibility by standardizing formulas (McGarigal & Marks, 1995; Elkie et al., 1999). The GuidosToolbox lineage 218 
expanded role-based morphology (MSPA) and fixed-scale density (FAD), making edge, core, and corridor classes 219 
directly comparable across regions (Vogt et al., 2007; Vogt & Riitters, 2017; Vogt et al., 2022). In India’s Western 220 
Ghats, Ramachandra, Setturu, and Chandran (2016) applied FRAGSTATS with Riitters’ indices to quantify 221 
biodiversity-rich fragmentation, illustrating how classical software remained embedded in regional GIS workflows. 222 
Predictive modeling extended this further, with IDRISI’s CA–Markov used alongside FRAGSTATS to forecast 223 
degradation trajectories (Malhi et al., 2020). 224 

Since ~2018, open ecosystems in R and Python have standardized reproducible workflows. landscapemetrics and 225 
motif embed FRAGSTATS-style indices in tidy pipelines, while PyLandStats, LecoS, and ShrinkShape2 extend 226 
analysis into Python/QGIS contexts and provide rotation-robust shape descriptors (Hesselbarth et al., 2019; Nowosad, 227 
2021; Bosch, 2019). Vector-native frameworks (e.g., VecLI) and raster–vector integrators (e.g., VARLI) mitigate 228 
biases from rasterization, and connectivity platforms such as Conefor and Circuitscape now link directly to 229 
morphology roles. General-purpose GIS platforms have become orchestration hubs: QGIS (with Processing, GRASS 230 
GIS, and SAGA), ArcGIS Pro (via ModelBuilder and ArcPy), and companion spatial-statistical software such as 231 
GeoDa allow analysts to integrate patch metrics, network measures, and machine-learning scripts within auditable 232 
environments. Increasingly, these analyses are distributed through cloud infrastructures like Google Earth Engine, 233 
which couples detectors to downstream metrics while preserving reproducible logs. 234 

Reproducibility now extends beyond tool choice to parameter transparency. Analysts increasingly report grain, extent, 235 
edge width, compositing policy, and detector settings, and share code or notebooks alongside outputs. This mitigates 236 
reporting inconsistency (L5 in Fig. 4) by making studies portable and comparable, while enabling sensitivity checks—237 
such as varying window sizes or compositing rules—without re-engineering full workflows (Marchesan et al., 2018; 238 
Yao et al., 2022; Huang et al., 2024; Munhoz et al., 2025). Overall, the trajectory has been from workstation calculators 239 
to documented, interoperable pipelines that allow independent verification and cross-study synthesis. 240 

3.5 Advances in New Methods (post-2016) 241 

This subsection emphasizes methodological expansions since 2016, grouped into arcs that show how capabilities 242 
accreted. 243 

2016–2019: from 2-D patterns to structure and information. 244 
The first shift was explicit incorporation of vertical structure. Lidar-based methods captured canopy height and 245 
porosity, reframing connectivity as three-dimensional rather than planar (Zald et al., 2016; Remmel, 2018). In parallel, 246 
information-theoretic approaches gained ground: Nowosad and Stepinski (2019) described landscapes as 247 
configuration distributions rather than lists of indices, and Remmel (2020) formalized hyper-local configuration 248 
elements for pattern diagnostics. During this period, GIS platforms still anchored workflows, with Ramachandra et al. 249 
(2016) using FRAGSTATS within ArcGIS and PCA environments to analyze forest hotspots in India. 250 

2020–2022: connectivity inside patches and networks between them. 251 
Connectivity refinements unfolded at multiple scales. Within patches, Complexity-Weighted Patch Area (CWA) and 252 
related formulations weighted area by form/roughness, capturing intra-patch navigability in ways comparable to 253 
classical graph indices (Justeau-Allaire et al., 2024). At broader scales, ProNet provided a bounded, report-ready index 254 
for protected-area systems (Theobald et al., 2022). Representation also matured: vector-native indices (VecLI) reduced 255 
raster biases, and GuidosToolbox/Workbench introduced multiscale distance–similarity operators that integrate 256 
directly with MSPA roles (Vogt, 2015; Yao et al., 2022; Vogt et al., 2022). Integration with GIS remained central, 257 
with predictive CA–Markov modeling in IDRISI tied to FRAGSTATS outputs for long-term forecasts (Malhi et al., 258 
2020). 259 
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2023–2025: composites, edges, density at policy scale, and controlled experiments. 260 
Recent years have seen consolidation across pattern, trajectory, and driver domains. Composite indices such as the 261 
Forest Fragmentation Comprehensive Index (FFCI) combine spectral change, configuration, and context to separate 262 
loss from recovery (Wu et al., 2024; Lin et al., 2024). The Forest Edge Index (FEI) standardizes edge-centric states 263 
for driver analyses, and the Multiscale Similarity Index (MSI) applies Jensen–Shannon similarity to benchmark 264 
observed mosaics against fully forested references (Zhen et al., 2023; Netzel et al., 2024). At the policy scale, FAD–265 
FOS pipelines have matured into tools for inter-regional comparability with explicit spatial supports (Vogt & 266 
Caudullo, 2025). Methodological frameworks have also tightened raster–vector integration (VARLI) and coupled 267 
detailed indicators with machine learning to attribute processes (Huang et al., 2024; Lin et al., 2024). 268 

Where time series underpin inference, operational feeders such as provincial LandTrendr applications now pipe 269 
disturbance segments directly into fragmentation indicators, and sensitivity tests quantify how fixed-scale choices 270 
affect outcomes—relevant to scale sensitivity (L1 in Fig. 4) (Qiu et al., 2025; Zhang et al., 2025). Neutral generators 271 
such as flsgen permit stress-testing of metrics under controlled fragmentation mosaics before transfer to real 272 
landscapes (Justeau-Allaire et al., 2022). Recent case studies also demonstrate tighter GIS integration: Zhang et al. 273 
(2024) combined GuidosToolbox, Conefor, and ArcGIS to construct ecological security patterns; Lin et al. (2024) 274 
fused FRAGSTATS, ENVI, and GeoDa with machine learning in R; and Netzel et al. (2024) used GDAL/OGR and 275 
custom C code to implement MSI. Together these highlight how GIS platforms are not superseded but remain the 276 
backbone environments in which fragmentation innovations are operationalized. 277 

4. Discussion — overview 278 

Across 138 studies, forest-fragmentation methods progress from patch tallies to role-aware, connectivity-explicit, and 279 
increasingly 3-D representations. We interpret this trajectory through five recurring limitations (L1–L5) that affect 280 
transferability: L1—scale sensitivity and habitat-amount conflation; L2—region-specific thresholds and assumptions; 281 
L3—weak empirical validation (especially for global products); L4—limited linkage to biological responses; and 282 
L5—incomplete parameter reporting. Figure 3 is a schematic of these limitations; evidence and implications appear 283 
below. 284 
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 285 

Figure 3. Visual summary of five limitations (L1–L5) in forest-fragmentation methods: L1 scale sensitivities; L2 286 
regional parameterization; L3 validation gaps; L4 metric–biology linkage; L5 reporting inconsistency. Interpretation 287 
is developed in 4.1–4.4. 288 
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4.1 Tracing the evolution of metric suitability 289 

Ripple et al. (1991) showed early on that GIS-derived indices could reveal fragmentation trajectories, and the 290 
FRAGSTATS era formalized patch, edge, shape, and core metrics for reproducible mapping (McGarigal & Marks, 291 
1995; Walker & Kenkel, 1998; Remmel & Csillag, 2003; Sun & Southworth, 2013). The central weakness—L1—is 292 
that many indices vary with grain and extent, so differences can reflect pixel size or window choice rather than 293 
ecological change (O’Neill et al., 1999; Long et al., 2010; Pe’er et al., 2013). Remmel (2009) explains part of the 294 
mechanism: coincidence matrices summarize composition well but capture little about configuration unless 295 
augmented, making composition–configuration conflation likely when one class dominates. 296 

MSPA reframed maps into roles—cores, edges, bridges, corridors, perforations—useful at reporting-unit and 297 
continental scales (Vogt et al., 2007; Estreguil & Mouton, 2009; Wickham et al., 2010). Connectivity metrics followed. 298 
Roberts et al. (2000) and later Lin et al. (2021) and Theobald et al. (2022) translated dispersal and resistance 299 
assumptions into graph-based indicators (PC, IIC, dI; ProNet) with clearer decision relevance, while surfacing L2 300 
(context dependence of species/guild parameters) and L4 (the gap to observed responses). 301 

Recent families aim to curb conflation and tighten links to process. Fixed-scale density (FAD/FOS) declares spatial 302 
support up front, stabilizing inter-regional comparisons (Vogt & Caudullo, 2025). Information-theoretic and local-303 
connectedness measures separate form complexity from neighborhood linkage (Peptenatu et al., 2023; Alage et al., 304 
2025). And voxel/3-D approaches bring canopy permeability and edge penetration into scope, advancing structure–305 
function hypotheses but raising data and validation demands (Remmel, 2020, 2022). Across these arcs, results travel 306 
best when spatial support, thresholds, and connectivity parameters are stated and stress-tested; otherwise, method 307 
settings masquerade as ecological differences (Wang et al., 2012; Fahrig, 2019; Nunes et al., 2022; Zhang et al., 2025). 308 

4.2 Transforming accessibility through open-source, GIS, and cloud ecosystems 309 

Open, scriptable ecosystems have turned isolated metric runs into auditable pipelines. In R, landscapemetrics and 310 
motif expose FRAGSTATS-style indices within reproducible workflows; in Python, PyLandStats and LecoS fill a 311 
similar role; and GuidosToolbox with its Graph-based Workflow Builder scales role-based morphology for large 312 
reporting units (Hesselbarth et al., 2019; Nowosad, 2021; Vogt & Riitters, 2017; Vogt et al., 2022). General-purpose 313 
GIS—QGIS (with Processing, GRASS GIS, SAGA) and ArcGIS Pro (ModelBuilder, ArcPy)—now acts as the 314 
orchestration layer where parameters are modeled, batched, and versioned, while GeoDa provides spatial-315 
autocorrelation diagnostics. Google Earth Engine has democratized compositing and change detection at scale without 316 
bespoke infrastructure (Wulder et al., 2008; Coops et al., 2010; Gorelick et al., 2017). 317 

Two practice gaps persist. First, L5: key parameters are too often omitted—grain, extent, edge rules, windowing, 318 
compositing policy, detector settings—with our screen suggesting roughly a sixth of papers miss at least one 319 
(Hernando et al., 2017; Zatelli et al., 2019). Second, L3: reliance on global products without local checks (e.g., Global 320 
Forest Change) risks omission/commission errors in selective logging, coppice, and fire mosaics (Hansen et al., 2013; 321 
Nunes et al., 2022). Addressing both rarely requires new software; it requires concise parameter logs and validation 322 
notes attached to each map product. Ramachandra et al. (2016) offer a good template, combining FRAGSTATS and 323 
PCA in ArcGIS to surface regional drivers in India’s Western Ghats. 324 

Machine learning extends these pipelines from description to attribution. Zanella et al. (2017) and Zhen et al. (2023) 325 
demonstrate how Random Forest applied to PD, LPI, Division, or FFCI composites can illuminate drivers, while 326 
Moreira et al. (2024) and Lin et al. (2024) show forward scenarios via ANN or CA-Markov. The same features that 327 
add explanatory power raise the bar for transparency: credible ML use reports features and neighborhoods, data 328 
partitioning and cross-validation, model settings and interpretability steps, and—crucially—external or hold-out 329 
checks (Hansen et al., 2013; Hernando et al., 2017; Zatelli et al., 2019). 330 

4.3 Elevating fidelity with advanced data sources 331 

Multi-sensor regimes sharpen structural detection and help separate composition from configuration (Maier et al., 332 
2006; Long et al., 2010; Zald et al., 2016; Mshelia et al., 2022). Airborne and terrestrial laser scanning reveal vertical 333 
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heterogeneity that 2-D indicators miss—central for permeability and microclimate—while detector families (VCT, 334 
LandTrendr, TTM, tri-temporal Sentinel-2) stabilize disturbance trajectories before indicators are computed (Huang 335 
et al., 2010; Kennedy et al., 2018; Giannetti et al., 2020; Francini et al., 2021, 2023). These gains amplify familiar 336 
trade-offs: finer spatial and temporal support heightens L1 sensitivities and can invite over-interpretation without 337 
ecological corroboration (Ostapowicz et al., 2008; Fahrig, 2024). Voxel/3-D formulations promise tighter links to 338 
structure and biomass but are data-hungry and demand stronger validation beyond instrumented sites (Remmel, 2022; 339 
Mazziotta et al., 2025). In practice, high-fidelity inputs work best when paired with explicit parameter disclosure and 340 
targeted field or higher-resolution checks. 341 

4.4 Bridging research and practice: targeted fixes for L1–L5 342 

Validation first (addresses L3, L4). Mac Nally (2008) argued for design-based estimation when mapping prevalence; 343 
following that guidance, fragmentation workflows should link indicators to field plots, biodiversity proxies, or 344 
independent structure data and report design-based or model-assisted area estimates where feasible (Nunes et al., 345 
2022). 346 

Standardized reporting (addresses L1, L5). Rather than rely on defaults, specify the spatial support and thresholds 347 
that govern outputs: grain, extent, edge width, and window size for rolling measures (for FAD, stabilization typically 348 
occurs at tens to low hundreds of pixels in dissected landscapes: Zatelli et al., 2019; Zhang et al., 2025); forest 349 
definitions and MMU (e.g., FAO/HRL-FTY; Vogt & Caudullo, 2025); compositing policy (Best Available Pixel vs. 350 
medoid, target phenology, sensor priority, despiking; Francini et al., 2023); and detector settings—VCT masking/IFZ, 351 
LandTrendr segmentation/recovery, TTM cross-validation, tri-temporal Sentinel-2 cut-offs (Huang et al., 2010; 352 
Kennedy et al., 2018; Giannetti et al., 2020; Francini et al., 2021). 353 

Region-tuned implementations (addresses L2). Calibrate thresholds, windows, and resistance/dispersal 354 
assumptions to local disturbance regimes and canopy architecture so metrics reflect regional realities rather than 355 
imported defaults (Geri et al., 2010; Rosa et al., 2017; Kozak et al., 2018; Osewe et al., 2022). Ramachandra et al. 356 
(2016) exemplify this tuning in a biodiversity hotspot. 357 

Multi-scale integration (addresses L1, L4). Combine complementary families to reduce conflation and expose 358 
process: pair MSPA roles with graph metrics for movement potential; deploy fixed-window FAD–FOS for policy 359 
comparability; use INCOMA/gradient surfaces for heterogeneous mosaics; and add voxel morphology where vertical 360 
connectivity matters (Nowosad & Stepinski, 2021; Remmel, 2022; Vogt & Caudullo, 2025). 361 

Open, cloud-based reproducibility (enables L1–L5). Share R/Python/GEE workflows—landscapemetrics, motif, 362 
geodiv, VecLI/VARLI, LDT4QGIS—so parameters are visible, versioned, and re-runnable, making sensitivity checks 363 
straightforward and enabling like-for-like comparisons (Mairota et al., 2013; Hesselbarth et al., 2019, 2021; Yao et 364 
al., 2022; Smith et al., 2021; Paixão & Machado, 2023). 365 

5. Summary statements 366 
Across three decades and 138 studies, fragmentation analysis has shifted from patch/edge tallies to role-aware, 367 
connectivity-explicit, and increasingly three-dimensional descriptions. The most useful way to read that shift is as a 368 
linked chain—data sources → change detectors → pattern indicators—where choices made upstream condition what 369 
indicators can say downstream. 370 
Five limitations repeatedly shape inference. Scale sensitivity and habitat-amount dependence remain the main source 371 
of comparability problems (L1). Parameters tuned in one region do not travel cleanly to another (L2). Adoption of 372 
global or automated layers without local checks is still common (L3). Structural metrics are too rarely tied to biological 373 
responses (L4). And key settings—spatial support, edge rules, compositing policy, detector thresholds—are 374 
inconsistently reported (L5). 375 
What works in practice is incremental rather than novel. Declaring spatial support (e.g., fixed-window density) 376 
stabilizes comparisons; pairing role-based morphology with connectivity metrics clarifies movement options; and, 377 
where vertical structure matters, targeted lidar/TLS or voxel summaries add needed realism. The common 378 
denominator is transparent parameterization with light-weight sensitivity checks, so that apparent differences reflect 379 
landscapes rather than hidden settings. 380 
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Evidence gaps are evident. Validation is often lacking and could benefit from design-aware, independent approaches; 381 
methods might be more effective when tuned to regional disturbance regimes and canopy architecture; and clearer 382 
cross-walks between 2-D indicators and 3-D/voxel measures could enhance understanding. Geographic coverage also 383 
remains uneven, with several tropical regions under-represented. 384 
Looking ahead, future progress may hinge less on new indices and more on refining existing ones through precise 385 
specification and validation. Key considerations include: (i) documenting spatial support and detector settings as 386 
metadata, (ii) exploring region-balanced benchmarking and neutral-landscape challenges to assess sensitivity, (iii) 387 
developing simple, shareable workflows for inspection, and (iv) integrating field or high-resolution data where 388 
possible. Adopting these approaches could strengthen fragmentation measures’ reliability for ecological interpretation, 389 
monitoring, and decision-making amid accelerating habitat change. 390 
 391 
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Supplementary Table S1. 

Search queries used for the systematic review across Google Scholar, Scopus, and Web of Science. 

Source Query 

ID 

Mandatory Terms Alternative Terms (OR) Excluded Terms 

Google 

Scholar 

1 “forest 

fragmentation” 

“new tools”, “new methods”, “emerging tools”, “software for 

spatial analysis” 

– 

   
“GIS”, “remote sensing” 

 

 
2 

 
“FRAGSTATS”, “GuidosToolbox”, “MSPA”, “Patch Analyst”, 

“PolyFrag”, “VecLI”, “ZonalMetrics”, “Landscape Fragmentation 

Tool”, “V-LATE”, “morphological image processing” 

– 

 
3 

 
“spatial analysis”, “spatial pattern detection”, “landscape structure 

analysis”, “landscape metrics”, “patch analysis”, “morphological 

analysis”, “fragmentation indices” 

– 

mailto:sanjana.dutt@doktorant.umk.pl


Scopus & 

Web of 

Science 

1 “forest loss” or 

“forest 

fragmentation” 

“new tools”, “new methods”, “emerging tools”, “software for 

spatial analysis” 

– 

 
2 

 
“FRAGSTATS”, “GuidosToolbox”, “MSPA”, “Patch Analyst”, 

“PolyFrag”, “VecLI”, “ZonalMetrics”, “Landscape Fragmentation 

Tool”, “V-LATE”, “morphological image processing” 

“urban”, “animal”, “bird”, 

“wetland”, “land use” 

 
3 

 
“spatial analysis”, “spatial pattern detection”, “landscape structure 

analysis”, “landscape metrics”, “patch analysis”, “morphological 

analysis”, “fragmentation indices” 

“urban”, “insect”, “bird”, “climate”, 

“disease”, “soil”, “ecosystem 

services”, “peatland”, “land use” 

 

Supplementary Table S2. Evolution of software/toolsets for forest fragmentation analysis (by period) 

Period Toolset Platform Notes Features References 

Pre-

2000 

pMAP GIS; FRAGSTATS; 

Patch Analyst & Habitat 

Analyst 

Custom GIS; Arc/Info 

AML, C; ArcView plug-

ins 

Patch/class/landscape metrics (area, edge, shape, 

core); GISfrag proximity; habitat valuation; 

contagion & nearest-neighbor 

Ripple et al. (1991); 

McGarigal & Marks 

(1995); Elkie et al. 

(1999) 

 Khoros® Image Processing 
Image-processing 

environment 

Simulated landscapes; metric correlation; 

ecological response tests 
Hargis et al. (1999) 

2000–

2009 
ArcIMS + FRAGSTATS 

Web-GIS; desktop 

program 

Web mapping; LISA integration; 

patch/class/landscape indices 

Wang (2002); 

Southworth et al. (2004) 

 ERDAS IMAGINE, IDRISI, 

eCognition 
RS & GIS; OBIA 

Classification/segmentation; early LiDAR-

derived canopy metrics; early CA–Markov 

Maier et al. (2006); 

Meddens et al. (2008) 

 GUIDOS Toolbox / APACK Program; command-line 

MSPA (core, edge, islet, loop, bridge, 

perforation); moving-window metrics (FAD, 

entropy); continental assessments 

Vogt et al. (2007); 

Wulder et al. (2008); 

Ostapowicz et al. (2008) 



Period Toolset Platform Notes Features References 

 RULE (neutral map 

generator) 
Stand-alone 

MSPA for phase transitions; (multi)fractal 

segmentation 
Riitters et al. (2009) 

 Circuitscape / Linkage 

Mapper 

Python; ArcGIS/QGIS 

tools 

Circuit-theory connectivity; current flow; 

corridor/linkage mapping 
McRae et al. (2008) 

 Conefor GUI/CLI 
Graph connectivity (PC, IIC, dI); node/edge 

prioritization; pairs with MSPA 
Saura & Torné (2009) 

2010–

2019 

Landscape Fragmentation 

Tool (LFT) 
ArcGIS extension 

Core/edge/perforated/patch classes; 

morphological segmentation of intensity 

Kopecká & Nováček 

(2010); Singh et al. 

(2017) 

 

ARC/INFO GRID; 

FRAGSTATS v3.3; 

PolyFrag; ZonalMetrics; G-

RaFFe 

GIS modules; ArcMap 

toolbox (Python) 

Cross-tab & temporal analyses; vector-based 

metrics; customizable edge width; process-based 

pattern simulators 

Tang et al. (2012); 

MacLean & Congalton 

(2013); Pe’er et al. 

(2013); Adamczyk & 

Tiede (2017) 
 Definiens Developer Image analysis software OBIA classification; advanced rulesets Newman et al. (2011) 

 
LecoS; ShrinkShape2; 

landscapemetrics; motif; 

PyLandStats 

QGIS plug-in; R/SAGA; 

Python 

Automated landscape metrics; rotation-invariant 

polygon shape spectra; tidy/testable pipelines; 

pattern-based analysis 

Jung (2016); Remmel 

(2015); Hesselbarth et al. 

(2019); Lovelace et al. 

(2019); Bosch (2019) 

 Landscape Generator (LG); 

DYPAL 
Java; Python 

Neutral/optimized landscape generation; 

parameterizable dilation/erosion 

van Strien et al. (2016); 

Bonhomme et al. (2017) 

 SPIP (surface metrics) Stand-alone 
Gradient-surface metrics (roughness, fractal 

dimension) 
Kedron et al. (2018) 

 Land-metrics DIY (library) 
.NET/C# API (OpenGIS 

SFA) 

~40 vector/raster metrics; extensible, platform-

independent programming library 
Zaragozí et al. (2012) 

 
Gradient-surface threshold 

scalograms (FRAGSTATS + 

GSM) 

FRAGSTATS v4.x + 

GSM workflow 

Thresholded continuous canopy; scalograms of 

MPS/PD/LPI/ED across density bands 
Frazier & Kedron (2017) 



Period Toolset Platform Notes Features References 

 r.pi (GRASS GIS) GRASS add-on 
Semi-automatic pattern analysis (core area, PD, 

connectivity) 
Wegmann et al. (2018) 

 VCT; LandTrendr; CCDC 

(change feeders) 

Algorithms; GEE/desktop 

ports 

Time-series segmentation (loss/recovery) and 

continuous change models 

Huang et al. (2010); 

Kennedy et al. (2018); 

Zhu & Woodcock (2014) 

 Google Earth Engine 

(platform) 
Cloud platform 

Planetary-scale compositing, time series, and 

reproducible workflows 
Gorelick et al. (2017) 

2020–

2025 

Patternbits (ShapePattern); 

geodiv; Intra 
R packages 

Configuration elements & KL divergence; 3-D-

ready morphological segmentation; gradient 

surface metrics; complexity-weighted patch area 

(intra-patch connectivity) 

Remmel (2020, 2022); 

Smith et al. (2021); 

Justeau-Allaire et al. 

(2024) 

 VecLI; VARLI; LDTtool; 

LDT4QGIS 
Python; QGIS/ArcGIS 

Vector indices (area–edge, shape, aggregation); 

composition/configuration change typologies; 

perimeter–area corrections 

Yao et al. (2022); 

Machado et al. (2020); 

Paixão & Machado 

(2023); Huang et al. 

(2024) 

 flsgen Java API; R; CLI 
Neutral landscape generator with control of 14 

indices (incl. MESH, Splitting) 

Justeau-Allaire et al. 

(2022) 

 ForestryAnalysisInR; Patch 

Fragmentation Index (PFI) 
R (Shiny) 

Forestry/fragmentation workflows; biodiversity & 

LiDAR structural metrics; simple patch 

fragmentation index 

Atkins et al. (2022); 

Rivas et al. (2022) 

 GUIDOS Toolbox 

Workbench (GWB) 

Program; QGIS plug-in; 

C/GDAL 

MSPA expansions; distance & similarity; Jensen–

Shannon multiscale similarity; large-area 

workbench 

Vogt et al. (2022); Netzel 

et al. (2024); Zhang et al. 

(2024, 2025) 

 FAD–FOS pipelines (fixed-

scale density) 
GUIDOS + scripts 

Forest Area Density classes & summaries (policy-

scale, fixed window) 
Vogt & Caudullo (2025) 

 Fractal/Disorder toolchains 

(FFI/FFDI/LCFD) 

ImageJ2/ComsystanJ; 

Python/ArcGIS 

Compactness & spatial disorder; local 

connectedness; robust to binary artifacts 

Peptenatu et al. (2023); 

Alage et al. (2025) 



Period Toolset Platform Notes Features References 

 ENVI & GeoDa; MapBiomas 

& IDRISI (FFCI) 
RS & spatial analysis 

PCA-based composite indices; ANN & CA–

Markov forecasting 

Lin et al. (2024); Moreira 

et al. (2024) 

 Fiji/ImageJ2 + ComsystanJ 

(3-D) 
Image analysis 

Voxel-based 3-D fragmentation; fractal 

dimension; succolarity 
Andronache (2024) 

 ESIS/Imalys; AMAPVox 

(TLS) 

Python/C++; TLS 

processing 

Hybrid PMM–GM toolkit; NDVI/NIRv; 

voxelized TLS for PAI; phenology impacts 

Selsam et al. (2024); 

Nunes et al. (2022) 

 LFT (applications) ArcGIS extension 
Recent use-cases of LFT in susceptibility 

mapping 
Batar et al. (2021) 

 ProNet scripts; LandTrendr 

(recent apps) 
R/Python; GEE 

Protected-area network connectivity metric; 

provincial LandTrendr deployments 

Theobald et al. (2022); 

Qiu et al. (2025) 
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Land use/cover changes using Corine Land Cover 
data following hurricanes in the last 10 years. 
A case study on Tuchola Forest Biosphere Reserve

Summary: Numerous environmental decisions are predicated on the idea that certain 
land cover combinations are preferable to others. Given that Corine Land Cover (CLC) da-
tabase encompasses a detailed three-level hierarchical nomenclature composed of 44 land 
cover/use classes at its most detailed level, it has been used to analyze temporal changes 
in the Tuchola Forest Biosphere Reserve as a whole and in three communes that have been 
severely impacted by hurricanes in the last decade, namely Brusy, Osie, and Czersk. This 
article compares spatial data from 1990, 2000, 2006, 2012, and 2018 in order to determine 
the magnitude of land modification caused by hurricanes in 2012, 2017, and 2021. In July 
2012, a very strong wind damaged forests covering an area of over 500 ha in the Trzebciny 
Forest District (Osie Commune). In August 2017, a catastrophic storm swept through Po-
land, primarily in Pomorze and Kujawy, destroying forest stands across several thousand 
hectares of Tuchola Forest, most notably in the Rytel, Lipusz, Czersk, Bytów, and Runowo 
Forest Districts. In July 2021, another hurricane destroyed over 1,000 hectares of forest, 
primarily in the Osie Forest District. According to the CLC analysis, the entire biosphere 
reserve lost 140.84 km2 of forest cover, while the transitional woodland/shrub increased 
by 726 percent due to forest regeneration. Landscape metrics such as number of patch-
es, mean patch size, edge density, and mean shape index indicate severe fragmentation, 
whereas Shannon diversity demonstrates an increase in diversity over time. In addition, 
the Czersk’s commune index was chosen to compare the fragmentation percentages with 
those of the entire TFBR, and the results indicate uniformity.

Keywords: Tuchola Forest, Biosphere Reserve, CLC, land use/cover, spatial indices, land-
scape structure, hurricane
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Introduction

News about climate change is no longer as startling as it used to be, neither read-
ing about hurricanes or storms scare us anymore. However, the inevitable conse-
quences that lithosphere faces after any climatic disturbances alters a significant 
fragment on the landscape, both on a small and a large scale. Studying the rela-
tionship between these natural processes on different scales are fundamental to 
landscape ecology (Chamorro et al. 2015), and integrating it with the temporal 
aspect to understand the coping mechanism of landscapes is extremely crucial in 
the current environmental scenario.

Hurricanes leave a permanent impression on forest structure by causing dam-
age to standing inventory, significantly affecting the age class structure and spe-
cies distribution in an impacted region (Xi et al. 2008). After making landfall, 
hurricanes can significantly alter the landscape through wind damage, torrential 
rainfall, and storm surge. Hurricanes (wind speeds over 33 ms–1) are one of the 
major natural disturbance elements, impacting landscapes by causing property 
damage, tree mortality, and vegetation degradation (Boose et al. 1994; Juárez et 
al. 2008). Recent studies indicate that hurricane frequency has increased over the 
past three decades (Emanuel 2005; Wu, Wang 2008; Walsh et al. 2016; Reed et 
al. 2022). Recent years (2000–2014) have averaged close to seven hurricanes per 
year in the North Atlantic which is associated with rising sea surface tempera-
tures (Hurricanes and climate-change 2020).

Although the increase in hurricane intensity has been well recorded, the im-
pact of hurricane forest damage on regional climate has yet to be investigated 
(Juárez et al. 2008). Research on the coastal ecosystems by Lam et. al. (2011) 
shows differential rates of land cover changes after repeated hurricane strikes can 
be used to evaluate the ecosystems’ resilience.

In this research, the authors have tried to look into the spatio-temporal chang-
es of the landscape by considering the available Corine Land Cover data of the en-
tire Tuchola Forest in general and thereafter considered three communes, namely 
Osie, Brusy and Czersk which were reported to have been highly affected after 
the aforementioned disasters. Spatio-temnporal changes and fragmentation were 
studied based on these areas. Considering the maximum changes in the Czersk 
Commune, further analysis of metrics were employed on the entire Tuchola For-
est Biosphere Reserve (TFBR) and the Czersk Commune.

Review of approaches regarding land cover changes

“Land use” and “land cover” have different meanings relating to land surface, 
with the former reflecting human activities and the latter biophysical condition, 
yet both are dynamic through time (Assaf et al. 2021). Both land use (LU) and 
land cover (LC) are usually monitored via field surveys, however, only land cover is 
mostly estimated using remote sensing techniques (United States Department of 
Agriculture). LULC change assessment is difficult because acquiring ground-based 
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data at the right time and space resolution is expensive and time-consuming. 
Remote sensing monitors, quantifies, and models landscape changes and pat-
terns (Joorabian Shooshtari et al. 2020; Gemitzi et al. 2021). Using remote sens-
ing data, several studies have determined local, regional, and global land-cover 
changes (Wolter 2006; Popovici 2013; Kucsicsa 2019; Karra 2021). 

During the past two decades, technological advances in remote sensing have 
enabled the production of numerous global land cover datasets, facilitating their 
extensive use in modelling research (Brice Mora et al. 2014). Global economic 
crisis forces nations to reduce expenditure. However, better environmental data 
and reporting obligations are growing due to increased awareness. As the value of 
“free data” spanning large areas grows, it may become necessary to enhance the 
usage of remote sensing to meet both needs (Manakos et al. 2014).

COoRdination of INformation on the Environment (CORINE) was an EU 
initiative to standardize land data in the 39 participating countries and produce 
a  European-wide land cover inventory (Land Copernicus; Büttner 2014). CLC 
maps have a scale of 1:100,000 and classifies land according to a 3-level hierar-
chical categorization scheme with 44 classes at the third and most specific level 
(Gemitzi et al. 2021). As CLC is typically updated every six years, it was deemed 
useful to investigate whether forest fragmentation may be reliably computed us-
ing remotely sensed imagery that is available over such temporal intervals. Mere-
ly observing the changes in the landscape is not enough, unless we analyze the 
ecological significance of it, hence selected landscape metrics were applied to the 
CLC dataset of 5 years.

Since the inception of landscape ecology, the relationship between spatial pat-
terns and ecological processes has been one of its central concerns (Wu, Hobbs 
2002). To establish this correlation, the first step is to quantify landscape pat-
terns (Hulshoff 1995), which has received considerable attention from landscape 
ecologists (Turner 2005).

Review of landscape metrics for forest landscape stability

Metrics are quantitative measurements and features generated from land cover 
data, such as composition (kinds and area of specific land cover classes) and con-
figuration (spatial organization of land cover classes throughout the landscape, 
including habitat fragmentation) (Turner 2005).

Landscape ecologists have proposed numerous landscape pattern indicators 
since the 1970s (Wu 2006), including patch number, patch area, patch form in-
dex, fragmentation index, sub-dimension, landscape heterogeneity index, etc. 
(Turner, Gardner 1991; Kunz 2006). These indicators analyze quantitative data, 
the composition and spatial distribution of landscape structure, compare the 
structural characteristics of various landscapes, and reveal the landscape’s spatial 
configuration and changing patterns (Bailey et al. 2007).

Landscape metrics uses categorical data with spatial interruption, while spa-
tial statistics uses quantitative data with spatial continuity (Wu 2000). Landscape 
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pattern studies usually use categorization maps like vegetation, soil, and land 
use/land cover (Peng et al. 2010).

Due to the rapid development of GIS and RS technologies, as well as free and 
upgraded software packages like FRAGSTATS (McGarigal, Marks 1995), APACK 
and IAN (Mladenoff, DeZonia 2004), and ArcGIS plugins like Patch Analyst 
(Rempel et al. 2012), landscape ecologists can easily obtain metrics for a par-
ticular landscape (Kunz, Nienartowicz 2004; Kunz 2006; Kjelland et al. 2007; 
Gardner et al. 2008; Messerli et al. 2009; Riitters et al. 2009; Peng et al. 2010; 
Kelly et al. 2011; Reif, Swannack 2014; Adamczyk, Tiede 2017). Metric selection 
for a  new study must be based on the study’s objectives, the system’s spatial 
characteristics, and the ecological processes being studied (Gustafson 1998). In 
addition, they should be computed on process-appropriate maps (Kunz 2006a; 
Bailey et al. 2007).

Wang and Xu (2009) used landscape metrics of undisturbed and disturbed 
forests after Hurricane Katrina such as number of patches (NP), patch density 
(PD), patch area mean (AREA MN), patch area standard deviation, largest patch 
index, total core area, total edge (TE), edge density (ED), and landscape shape 
index (LSI) and found that forest types, forest coverage and stand density, and 
soils groups contributed to 85% of accuracy in modeling the probability of tree 
mortality. 

Study area and methodology of research

Study area

Tuchola Forest Biosphere Reserve (TFBR), established on 2nd June 2010 under 
Man and Biosphere Program (MaB), is the tenth and the biggest biosphere re-
serve in Poland. It is located in the northwest part of the country and it covers 
an area of 319,525 ha (Fig. 1). Over 60% of the TFBR area is covered by for-
ests. There are 13 Forest Districts managed within that area: Czersk, Dąbrowa, 
Kaliska, Kościerzyna, Lipusz, Osie, Osusznica, Przymuszewo, Rytel, Tuchola, 
Trzebciny, Woziwoda and Zamrzenica (Nienartowicz et al. 2010; Nienartowicz, 
Kunz 2018).

Every year, over a dozen cases of anemological phenomena are recorded over 
Poland. Most often these are strong blasts of wind. Selective monitoring of these 
phenomena makes it difficult to conduct multi-faceted research related to this 
subject. The current warning system against wind phenomena is not fully effec-
tive, as the messages concern too large an area of the country – usually selected 
voivodeships. So far, the detection of tornadoes in Poland is difficult due to their 
local nature. Although these phenomena appear rarely, unfortunately, they can 
be devastating (Poplawska 2014; Taszarek, Gromadzki 2017). The occurrence of 
extreme meteorologic events is influenced by many factors such as location of 
the baric systems, direction of inflow and type of air mass or even direction and 
velocity of the jet stream wind (Sulik 2021).
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The north western province of Poland is most susceptible to windstorms that 
created havoc in the last two decades. On 14 July 2012, an isolated cyclic supercell 
thunderstorm occurred in north central Poland and produced a  few tornadoes 
near the Tuchola Forest which destructed around 500 ha of forests (Taszarek et 
al. 2016). A derecho event that occurred in Poland on 11 August 2017, destroyed 
and partially damaged 79,700 ha of forest. Wind gusts of extreme intensity de-
stroyed a significant part of the Tuchola Forest, including around 8,000 ha of for-
est in the Rytel Forest District and 6,000 ha of forest in the Lipusz Forest District. 
According to the accounts of some witnesses, the entire forest sections in the area 
of Tuchola, Chojnice, Bytów, Koscierzyna, and Lębork were swept away within 
a few minutes (Figurski et. al. 2017; Taszarek et. al. 2019). The meteorological 
station in Elblag recorded a peak wind gust of 42 ms–1, while the station in Lębork 
had 31 ms–1). At the end of July 2021, another hurricane destroyed over 1,000 
hectares of forest, primarily in the Osie Forest District (Osie Commune). The 
greatest damage was inventoried in the vicinity of the villages of Tleń and Osie.

Thus the authors have selected the entire TFBR to analyse the overall ef-
fect of spatio temporal changes and validate the same in the most effected com-
munes, considering that not all communes can have an equal impact of a disaster. 
The methodology has been depicted in Fig. 2 and elaborated in the following 
paragraphs.

Corine Land Cover database

Corine Land Cover (CLC) was specified to standardize land data collection in 
Europe to support the development of environmental policy. Images captured by 

Fig. 1. Location of Tuchola Forest Biosphere Reserve and the three Communes – Brusy, 
Czersk and Osie
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Earth Observation (EO) satellites serve as the primary data source for determin-
ing land cover and land use (EEA Task Force 1992). The standard Corine Land 
Cover vector data for years 1990, 2000, 2006, 2012 and 2018 were downloaded 
freely from http://clc.gios.gov.pl/index.php/9-gorne-menu/clc-informacje-ogol-
ne/59-produkty-2. Datasets were clipped to the extent of the Tuchola Forest Bio-
sphere Reserve boundary given by the official website in 2010 in ArcGIS 10.7.1 
and mapped to visually interpret the changes throughout the years (see Fig. 3) 
and 15 categories from third level were identified (see Table 1).

For temporal land cover change evaluation, the frequency of pixels in each 
category for each year was determined and merged within the attribute table of 
ArcGIS 10.7.1 to calculate the total area for each level three category and finally 
producing a land use/cover map for the entire biosphere reserve (see Fig. 3). This 
datasheet was then exported to excel for calculating the percentage change and 
plotting bar diagrams of area in square kilometre (Fig. 4). The purpose of the 
bar diagrams was to evaluate the extent of changes throughout the period and 
to determine which year and which particular commune records the most sig-
nificant transition types. To calculate the percentage change in Microsoft Excel 
2016, 1990 Corine Land Cover database was used as the base year, and 2000 
was used for the later and then divided by the base year (1990) to be multiplied 
by 100. This was repeated for all the years in each category but only the Czersk 
Commune has been selected for representation because of its highest amount 
of change (see Figs. 5 and 6). Codes described in level 3 of CLC legend (refer to 
Table 1) are used for plotting the bar diagrams and line charts in Figures 4, 5 
and 6.

Fig. 2. Methodological scheme of the research process

http://clc.gios.gov.pl/index.php/9-gorne-menu/clc-informacje-ogolne/59-produkty-2
http://clc.gios.gov.pl/index.php/9-gorne-menu/clc-informacje-ogolne/59-produkty-2
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Landscape metrices to study forest landscape fragmentation

Using the two land cover categorization datasets and the landscape pattern anal-
ysis extension Patch Analyst 3.1 for Esri Software, class-level and landscape-level 
measures were calculated (Rempel et al. 2012). To assess landscape pattern, the 
extension generated hundreds of patch-, class-, and landscape-level measure-
ments. Typically, a subset of metrics is chosen based on the analysis’s objectives. 
For this study, a number of previous studies (Kunz 2006; Kjelland et al. 2007; 
Gardner et al. 2008; Wang, Xu 2009; Kelly et al. 2011; Reif, Swannack 2014) 
have been thoroughly reviewed and evaluated to select the metrics according to 
their usability and importance in understanding ecological processes. The met-
rics considered for this investigation are summarized in Table 2. The vector data 
derived from the CLC land use/cover third level classes were analysed to obtain 
these metrics. 

Table 1. Corine Land Cover categories present in Tuchola Forest Biosphere Reserve

Level 1 Level 2 Level 3
1. Artificial 
surfaces

1.1. Urban fabric 1.1.2. Discontinuous urban fabric
1.2. Industrial, commercial 
and transport units

1.2.1. Industrial or commercial units
1.2.2. Road and rail networks and 
associated land

1.4. Artificial non-
agricultural vegetated areas

1.4.2. Sport and leisure facilities

2. Agricultural 
areas

2.1. Arable land 2.1.1. Non-irrigated arable land
2.3. Pastures 2.3.1. Pastures
2.4. Heterogeneous 
agricultural areas

2.4.2. Complex cultivation patterns
2.4.3. Land principally occupied by 
agriculture with significant areas of 
natural vegetation

3. Forest and semi 
natural areas

3.1. Forests 3.1.1. Broad-leaved forest
3.1.2. Coniferous forest
3.1.3. Mixed forest

3.2. Scrub and/or herbaceous 
vegetation associations

3.2.4. Transitional woodland-shrub

4. Wetlands 4.1. Inland wetlands 4.1.1. Inland marshes
4.1.2. Peat bogs

5. Water bodies 5.1. Inland waters 5.1.2. Water bodies



Sanjana Dutt, Mieczysław Kunz	

32	

Results

Spatial patterns of land cover change

The impact of severe storms on forests is evaluated on a regional scale through 
a temporal series of maps from 1990 to 2018. After making landfall, hurricanes 

Fig. 3. Changes in land use/cover in Tuchola Forest Biosphere Reserve between 1990–2018

Table 2. Summary of landscape metrics used in the study

Name Matric Desription Unit
Patches Number of patches NP>1, without limit, NP = 1 when a landscpae 

or class type contains one patch; number of 
patches corresponding to class type at a land-
scape

–

Mean patch size the average area of patches corresponding to the 
forest cover type; greater MPS indicate slightly 
fragmented forests

ha

Edge Edge density edge density (ED) standardizes edge to a per 
unit area basis that facilitates comparisons 
among landscape of varying size

m/
ha

Shape Mean shape index shape complexity
Diversity Shannon’s diversity 

index
measure of relative patch diversity –
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can significantly alter the landscape through wind damage, precipitation, and 
storm surge. Following the three recorded windstorms, significant changes with-
in each CLC category has been shown spatially for the entire Tuchola Forest 
Biosphere Reserve (Fig. 3). 

To validate the land use/cover changes within each commune particularly, the 
three selected communes (see Fig. 4) and the entire TFBR were compared using 
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bar diagrams. The LULC produced by the CLC data from 1990–2018 shows sim-
ilarity of categorical changes within each commune as well as the entire TFBR. 
The interpretation of landscape statistics (Fig. 4) and the resulting landscape map 
(Fig. 3), along with prior information of the research area, allowed for a detailed 
description of the landscape typologies that comprise the land use/cover. The pil-
lar landscapes include non-irrigated arable land (code 211), pastures (code 231), 

Fig. 4. Change in area for each category from 1990 to 2018 in: (c) Osie Commune, (d) 
Czersk Commune
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land principally occupied by agriculture (code 243), coniferous forest (code 312), 
mixed forest (code 313), water bodies (code 512). The entire biosphere reserve 
hosts a diverse and complex set of CLC categories than individual communes. 
The adjacency bar graph illustrates the spatial links between the landscape types 
of the individual communes (b, c, and d) and the entire forest region (a), never-
theless the individual communes has a lower number of land use/cover classes 
compared to the entire landscape which comprises of 17 categories. Brusy and 
Osie has 12 categories each while Czersk has 13 categories.

To analyse the percentage change among each categories, two line diagrams 
are represented (Fig. 5 and 6). From Figure 4 it had been deduced that among 
the three communes, Czersk showed the highest amount of changes in land cov-
er (Fig. 6), where coniferous forest (code 312) records 20.90% decrease while 
broadleaved forest and mixed forest increased gradually. Non-irrigated arable 
land (211) and complex cultivation patterns (code 242) shows approximately 5% 
and 41.74% decrease respectively. Transitional woodland/shrub (code 324) re-
cords 5,468.53% increase from 1990–2018. Inland marshes and waterbodies re-
main more or less unaffected.

112 121 122 124 131 142 211 231 242 243 311 312 313 324 411 412 512

1990–2000 2.84 2.95 0 0 0 0 −0.13 −0.81 −0.07 −0.38 0 0.13 0 0.53 0 0 0

2000–2006 26.88 −6.62 0 −31.44 −42.65 0 −1.01 −0.26 −6.48 0.86 22.61 −1.11 42.44 −13.01 0 −13.75 0.47

2006–2012 95.75 17.16 0 8.33 0 0 −3.70 3.47 −47.21 12.99 15.05 0.04 6.22 159.52 23 −100 1.82

2012–2018 0.74 0 0 0 0 0 0.03 0 0.42 −0.77 −0.59 −8.56 −10.93 725.86 3.06 0 0
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Fig. 5. Trend showing percentage change in land use/cover in Tuchola Forest Biosphere 
Reserve (1990–2018)
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Spatial analysis of forest structure

For quantifying the land cover changes in the Tuchola Forest Biosphere Reserve 
after the three aforementioned hurricanes, the authors decided to use: number 
of patches, mean patch size, total edge, edge density, mean shape index, area 
weighted mean patch fractal dimension and Shannon’s diversity index.

Landscape metrics provided valuable data regarding forest changes, particu-
larly fragmentation, connectivity, and heterogeneity measured at the landscape 
or class level. The total number of patches at the landscape scale increased 
from 1,194 to 1,405 between 1990 and 2018, while the mean patch size (MPS) 
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Fig. 6. Trend showing percentage change in land use/cover in Czersk Commune (1990–
2018)

Table 3. Landscape pattern indices for each year in Tuchola Forest Biosphere Reserve

Years Number of 
patches

Mean patch 
size Edge density Mean shape 

index
Shannon’s di-
versity index

1990 1,194 2,679,550.81 0.00351 1.981 1.879
2000 1,195 2,677,308.51 0.00348 1.978 1.878
2006 1,236 2,588,497.14 0.00352 1.964 1.902
2012 1,343 2,382,265.43 0.00357 1.912 1.952
2018 1,405 2,277,141.55 0.00376 1.929 2.019
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decreased by 15.02 percent. The MPS analysis indicates that the forest landscape 
in 2018 was highly fragmented.

Even though they are not spatially explicit, edge metrics are typically viewed 
as the best representation of landscape configuration. It is observed that, as the 
number of patches increases, so does the edge density, which once again confirms 
high fragmentation. Mean Shape Index values are typically greater than or equal 
to 1. When nearly all patch shapes are square-like, shape mn’s value is 1, and as 
patch shapes become more irregular, shape mean’s value increases proportional-
ly. In this case, the mean shape index is relatively uniform, with a slight decrease.

Shannon’s diversity index (SDI) initially (years 1990–2000) exhibited no sig-
nificant change; however, from 2006 to 2018, SDI increased gradually, indicating 
an increase in diversity or heterogeneity.

Discussion

The Landscape Change Index (LCI) was defined by Woodward et al. (2001) as 
the total change in vegetation and land use at the landscape level by integrating 
the absolute average changes of all land-cover types into one value. In this way, 
LCI is characterized by a single value that represents the consequence of all types 
of changes occurring in the landscape’s background over a specific time period. 
According to the applicability of Landscape Change Index, the authors identi-
fied that the highest amount of changes were analysed post 2006, owing to the 
disasters that occurred after 2012. There is an evident decrease in non-irrigated 
arable land (code 211) and broad-leaved forest (code 312) throughout the time 
period (see Figs. 4 and 5). Another striking change is noticed with transition-
al woodland/shrub (code 324) which increased about 725% and can be a result 
of woodland degradation after 2012 and 2017 windstorms, forest regeneration/
recolonization, or natural succession. Peat bogs (code 412) which used to have 
a considerable amount of decomposed vegetation matter till 2006, suddenly dis-
appeared in 2012, which could also be a direct influence of disasters. Conifer-
ous forest (code 312) consisting of pine trees, the most dominating vegetation 
in the biosphere reserve registers a gradual fall throughout the years since 1990 
with –8% in 2018. This can also be seen in terms of Shannon’s diversity index 
where after the disastrous events of 2012 and 2017, the diverse number of cate-
gories increased to 6.15% after 2006, owing to the high number of transitional 

Table 4. Landscape pattern indices for each year in Czersk Commune

Years Number of 
patches

Mean patch 
size Edge density Mean shape 

index
Shannon’s di-
versity index

1990 204 1,860,812.27 0.0037 1.989 1.875
2000 200 1,898,028.52 0.0036 1.988 1.853
2006 204 1,860,812.27 0.0037 1.949 1.907
2012 218 1,741,310.57 0.0037 1.928 1.933
2018 241 1,575,127.41 0.0041 1.937 2.034
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woodland, discontinuous urban fabric, and water bodies which could be a direct 
consequence of storm events and heavy precipitation. Another notable change 
detected is the 157.29% increase in the Discontinuous urban fabric (code 112). 
Project Copernicus distinguishes between continuous and discontinuous urban 
fabric based on a distance of less than 300 m between the houses and associated 
with green spaces and bare surfaces among them.

In terms of forest sustainability and management policies, quantitative as-
sessments of forest fragmentation and heterogeneity using spatial and temporal 
patterns constitute a valuable tool. The authors anticipate the release of the next 
series of Corine Land Cover data base in 2024, which will allow for better com-
parison. In addition, satellite imagery with a higher spatial resolution, such as 
Sentinel, or active sensors such as LiDAR, provides the opportunity to work in 
much greater detail.

This research also made us question whether administrative boundaries, such 
as communes, should be taken into account when conducting comparative re-
search, given that nature knows no bounds.

Conclusion

In this study, multi-temporal data base from the Corine Land Cover datasets 
were used to identify the spatio-temporal patterns of land use and land cover 
changes after three catastrophic hurricanes. This study provided deforestation/
degradation and regeneration statistics for the Tuchola Forest Biosphere Reserve 
over a 28-year period, with a focus on the communes in the path of windstorms 
(1990–2018). According to the results, 140.84 km2 of forest cover was lost within 
the biosphere reserve.

Landscape indices for the entire Tuchola Forest and the Czersk Commune 
confirm fragmentation and heterogeneity as a result of an increase in patch size 
and edge density. The impact of the hurricane of 2021 on the landscape structure 
in the vicinity of Osie and Tleń can be determined using the updated CLC spatial 
database in 2024.

The diversity in both of these study regions has also increased significantly. 
This study has only examined the spatial and temporal changes in forest cover, 
without delving deeply into the underlying causes of hurricane-induced forest 
degradation. However, as discussed, previous research confirms a direct propor-
tional relationship between forest land fragmentation and wind gusts. There-
fore, this demonstrates the need for conservation efforts to focus on better forest 
management.

Overall, the change detection statistics and metrics exemplify how quanti-
tative measures can be applied to land cover data to analyze broad land cover 
characteristics as well as the underlying structure, aggregation, and shape prop-
erties. This huge array of change measures was evaluated in the research area 
spanning the northern portion of Poland, and displays change mostly linked with 
the storms of 2012, 2017, and 2021 reviewed in the 2012 and 2018 imageries.
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Abstract. Monitoring the change in land cover in disaster-affected areas, such as forests, has become 
a conventional forest management practice, particularly in protected areas. Most change detection 
and fragmentation studies rely on single-dated satellite images even while investigating changes over  
a long temporal span. This study aims to move a step further to compare fragmentation before and 
after a derecho event that occurred in August 2017 using 23 Landsat-8 images of Brusy Commune 
within the Tuchola Forest Biosphere Reserve. The supervised classification was carried out in the Google 
Earth Engine using the machine learning algorithm of random forests within the summer months of 
2017 and 2018. The high overall accuracy of 0.92 was obtained for the two images which were 
then analysed with landscape metrics such as mean patch size, number of patches, total edge and 
edge density using Patch Analyst. These landscape metrics facilitated the characterisation of landscape 
fragmentation at both the class and landscape levels. Shannon’s Diversity Index was employed to 
assess heterogeneity across the landscape. The findings indicate significant fragmentation, particularly 
in the forest and pasture classes, with overall low diversity. This study underscores the potential for 
future research to employ advanced machine learning techniques and non-parametric classifiers, such 
as neural networks, to enhance the prediction of fragmentation across various spatial scales. 

Landscape metrics of the Brusy Commune 
before and after wind-storm: an assessment 
of the extent of changes based on Landsat-8 
data

Key words:
landscape fragmentation,

landscape metrics,
LULC changes,

Landsat-8,
wind-storm, 

Google Earth Engine

Introduction

The perception of forest landscapes varies 
significantly across different scales and is 
influenced by the observer’s experiences and the 
methodological approach adopted in its study. 
This variability is particularly evident in remote 
sensing, where landscapes are interpreted through 
various resolutions – spatial, radiometric, spectral 
and temporal. These resolutions frame our 
understanding of the landscape’s structure, dynamics 
and function. Natural disasters and human impacts 
have been consistently responsible for modifying 
the landscape, and it has thus become increasingly 

crucial to study the various changes occurring 
within the landscape using various remote-sensing 
and GIS tools on various scales (Haines-Young 
and Chopping 1996; Gustafson 1998; Frohn 2018; 
McGarigal and Cushman 2002; Vogt et al. 2007). 
When monitoring natural or human-induced events, 
change detection involves four steps: detecting the 
change, determining its nature, measuring its area 
and assessing its spatial pattern (Macleod and 
Congalton 1998).

Based on many remotely sensed images at 
various spatial resolutions and assessments of 
landscape metrics, researchers have been able to 
quantify the influence of spatial scale on landscape 
patterns (Kunz and Nienartowicz 2002, 2004, 2007; 
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Wu and Hobbs 2002; Saura 2004; Zhu et al. 2006; 
Gan et al. 2009). Indicators or metrics that consider 
the pattern, area and geometrical aspects of the 
landscape are used for change detection analysis 
(Kunz and Nienartowicz 2002). Turner et al. (2001) 
proposed methods for analysing landscape and 
forest patterns. In practice, the majority of forest 
fragmentation indicators are driven by either the 
ideas of adjacency or connectivity at the pixel level 
(Musick and Grover 1991). To meet requirements for 
the comparability of data and indicators across wide 
geographic regions, the input data for assessments 
are often derived from remote sensing and consist 
of land cover maps (Vogt et al. 2007).

Feng and Liu (2015) analysed raster datasets 
from 30 m to 330 m, at 30-m intervals, finding 
that landscape metrics’ sensitivity to cell size varies, 
with some metrics significantly affected and others 
showing minimal sensitivity. This result is consistent 
with previous literature highlighting the correlation 
with metrics and scales (Kunz and Nienartowicz 
2002; Millington et al. 2003; Uuemaa et al. 2005). 
Recent methodologies to analyse scale impacts 
have been utilised in case studies to examine scale 
constraints in landscape ecology (Alhamad et al. 
2011; Forzieri and Catani 2011; Feng et al. 2013; 
Lü et al. 2013).

Forest disturbance mapping at medium 
resolution faced constraints until 2008, when 
Landsat imagery was made freely available. From a 
scientific perspective, the authors found it essential 
to not rely solely on single images from satellite 
sensors. Instead, they utilised a median composite 
of all cloud-free data for classification on Google 
Earth Engine (GEE). GEE is a free cloud-computing 
platform for satellite-data processing (Landsat, 
Sentinel-2, MODIS) and planetary-scale analysis 
(Gorelick et al. 2017). Since the first major work 
on the topic was published in 2013 (Hansen et al. 
2013), the amount of research using GEE has risen 
sharply, with more than 397,000 results in Google 
Scholar as of April, 2024. The applications range 
from vegetation monitoring to land cover mapping, 
disaster management and agricultural applications 
(Kennedy et al. 2018; Mutanga and Kumar 2019; 
Amani et al. 2020; Orusa et al. 2023).

This research explores the suitability of 
Landsat’s 30-m resolution for analysing landscape 
fragmentation, focusing on the Brusy Commune 
forest in northern Poland, which experienced a 
derecho stemming from a mesocyclone on August 

11, 2017. It critically examines the impact of scale 
on landscape metrics and their sensitivity when 
employing GEE for satellite-based forest monitoring.

Materials and methods

Study area

The Brusy Commune, serving as the focal area for 
this study’s detailed land use/land cover (LULC) 
changes analysis, is situated within the Chojnice 
Poviat of the Pomeranian Voivodeship, northern 
Poland (see Fig. 1). Spanning an area of 400.74 km2, 
it is predominantly rural, with nearly 99% of its 
expanse dedicated to rural landscapes and a minor 
fraction (5.1 km²) constituting the urban area of 
the town of Brusy. As of 2017, the commune had a 
population of ~14,500, resulting in a density of 36 
individuals per km². The commune is composed of 
100 settlement units, encompassing major villages, 
minor settlements and the urban centre of Brusy 
(Kunz and Nienartowicz 2023).

Within the Brusy Commune, the Przymuszewo 
Forest District is the predominant State Forest 
economic unit, encompassing 80.53% of the area, 
with the Czersk and Rytel Forest Districts following 
in contribution. Land cover/usage analysis reveals 
forests as the largest category, occupying 23,684 
hectares or 59.1% of the commune’s terrain. 
Agricultural spaces make up 30.4% of the land, with 
arable fields accounting for 20.5% of this. Water 
bodies, including six lakes each over 100 hectares, 
constitute 6.2% of the area. Built-up and transport 
infrastructures cover 2.1%, while areas with 
scattered trees and shrubbery account for roughly 
0.2%. The forest landscape is mainly characterised 
by coniferous ecosystems, predominantly dry and 
fresh pine stands, with deciduous forests making up 
about 12% of the forestry. The average age of these 
forest stands is 62 years (Kunz and Nienartowicz 
2023).

The Brusy Commune’s forest regions are 
distinguished by a variety of protected areas, 
including the Zaborski Landscape Park located 
in its western sector (see Fig. 1). Within the 
commune boundaries, there exist eight nature 
reserves encompassing forest, peat bog and 
aquatic ecosystems, alongside 42 ecological sites. 
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Additionally, Brusy is among 22 communes within 
the Tuchola Forest Biosphere Reserve (TFBR), 
which was inaugurated on June 2, 2010 as part of 
the Man and Biosphere Programme (MaB), marking 
it as Poland’s eleventh and largest biosphere reserve. 
Occupying 319,525 hectares in the country’s 
north-west, the TFBR is predominantly forested, 
accounting for over 60% of its area. This significant 
forest cover positions the Tuchola Forest natural 
district as one of Poland’s most extensive forested 
areas (Nienartowicz et al. 2010; Nienartowicz and 
Kunz 2018).

The Tuchola Forest Biosphere Reserve is 
segmented into three distinct zones: core, buffer 
and transit, as illustrated in Figure 1. The core 
zone, deemed the most critical, encompasses the 
“Tuchola Forest” National Park and 25 nature 
reserves. Following this is the buffer zone, primarily 
composed of four landscape parks, including the 
Zaborski Landscape Park, which predominantly falls 
within the Brusy Commune. The transit zone, the 
largest, extends over the territories of 22 communes 

(13 from the Kuyavian-Pomeranian Voivodeship 
and 9 from the Pomeranian Voivodeship) and the 
city of Tuchola, covering an area exceeding 206,000 
hectares – nearly double the size of the buffer zone. 
This structure is a unique characteristic of the 
Tuchola Forest Biosphere Reserve. Nevertheless, 
in August 2017, the reserve, particularly within 
the Brusy Commune’s administrative boundaries, 
was struck by a devastating derecho, leading to 
significant alterations in the landscape’s structure 
(see figure 2)(Taszarek et al. 2019; Kunz et al. 2023).

Derecho event in Tuchola Forest Biosphere 
Reserve

European Severe Weather Database records 600 
severe convective wind gusts annually in Poland 
(Dotzek et al. 2009). Such occurrences are most 
prevalent from May through August, with a typical 
peak in the late afternoon of July (Celiski-Mysaw and 

Fig. 1. Location of the Brusy Commune in the Tuchola Forest Biosphere Reserve
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Palarz 2017; Taszarek et al. 2019; Sulik and Kejna 
2020). These winds, capable of causing significant 
damage, commonly result from thunderstorm 
outflows and are frequently linked to supercells and 
mesoscale convective systems (MCS) (Zipser 1982; 
Doswell and Burgess 1993; Houze 1993).

Johns and Hirt (1987) were the inaugural 
scientists to outline the criteria for derechos, a term 
referring to intense downburst clusters associated 
with forward-propagating mesoscale convective 
systems (MCS) characterised by mesoscale vortices 
and inflow jets. According to Corfidi et al. (2016), 
for an event to be classified as a derecho, the damage 
path must maintain a width of at least 100 km and 
extend over a length of 650 km, predominantly 
driven by a mature, cold-pool MCS following 
the initial storm development. Annually, Poland 
witnesses an average of ten bow echoes and one 

derecho, indicative of the country’s susceptibility 
to such severe weather phenomena. Notably, the 
derecho on August 11, 2017 exemplified this 
destructive capability, generating substantial wind 
damage with gusts exceeding 42 m/s (Celiski-
Mysaw and Matuszko 2014; Celiski-Mysaw and 
Palarz 2017; Taszarek et al. 2019; Sulik and Kejna 
2020).

Materials and methods

The methodological scheme has been illustrated in 
Figure 3 and described in detail in the following 
section.

Fig. 2. Examples in aerial imageries of deforestation resulting from the derecho of August 11, 2017 
(source of remote-sensing data – geoportal.gov.pl)
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between March 30 and July 30, 2017, as pre-disaster 
evidence, and 13 images from the corresponding 
dates in 2018 as post-disaster evidence. For each set 
of yearly images, a median composite was generated 
to represent the summer season’s land cover state.

Classification method

Reference data, including both training and 
validation samples, were collected from Landsat 
imagery for the specified time frames. Reflecting 
the objectives of this study and the real-world 
conditions of the study area, six distinct land cover 
types were identified for sampling: water bodies, 
forest, damaged forest area, bare land, pastures and 
built-up areas. To ensure a non-biased assessment 
of classification accuracy, validation samples were 
acquired at least one week subsequent to the 
collection of training samples. For the purpose of 
training, ~1500 samples for each land cover category 
were compiled. Conversely, the number of validation 

Satellite data

This research employed multispectral satellite 
imagery from the Landsat-8 Operational Land 
Imager (OLI), focusing on orthorectified surface 
reflectance data processed through Google Earth 
Engine (GEE) to conduct land use and land cover 
(LULC) classification in Brusy, North Poland, 
specifically during the summer period of April, 
May, June, and July. Landsat-8’s moderate spatial 
resolution of 30 meters, coupled with its global 
reach, has facilitated its widespread adoption for 
various land cover delineation tasks, including the 
identification of agricultural lands and wetland 
areas, since its launch (Giri et al. 2013; Schultz et 
al. 2015; Gilbertson et al. 2017). For the purpose 
of classification, this study selected only the blue, 
green, red, and near-infrared (NIR) bands, given 
their similar Spectral Response Functions (SRF). 
The criteria for image selection included a cloud 
cover of less than 10%. The dataset comprised 10 
Landsat-8 surface reflectance (SR) images collected 

Fig. 3. Methodological scheme of work
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samples was significantly lower, emphasising quality 
over quantity in assessing the model’s performance.

Random forest classifier

In this research, the Random Forest (RF) algorithm 
was selected for the task of classification, recognised 
for its robustness in handling various satellite 
imagery types (Jin et al. 2019; Xu et al. 2020). 
Random Forest operates on the principle of 
Ensemble Learning, amalgamating multiple decision 
trees to improve the classification outcome. Each 
decision tree, constructed from a randomly sampled 
subset of the training data, contributes equally to 
the final decision through a process of majority 
voting on the classification of unlabelled samples.

Notably, the RF classifier is acclaimed for 
its swift training process, exceptional accuracy, 
resilience to outliers and resistance to overfitting, as 
highlighted in previous studies (Rodriguez-Galiano 
et al. 2012; Zhong et al. 2014). For the purposes 
of this study, the classifier was configured with 50 
trees, a decision aimed at optimising the trade-off 
between computational efficiency and classification 
precision. All other parameters within the Google 
Earth Engine (GEE) framework were maintained 
at their default settings, ensuring a standardised 
approach to the classification process.

Accuracy evaluation

The evaluation of precision stands as a pivotal 
aspect of the classification workflow, with accuracy 
assessment being integral to verifying the correct 
categorisation of land cover types from sampled 
pixels (Rwanga and Ndambuki 2017). This process 
encompasses a variety of techniques designed 
to measure the thematic accuracy of land cover 
classifications. Among these, the confusion matrix 
serves as a fundamental tool, facilitating the 
calculation of Overall Accuracy (OA). OA is derived 
by dividing the number of correctly classified pixels 
by the total pixel count, offering a straightforward 
metric of classification success (Foody 2010). This 
measure provides a quantifiable means to assess 
the effectiveness of the classification algorithm 
in accurately identifying land cover from satellite 
imagery.

Landscape pattern analysis

The LULC classes can be mapped and their 
structural properties computed with the use of 
landscape ecological concepts and metrics. The 
authors used the term landscape metrics and 
indices simultaneously. Quantifying LULC patch 
distribution patterns and geographical analysis 
is crucial to understanding the direction and 
magnitude of landscape changes. Landscape pattern 
analysis can provide valuable information regarding 
LULC change (Zhang et al. 2011; Huang and Song 
2016; Jaafari et al. 2016; Wang et al. 2018; Motlagh 
et al. 2020; Tariq et al. 2023; Tran et al. 2023). 
Forest fragmentation involves separating contiguous 
ecosystems into smaller sections called “patches” 
(Dutt and Kunz 2022). According to Forman (1995), 
a patch is defined as a relatively homogeneous area. 
The term “class” encompasses various categories of 
patches, including those defined by land cover/land 
use, habitat or vegetation types. Rutledge (2003) 
notes that fragmentation typically results in an 
increased number of patches, a reduction in the 
average size of these patches and an augmentation 
in the total length of their edges.

Fragmentation indices

Landscape indices are commonly categorised into 
two types: non-spatial and spatial (Gustafson 1998). 
Non-spatial indices quantify the composition of 
the landscape by measuring the classes of patches 
or the proportions of area they occupy. In contrast, 
spatial indices assess fragmentation by detailing 
the properties of these patches. Rutledge (2003) 
suggests that spatial indices are indicative of 
patch composition, shape and configuration. It 
is important to note that, strictly speaking, only 
patch composition is directly associated with 
fragmentation. However, the conventional concept 
of ecosystem fragmentation also encompasses 
the reduction of area and the additional 
indices previously discussed. The fundamental 
fragmentation landscape indices encompass 
composition, form and configuration. The selection 
of specific indices depends on authors’ discretion and 
the metrics’ applicability derived from prior studies. 
Composition indicators elucidate the foundational 
properties of fragmentation. Metrics such as the 
number of patches and mean patch area serve as 
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primary measures of fragmentation (McCarigal et 
al. 2002). However, these metrics are inadequate in 
capturing fragmentation comprehensively, as it also 
entails considerations of patch sizes.

Shape indices gauge patch complexity, with 
shapes like circles or squares featuring fewer 
edges and more core area (Forman 1995). Fractal 
dimension serves as another prominent metric for 
assessing shape and complexity (Krummel et al. 
1987; O’Neill et al. 1988; Kunz and Nienartowicz 
2007).

Patch configuration indices quantify the 
connectivity within landscape patches (Tischendorf 
and Fahrig 2000). The Shannon’s Diversity Index 
(SHDI) offers a more robust measure of abundance, 
while the number of patches is termed “richness” 
(Turner 1990). A Shannon diversity index of zero 
indicates uniform distribution of space among 
patches across the entire landscape. Traditionally, 
composition analysis has utilised the Shannon 
metric (Effati et al. 2021).

The metrics for this landscape study are listed 
in Table 1 and were calculated using Patch Analyst 
3.1 for Esri Software based on criteria from the 
literature. These metrics were determined by analysis 

of the vector data produced from the supervised 
classification both at the landscape level and the 
class level. For the landscape-level change metrics, 
the authors calculated the percentage value to plot 
all the matrices in the same graph for better visual 
interpretation.

Results and discussion

LULC change analysis

Windstorms can significantly alter the landscape 
through mechanisms such as wind damage, 
precipitation and storm surge (Dutt et al. 2024). 
Spatial variations resulting from a recorded 
derecho event have been distinctly observed within 
these categories (Dutt and Kunz 2022). Given the 
capabilities of Google Earth Engine, which includes 
a range of machine learning techniques, it was 
considered advantageous to evaluate whether this 
application programming interface could reliably 
compute forest fragmentation. Accordingly, imagery 

Name of metrics Definition Implication

Number of Patches 
(NP)

Total number of landscape patches, if 
Analyse by Landscape is selected, or 
the Number of Patches for each class, 
if Analyse by Class is selected.

Describes the fragmentation of the landscape, the higher 
the number, the more fragmentation.

Mean Patch Size 
(MPS)

Mean of all patch areas belonging to 
class i.

Defines landscape composition. Diversity index and 
mean patch size are inversely associated (Kumar et al. 
2006). As the number of classes grows, the mean patch 
size decreases at a landscape scale (Li et al. 2005).

Total Edge (TE)
Length of edges in the surface area; 
an edge is the boundary between two 
distinct types of land cover.

Fragmentation produces a greater edge (Rutledge 2003).

Edge Density (ED)
Total edge density index is a ratio of 
total edges (number of cells at patch 
boundary) to total area (total cells).

Total edge density represents the level of fragmentation, 
it begins to increase rapidly at the landscape scale, but 
the rate slows as the number of classes increases (Li et al. 
2005) species richness is sometimes positively correlated 
with edge density (Kumar et al. 2006).

Area Weighted 
Mean Patch 
Fractal Dimension 
(AWMPFD)

Shape complexity adjusted for shape 
size.

Rectangles, squares, and circles have fractal dimension 
1, whereas irregular shapes approach 2. Human 
perturbations reduce the landscape's fractal dimension.

Shannon's Diversity 
Index (SHDI)

Number of land cover and land 
use types in a landscape; when 
normalised, this index value ranges 
from 0 to 1.

A high score suggests a fairly equal proportion of land 
cover types. Low values signify that a single land cover 
category dominates.

Table 1. Description and implication of metrics
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from pre- (2017) and post-disaster (2018) scenarios 
was utilised. However, relying solely on a single 
database to observe these changes is inadequate 
for determining whether landscape metrics offer 
additional insights beyond conventional satellite 
imagery. Consequently, the authors employed 
supervised classification schemes to categorise 
Landsat images from 2017 and 2018, as illustrated 
in Figure 4. Post-classification, it is essential to 
assess and validate cartographic accuracy. Since the 
creation of ideal classification maps is unfeasible, 
a certain degree of error is anticipated. Thus, it 
is crucial to acknowledge the limitations imposed 
by user preferences, geographic regions or sensor 
specifications.

Figure 4 depicts land cover change trajectories in 
the Brusy Commune region. The trend analysis (Fig. 
5A) shows a 177.52% increase in damaged forest, 
followed by a 79.59% increase in bare land. The 
forest cover decreased by 25.16%. Pastures, built-
up and water had negligible change. Considering 
the two datasets, the predicted changes between 
the pre-disaster and post-disaster scenarios depict 
a  satisfactory image of a disturbed landscape 
affected by windstorms.

A detailed examination of the satellite image 
classifications before and after the 2017 disaster, 
depicted in Figure 3, reveals significant vegetation 
loss in the north-west and south-east sections of 
the study area consequent to the derecho event. 
This data also facilitates the efficient determination 
of the storm’s path. Notably, the region already 
exhibited signs of forest damage before the 2017 
event, traceable to a tornado in 2012, as evidenced 
by the pre-disaster classified map (left) where short 
straight lines inside the forest patches vividly depict 
regions of secondary forest growth.

Errors in the classification process were noted, 
with omission errors present in water, pastures 
and bare land, while commission errors affected 
settlements and forests. These misclassifications, 
typically not expected in real-world scenarios, did 
not influence the water or settlement classes despite 
the storm events, and were thus deemed negligible 
by the authors. Additionally, the apparent decline in 
built-up areas is hypothesised to result from human 
classification errors, where highways and smaller 
settlements were likely misidentified as bare land 
or damaged forest.

Given the Landsat dataset’s 30-m resolution, 
it is possible that machine learning techniques 

misclassified some open land as damaged forest or 
bare land. This scenario prompts a re-evaluation of 
the dataset’s reliability for forest change studies and 
raises the question of whether higher-resolution 
data should be utilised for more accurate forest 
management analyses. These annual assessments 
prove crucial for identifying the impacts of recurrent 
events.

Fragmentation analysis at class level

According to Jiao et al. (2012), there is 
a  significant linkage between land use and land 
cover (LULC) and landscape metrics. These 
metrics are instrumental in defining the landscape 
characteristics associated with LULC classes, as 
highlighted by Gudmann et al. (2020). Generally, 
the development of fragmentation indices mirrors 
advances in landscape ecology. This connection 
is succinctly captured in the title of Turner’s 
seminal 1989 review, “Landscape Ecology: The 
Effect of Pattern on Process”, which underscores 
the critical interplay between landscape patterns 
and ecological processes. The popularity and 
effectiveness of landscape pattern analysis have 
been enhanced by tools such as FRAGSTAT 
(McGarigal and Marks 1995) and Patch Analyst 
(Rempel et al. 1999). These tools have not 
only facilitated detailed measures of individual 
patches, classes and the entire landscape but their 
continued utilisation underscores their enduring 
relevance and utility. The analysis focuses on 
class-level changes across six dominant element 
types: damaged forest, forest, pastures, built-up 
area, barren land and water. Landscape metrics 
have yielded valuable insights into changes within 
the forest, particularly in terms of fragmentation, 
connectivity and heterogeneity. From 2017 to 
2018, the total number of patches (NP) increased 
from 21,375 to 29,579, marking a 38.38% rise. 
This significant increase is partly attributable to 
interventions in the damaged forest landscape, 
where heavy equipment used for debris removal 
and subsequent restoration activities created 
numerous small, open spaces. These areas may be 
mistakenly identified as built-up areas in satellite 
imagery. Additionally, the presence of sandy 
surfaces and remains of devastated vegetation can 
further exacerbate these misclassifications.
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C. Mean patch size

In addition, there was a notable decrease in the 
mean patch size (MPS) by 30.05%, as shown in 
Figure 5C. This reduction, along with the results 
from other indicators, suggests that the landscape 
became increasingly fragmented during the 
study period. Figure 5A summarises the metrics 
generated for the area per land cover class at the 
class level, highlighting the substantial changes 
within the landscape. Notably, the category of 
damaged forest exhibited the most significant 
alterations. Concurrently, the MPS for pastures and 
forest land in Brusy also declined (Fig. 5C). This 
reduction in MPS occurred alongside a decrease in 
the total class areas (CA) (Fig. 5A) and an increase 
in the number of patches (NP) and edge density 
(ED) (Figs. 5B and 5D). These changes collectively 
indicate that fragmentation was most pronounced 
in the pastures and forest lands.

Fragmentation analysis at landscape level

Planners and policymakers often address the adverse 
effects of landscape fragmentation, which can arise 
through two primary mechanisms as identified 

by Burel and Baudry (2003): the reduction in the 
overall size of a habitat and the division of a habitat 
class into smaller patches. This process may also 
coincide with an increase in the total amount of 
edge, further complicating landscape integrity (Yu 
and Ng 2006; Dutt et al. 2024).

In this study, fragmentation was assessed using 
several indices, including Mean Patch Size (MPS), 
Number of Patches (NP), Total Edge (TE) and Edge 
Density (ED), as shown in Figure 6. The pre-disaster 
scenario exhibited a landscape where MPS was at 
its maximum, while TE, ED and NP were relatively 
low, indicating minimal fragmentation. In contrast, 
the post-disaster scenario showed a significant 
reversal in these metrics, clearly signalling increased 
landscape fragmentation.

Furthermore, measuring landscape heterogeneity, 
which encompasses patch variety and spatial 
complexity, is crucial for understanding landscape 
evolution (Burel and Baudry 2003). Despite the 
storm, Shannon’s Diversity Index (SHDI), calculated 
to assess heterogeneity, showed no significant 
changes between pre- (1.64) and post-disaster (1.62) 
scenarios, as presented in Figure 6. This stability 
suggests that no substantial shifts in land cover types 
occurred within the short study period. The similar 

Fig. 5. Selected landscape indices: A. class area (CA), B. number of patches (NP), C. mean patch size (MPS), and D. edge density 
(ED)
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values of this index imply that while the structural 
dominance of land cover categories changed, it did 
not significantly impact overall diversity.

In general, the areas that remained forested 
despite the storm event are located at a considerable 
distance from roads and settlements, as well as from 
pastures (Fig. 4). This shows that there are many 
complex and interconnected processes behind 
recent land cover change.

Conclusion

The patterns found in the landscape as a result of 
our research show a direct relationship between 
land use and land cover. Within the research area, 
forests are generally located at a distance from 
human populations, roads, and pastures. This 
configuration may indicate the vulnerability of 
vegetation that remains closer to open lands and 
built-up structures, a finding consistent with what 
Dutt et al. (2024) identified in their study on forest 
fragmentation susceptibility. The methods employed 
within the study combine satellite images with 
landscape metrics, allowing us to assess and analyse 
changes in land use patterns in the study region. The 
utilisation of machine learning ensemble methods of 
stacked images covering the entire summer season 

Fig. 6. Fragmentation and diversity analysis at landscape level

of 2017 and 2018 with relevant metrics enables 
a deep investigation of dynamic landscapes that 
would have otherwise appeared static using single-
date land cover analysis approaches. Although 
remote sensing is increasingly used to research land 
cover change (Feng et al. 2013; Gilbertson et al. 
2017; Gin et al. 2019), few studies relate land cover 
change trajectories using multiple-dated imageries 
with landscape patterns.

The alleged lack of interpretability of numerous 
landscape metrics has always been a key issue 
(Haines-Young and Chopping 1996) in estimating 
which metrics are the most appropriate to which 
type of landscape and spatial resolution. Although 
this technique has also been applied to imagery with 
a medium resolution, the objective has remained the 
same: to investigate an area of interest and gather 
information about the texture of an image. The 
methodologies utilised here provide information on 
forest disturbance in the study area; spatial analysis 
of forest fragmentation at the class and landscape 
levels; land cover-change analysis through the 
incorporation of data from multiple images; and 
comparison of spatial patterns before and after the 
storm event. It is also worth noting that medium-
resolution Landsat data are sufficient to determine 
forest fragmentation in this region.

This research blends environmental sciences and 
landscape ecology with remote sensing, GIS and 
machine learning techniques bringing us a  step 
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forward from the past forest disturbance studies. 
Further integration of methodologies and interpre-
tations across disciplines is required if we are to 
fully comprehend and consequently mitigate the ef-
fects of global and local change on the environment.

Future studies should: (1) look into non-para-
metric classifiers like neural networks and decision 
trees that might improve LULC classification accu-
racy; (2) analyse specified landscape metrics using 
more scales, such as 4 m, 10 m, 90 m, 250 m, 500 m 
and 1000 m; (3) establish the scale influence on sur-
face processes and LULC changes; (4) assess LULC 
changes at different spatial and temporal scales us-
ing efficient feature algorithms from various types 
of sensors; and (5) further integrate GIS and remote 
sensing and expert systems in detecting, visualising 
and monitoring LULC changes in disturbed forest 
environments.
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Forest ecosystem on the edge: Mapping forest fragmentation susceptibility 
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A B S T R A C T   

Forest ecosystems, vital for maintaining global biodiversity and ecological balance, are increasingly threatened 
by fragmentation. This study addresses the critical issue in the Tuchola Forest of Poland, examining the effects of 
natural and human factors on forest fragmentation. Our objective was to identify the most suitable dataset for 
monitoring forest fragmentation from 2015 to 2020, ascertain the primary drivers of fragmentation, and map the 
areas at high risk. Utilizing the PALSAR (25 m resolution) and Dynamic World (10 m resolution) datasets, we 
discovered PALSAR’s enhanced ability to detect changes in forest structure, particularly evident after a signifi
cant windstorm in 2017. This dataset proved crucial in highlighting the escalating trend of forest fragmentation, 
reinforcing its importance for environmental monitoring and policy formulation. Our analysis identified key 
factors influencing fragmentation, such as proximity to croplands, tree height and age, wind speed, and vege
tation water content, with areas near croplands and having younger, shorter trees being most susceptible. 
Employing a Weight-of-Evidence (WOE) Bayesian modeling technique, we mapped forest fragmentation sus
ceptibility, demonstrating our methodology’s effectiveness through high accuracy validation (AUC of 0.82 and 
Kappa Index of 0.68). Our innovative approach in mapping susceptibility to fragmentation, especially after 
extreme weather events, marks a pioneering contribution in Poland. This research advances the understanding of 
forest fragmentation dynamics and offers a scalable model for global application, emphasizing the urgent need 
for targeted conservation strategies to preserve the integrity of forest ecosystems amidst climatic risk and 
anthropogenic pressures.   

1. Introduction 

Forest fragmentation is a major concern in landscape ecology, 
significantly impacting the structure and functionality of forest ecosys
tems. This phenomenon not only threatens biodiversity, including 
wildlife habitats, water and nutrient cycles, and ecosystem resilience, 
but also fosters the creation of edge zones (Forman, 1996; Fischer et al., 
2021). These zones escalate carbon emissions through increased tree 
mortality, with studies indicating that 70 % of remaining forests are 
within 1 km of an edge, thus highly susceptible to fragmentation’s 
detrimental effects. These effects include a reduction in biodiversity by 
13 to 75 % and impairment of ecosystem functions, notably biomass and 
nutrient cycles (Haddad et al., 2015; Brinck et al., 2017). 

The complexity of fragmentation’s impact extends to species in
teractions, disproportionately affecting mutualisms like pollination and 
seed dispersal more than antagonistic interactions. Such differential 

impacts necessitate a nuanced understanding of fragmentation’s multi
faceted effects on species persistence, distribution, and ecological in
teractions (Magrach et al., 2014). The scale-dependent nature of 
fragmentation patterns further demands a multi-scaled analytical 
approach, highlighting the urgency for conservation and restoration 
efforts to enhance landscape connectivity and mitigate extinction rates 
(Forman, 1996; Taubert et al., 2018; Haddad et al., 2015). 

Technological advancements have revolutionized our ability to 
analyze forest fragmentation. Tools like FRAGSTATS, Patch Analyst for 
ArcGIS, and the GUIDOS Toolbox, with its Morphological Spatial Pattern 
Analysis (MSPA), provide sophisticated methodologies for assessing 
landscape connectivity and quantifying spatial heterogeneity (McGar
igal, Cushman, & Ene, 2012; Rempel et al., 2012; Soille, 2003; Vogt 
et al., 2007; Vogt & Riitters, 2017). Yet, the effectiveness of these tools is 
contingent upon selecting an appropriate spatial resolution. This deci
sion critically influences the detection and characterization of forest 
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versus non-forest elements, potentially altering perceived spatial pat
terns significantly when comparing high (0.5 m) and low (30 m) reso
lution data (Wickham & Riitters, 2019). As highlighted by Fynn and 
Campbell (2019), the choice between coarse and fine-resolution imag
ery not only affects the availability and cost but also the accuracy of 
fragmentation metrics. Such discernment in resolution selection is 
essential to ensure the ecological validity of fragmentation studies, 
particularly in complex landscapes where the distinction between 
vegetation and non-vegetation can be subtle yet significant. 

The study contrasts the use of PALSAR-2 Global forest/non-forest 
maps, utilizing SAR radar with a 25 m resolution, against Dynamic 
World’s forest class, which employs 10 m optical Sentinel-2 imagery. 
This comparison aims to evaluate their respective efficacies in moni
toring and analyzing forest ecosystems. PALSAR-2′s SAR radar is 
instrumental in providing robust measurements of forest structure and 
detecting disturbances under challenging climatic conditions (Atkins 
et al., 2023; Balling et al., 2023), while Dynamic World’s use of Sentinel- 
2 imagery offers detailed insights into environmental changes, sup
porting effective management and conservation efforts (Brown et al., 
2022). This comparative analysis sheds light on the strengths and limi
tations of SAR and optical imagery in capturing forest fragmentation 
dynamics, aiming to enhance our understanding of these complex 
processes. 

Despite a considerable volume of research on forest fragmentation 
within Poland—encompassing historical evaluations of habitat distri
bution (Mazgajski et al., 2010), implications for timber resources and 
carbon sequestration (Budniak & Zięba, 2022), and the socio-economic 
drivers of forest structural changes (Żmihorski et al., 2009; Szramka & 
Adamowicz, 2020)—focused investigations into the Tuchola Forest 
Biosphere Reserve’s (TFBR) vulnerability to fragmentation are notably 

lacking. Specifically, there have been no studies investigating the size 
and dynamics of edge boundaries within the TFBR, a gap this study aims 
to address. The devastating windstorm of 2017 accentuates the TFBR’s 
vulnerability, emphasizing the need for focused research on its frag
mentation dynamics. This study hypothesizes that storm disturbances, 
coupled with escalating demands for land conversion to agriculture, 
predominantly drive fragmentation in the TFBR. 

In this research, we aim to rigorously evaluate the effectiveness of 
two distinct datasets—the microwave PALSAR-2 Global forest/non- 
forest imagery, and the optical imagery from sentinel’s collection of 
Dynamic World, in monitoring forest fragmentation within Tuchola 
Forest from 2015 to 2020. Our primary objective is to ascertain which 
dataset provides the most accurate and detailed representation of frag
mented patches during this period. Furthermore, we intend to determine 
the principal factors contributing to forest fragmentation, particularly 
focusing on the roles of wind disturbances and proximity to cropland 
and bareland, as identified in significant prior studies (Forzieri et al., 
2020; Jung et al., 2016). Through this analysis, we aim not only to 
enhance our understanding of fragmentation dynamics but also to map 
the region’s susceptibility to ongoing and future fragmentation. This 
research is anticipated to offer valuable insights for more effective 
monitoring and management of forest ecosystems, thereby contributing 
significantly to the discourse on forest ecology and conservation. 

1.1. Study Area: Tuchola Forest, Poland 

The Tuchola Forest Biosphere Reserve (TFBR), nestled within the 
greater Tuchola Forest in northern Poland, stands out for its exceptional 
biodiversity and a mix of broadleaf and coniferous forests (Nienartowicz 
et al., 2010). Covering an expanse of 3,195 square kilometers, (see 

Fig. 1. The localization of the study area – Tuchola Forest Biosphere Resereve.  
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Fig. 1) this largely forested biosphere reserve plays a pivotal role in the 
UNESCO Man and Biosphere Programme, aiming at ecosystem conser
vation while promoting sustainable development (Nienartowicz & Kunz, 
2020; Nienartowicz et al., 2010). Home to over 1,337 species of vascular 
plants and 1,250 phanerogams, the TFBR’s ecological importance is 
highlighted by its rich biodiversity (Nienartowicz et al., 2010). 

Historical research by Kunz (2012) indicates a significant increase in 
forest area within Western Pomerania, which includes the Tuchola 
Forest, from 16 % in 1618 to 37 % in the early 21st century. This reflects 
a transition from extensive deforestation due to logging and agriculture 
to systematic reforestation efforts since the 19th century. However, a 
2017 storm notably impacted the forest’s spatial structure, illustrating 
the dynamic nature of its landscape (Kunz, 2006; Dutt & Kunz, 2024). 

The TFBR, encompassing 22 communes within two voivodeships, is 
recognized as Poland’s most extensive UNESCO-designated biosphere 
reserve, predominantly covered by woodland, accounting for over 86 % 
of its area. It’s strategically segmented into core, buffer, and transition 
zones, each dedicated to distinct conservation objectives and sustainable 
development initiatives. This zoning not only conserves a variety of 
ecosystems but also promotes ecological education, aligning with prin
ciples of sustainable development (Krawiec et al., 2022; Nienartowicz & 
Kunz, 2020). 

The TFBR’s landscape, shaped by its history and geological features, 
reflects the remnants of the ancient Tuchola Primeval Forest, with a 
composition that has evolved due to post-glacial climatic changes and 
human activities. Despite these changes, the reserve remains a sanctuary 
for rare and protected species, with its predominant forest types and 
diverse flora including a rich lichen community (Boiński, 1993; Boiński 
& Boińska, 2020). 

Recent climatological research within the TFBR has revealed an 
increasing vulnerability to extreme weather events, including severe 
convective windstorms (Pacey et al., 2021) and whirlwinds that have 
caused significant forest destruction (Chojnacka-Ożga & Ożga, 2018). 
The 2017 windstorm, documented by Taszarek et al. (2019) and 
Chmielewski et al. (2020), highlights the severe impact of such climatic 
extremes, causing unprecedented forest damage and emphasizing the 
need for integrated climatic challenges into conservation strategies. 

Acknowledging the historical context of deforestation and the 
ongoing challenges posed by climatic extremes, this study emphasizes 
the complex interplay between climate change and forest conservation 
efforts in the TFBR. The inclusion of recent climatic data and extreme 
weather event analyses offers a comprehensive overview, enhancing the 
understanding of the Tuchola Forest Biosphere Reserve’s ecological 
dynamics and conservation priorities. 

2. Data sources and processing 

2.1. Rationale for time frame selection (2015–2020) 

In selecting the analysis period of 2015–2020 for our study, we 
aimed to capture the dynamics of forest fragmentation both before and 
after a significant meteorological event: a derecho. A derecho is a 
widespread, long-lived windstorm that is associated with a band of 
rapidly moving showers or thunderstorms. Characterized by its intense 
straight-line winds, a derecho can cause substantial damage to land
scapes, particularly forests, over a wide area (Chmielewski et al., 2020). 

The rationale for focusing on this period is underpinned by the 
occurrence of one of Poland’s most destructive storms on August 11, 
2017. This derecho, as detailed by Chmielewski et al. (2020) and Tas
zarek et al. (2019), represents a catastrophic meteorological event in 
Poland’s history. Originating as a mesoscale convective system on the 
border between the Czech Republic and Poland, it ravaged several 
provinces, causing unprecedented forest damage. Wind speeds during 
this event reached up to 130 km/h, and in some areas, they exceeded 
150 km/h (Taszarek et al., 2019). The storm resulted in the loss of 
approximately 79,700 ha of forest, blocked and damaged over 1100 km 

of local and municipal roads, and left over 500,000 consumers without 
electricity (Chmielewski et al., 2020). 

The period of 2015–2020 is crucial for understanding the scale of 
forest fragmentation attributable to such an extreme event. Prior to the 
derecho, the forests in Poland were already experiencing fragmentation; 
however, this six-year span provides a unique opportunity to quantify 
the magnitude of change that followed. Analyzing forest fragmentation 
in this timeframe not only allows for a pioneering investigation into the 
effects of the derecho but also offers a historic record of the fragmen
tation process. Such a record is invaluable in creating susceptibility 
maps, aiding in the prediction and management of future forest frag
mentation under similar extreme events. 

2.2. Remote sensing data 

This study utilized a combination of synthetic aperture radar (SAR) 
and near-real-time (NRT) Land Use/Land Cover (LULC) datasets to 
assess forest/non-forest dynamics over six years, from 2015 to 2020. 
Two primary datasets, representing microwave and optical remote 
sensing technologies, were incorporated: the Advanced Land Observing 
Satellite (ALOS) Phased Array type L-band Synthetic Aperture Radar 
(PALSAR-2) for microwave remote sensing, and the Sentinel-2 L1C 
collection from the Dynamic World dataset for optical remote sensing. 
Comprehensive forest survey data, managed by the Bureau of Geodesy 
and Forest Management, were obtained from the Bank Danych Lasach 
(Forest Data Bank, BDL). This dataset encompasses detailed information 
on forests administered by the State Forests National Forests Holding, 
acquired through the BDL portal for specific forest inspectorates within 
the Regional Directorates of the State Forests in Gdańsk and Toruń. 

The analysis of wind speed data sourced from the European Severe 
Storms Laboratory (ESSL) and the European Severe Weather Database 
(ESWD) (Dotzek et al., 2009) involved examining reports from 2015 to 
2020 on severe wind gust events. The absence of specific wind speed 
measurements in some ESWD reports necessitated supplementary data 
from ERA5 reanalyses by the European Centre for Medium-Range 
Weather Forecasts (ECMWF) (Hersbach et al., 2020). This supplemen
tary data was downscaled and integrated with the ESWD reports to es
timate wind speeds at relevant locations within the study area (Sulik & 
Kejna, 2020). The approach facilitated a detailed examination of the 
climatic factors influencing forest dynamics, emphasizing the impact of 
severe wind gusts (Taszarek et al., 2019). 

2.2.1. PALSAR-2 Forest/Non-Forest map 
The PALSAR-2 datasets, utilizing Synthetic Aperture Radar (SAR) 

technology aboard the ALOS-2 satellite, provide critical data for envi
ronmental monitoring through microwave emissions and reflections. 
This SAR technology captures high-quality images under all weather 
conditions, day and night, by leveraging L-band microwaves capable of 
penetrating vegetation to some extent. The global forest/non-forest map 
is derived from SAR imagery at a 25 m resolution, the finest resolution 
available for these datasets, which classifies pixels based on backscatter 
intensity. Pixels with strong backscatter are labeled as ’forest,’ and those 
with low backscatter as ’non-forest,’ in line with the Food and Agri
culture Organization’s (FAO) definition of forest. This definition in
cludes natural forest areas larger than 0.5 ha with a canopy cover of over 
10 %. 

To accommodate the study period from 2015 to 2020, data from two 
subsets were utilized. Initially, the Global 3-class PALSAR dataset 
(JAXA/ALOS/PALSAR/YEARLY/FNF) covered 2015 to 2017, providing 
classifications of forest, non-forest, and water. Subsequently, for 2018 to 
2020, the more advanced Global 4-class PALSAR-2 dataset (JAXA/ 
ALOS/PALSAR/YEARLY/FNF4) offered detailed classifications 
including dense forest, non-dense forest, non-forest, and water (Shimada 
et al., 2014). This approach aligns with the advancements in SAR ca
pabilities, as highlighted by Awange & Kiema (2013), to overcome 
typical remote sensing limitations like cloud cover and limited daylight, 
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ensuring consistent and reliable environmental monitoring. 

2.2.2. Dynamic World dataset forest cover map 
In tandem with the SAR-based PALSAR-2 analysis, this study utilized 

the Dynamic World V1 dataset from Google Earth Engine (GOOGLE/ 
DYNAMICWORLD/V1). Spanning from 2015 to the present, this dataset 
offers a near-real-time Land Use/Land Cover (LULC) classification at an 
unprecedented 10 m resolution (Brown et al., 2022), the highest avail
able for such global monitoring applications. The study by Louzada et al. 
(2023) illustrates the effectiveness of integrating SAR with optical 
remote sensing data in environmental monitoring. For this study, the 
’trees’ band within the Dynamic World dataset was selected to identify 
forested areas, applying a threshold on the ’trees’ probability band 
(greater than 0.6) to delineate forested regions from non-forest areas. 
This threshold was chosen based on the dataset’s guidance to select 
pixels with high confidence in class prediction, aligning with the 
observed overall agreement of 73.8 % between Dynamic World model 
outputs and expert labels for high-confidence classes such as trees, 
indicating a robust delineation of forested versus non-forested areas 
(Brown et al., 2022). This approach enabled the examination of forest 
dynamics within the specified region of interest (ROI), leveraging the 
Dynamic World’s capability to provide current and detailed LULC data, 
and complementing the SAR-based observations. 

2.3. Analysis of forest fragmentation 

Morphological Spatial Pattern Analysis (MSPA), a breakthrough in 
landscape ecology, offers a comprehensive approach to assessing land
scape connectivity by studying the pixel arrangements (Soille, 2003; 
Vogt et al., 2007). The emergence of the GUIDOS Toolbox, with its user- 
friendly interface and broad applicability in environmental analyses, 
represents a further advancement in this field (Vogt & Riitters, 2017). 
Unlike traditional tools, GUIDOS is uniquely equipped to quantify 
spatial heterogeneity, a critical aspect in forest fragmentation studies, 
through sophisticated algorithms that provide a more nuanced under
standing of fragmentation impacts. 

In this study, we employed the GUIDOS Toolbox to assess forest 
fragmentation. This choice was motivated by the Toolbox’s exceptional 
capability in spatial data analysis and land cover classification. Tradi
tional methods, such as those proposed by Musick and Grover (1991) 
and Forman (1996), often relied on landscape-level concepts like patch- 
corridor-matrix or adjacency at the pixel level, which, while informa
tive, lacked the ability to provide quantitative measures of fragmenta
tion’s degree or variation (Vogt, 2023). Moreover, these methods 
struggled in large-area assessments due to challenges in handling a vast 
number of patches and accurately representing patch sizes and shapes 
(Riitters et al., 2002; Heilman et al., 2002). In contrast, GUIDOS offers a 
robust methodology, proven in diverse research areas ranging from 
biodiversity impact studies to climate change effects on habitats (Rincón 
et al., 2022). Within this framework, fragmentation classes are defined 
based on the connectivity and adjacency of forest pixels, with special 
emphasis on categories like ’rare’ and ’patchy’, which indicate intense 
fragmentation and have significant implications for biodiversity and 
ecosystem health (Heilman et al., 2002). This approach not only reso
nates with Chavan et al. (2018) in tracking core area reduction but also 
aligns with Batar et al. (2021) in emphasizing the importance of un
derstanding fragmentation drivers. Furthermore, our study leverages 
multi-temporal land cover data to analyze forest fragmentation, show
casing the GUIDOS Toolbox’s versatility in a wide array of environ
mental assessments, including landslide risks and urban planning 
(Arrogante-Funes et al., 2021; Lin et al., 2021). 

3. Predictive variables for forest fragmentation 

To develop effective strategies for mitigating forest fragmentation 
risks, it’s crucial to understand their predictive variables. Given the 

predominantly rural nature of the study area, this research focuses on 
the natural causes of fragmentation, acknowledging the limited yet not 
negligible human influence. The spatial representation of the ecological 
and geographical variables depicted in Fig. 2 serves as the basis for 
analyzing the factors contributing to forest fragmentation within the 
Tuchola Forest Biosphere Reserve (TFBR), Poland. The variables include 
wind speed, vegetation water content, tree age distribution, tree height, 
slope gradient, and distances from cropland, bare land, and roads 
(Fig. 2). The specific datasets from which these variables were derived 
are detailed in Table 1, which follows this figure. This table provides a 
comprehensive overview of the sources utilized for each factor. 

3.1. Physical factors 

Forest ecosystems’ resilience and stability are significantly influ
enced by their physical environment. Factors such as slope angle play a 
crucial role in determining sunlight exposure and wind dynamics 
(Doane et al., 2023), which can heighten vulnerability to windthrow. 
The concept of forest structural diversity, which encompasses the spatial 
distribution of trees, species diversity, and variations in tree dimensions 
(size and height), is essential for understanding the impacts of wind on 
forest ecosystems. Forests with a higher degree of structural diversity, 
characterized by a mix of tree heights and species, can disrupt wind flow 
and potentially reduce the severity of wind damage, thereby influencing 
fragmentation patterns (Li et al., 2023). Furthermore, forest age and 
composition significantly affect fragmentation. Young and old-growth 
forests exhibit distinct fragmentation characteristics based on their 
composition and age structure, with older and taller trees, especially in 
conifer forests, being more susceptible to wind damage (Wulder et al., 
2009). Severe wind events initiate a two-stage process of damage 
propagation in forests, starting with critical downward gusts and esca
lating as damaged areas expand (Dupont et al., 2015). Additionally, the 
study by Konings et al. (2021) on vegetation water content provides 
insights into how moisture levels impact forest resilience to environ
mental stressors. This comprehensive view highlights the importance of 
considering structural diversity and the physical factors contributing to 
fragmentation to enhance our understanding of forest ecosystem 
dynamics. 

3.2. Human factors 

Human activities significantly influence forest fragmentation, even 
in predominantly natural study areas (Haddad et al., 2015). The 
expansion of roads (Newman et al., 2014) and the introduction of 
croplands lead to land conversion and degradation, thereby disrupting 
forest continuity and intensifying fragmentation. Edge effects, where 
forests border non-forest areas, result in ecological consequences such as 
increased carbon emissions, as noted by Scanes (2018) and supported by 
findings from Haddad et al. (2015) and Mengist et al. (2022). Further
more, Mitchell et al. (2014) explore how agricultural expansion and 
forest fragmentation impact ecosystem services, revealing the critical 
role of forest fragments in sustaining these services across agricultural 
landscapes. These studies collectively highlight the growing importance 
of addressing human factors in forest fragmentation and stress the need 
for managing habitat fragmentation and landscape structure to ensure 
the provision of multiple ecosystem services. 

4. Methodology 

The methodological schematic diagram depicted in Fig. 3, shows the 
workflow that had been carried out, it is further explained in the sub
sections below. 

4.1. Image reclassification for fragmentation analysis 

The initial step of our research entailed deriving vegetation cover 
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maps from 2015 to 2020, as elaborated in Section 2.1. This phase uti
lized the PALSAR-2 Forest/Non-Forest Map in conjunction with the 
Dynamic World dataset, integrating Synthetic Aperture Radar (SAR) 
imagery analysis with near-real-time Land Use/Land Cover (LULC) data. 
This integration not only enhanced the accuracy of our vegetation 
mapping but also provided a comprehensive understanding of vegeta
tive dynamics over the years, laying a solid foundation for our research. 

Subsequently, the data from both datasets underwent a detailed 
reclassification into binary raster maps, a pivotal step for differentiating 
forest from non-forest areas. This reclassification was facilitated using 
Google Earth Engine (GEE), where the PALSAR-2 dataset, for the years 
2015 to 2017, was reclassified with ’1′ representing non-forest areas 
(including water bodies) and ’2′ for forest areas. For data post-2017, the 
PALSAR data, now enriched with four bands, underwent a similar 
reclassification, merging Dense Forest and Non-dense Forest into a sin
gle Forest category (’2′), and Non-Forest and Water categories into a 
Non-Forest category (’1′). The Dynamic World dataset was also 

reclassified, applying a forest mask to the ’trees’ band to designate forest 
areas as ’2′ and non-forest areas as ’1′, covering various land covers such 
as ’water’, ’grass’, ’flooded_vegetation’, ’crops’, ’shrub_and_scrub’, 
’built’, ’bare’, and ’snow_and_ice’. This methodological approach, using 
GEE for both datasets, enabled a nuanced analysis of different land 
covers, vital for accurately delineating forested from non-forested 
regions. 

To standardize the projections and resolution, the PALSAR dataset 
was downloaded with a spatial resolution of 25 m and reprojected to the 
ETRS 1989 Transverse Mercator (EPSG:2180) coordinate system. Simi
larly, the Dynamic World data, with a finer scale of 10 m, was processed. 
Both datasets were then reclassified in GIS tools to uniform dimensions 
of 2550 by 2693 pixels and a cell size of 30x30 meters, ensuring con
sistency in spatial analysis across all images. 

4.2. Forest area Density (FAD) analysis 

The GUIDOS Toolbox (GTB) was pivotal in our study for analyzing 
forest fragmentation over six years using comprehensive datasets. 
Employing the Forest Area Density (FAD) function within GTB, which 
utilizes a per-pixel moving window technique, allowed for an assess
ment across variable observational scales: 7x7, 13x13, 27x27, 81x81, 
and 243x243 pixels. This multi-scalar analysis provided a nuanced view 
of forest structure and dynamics, integral to decoding ecosystem com
plexities (Vogt, 2023; Riitters et al., 2002, 2012a, b). 

Our analysis specifically concentrated on the ’Rare’ and ’Patchy’ 
categories within the six-class categorization of Forest Area Density 
(FAD). These classes were chosen due to their representation of the most 
fragmented and disconnected forest zones. The ’Rare’ class denotes 
areas with less than 10 % forest cover, while ’Patchy’ refers to regions 
having 10 % to less than 40 % forest cover. The selection of these two 
classes was instrumental in providing evidence of forest fragmentation 

Fig. 2. Spatial representation of various ecological and geographical variables within the Tuchola Forest Biosphere Reserve (TFBR), Poland. Panels display (a) wind 
speed, (b) vegetation water content, (c) tree age distribution, (d) tree height, (e) slope gradient, (f) distance from cropland, (g) distance from bare land, and (h) 
distance from roads, derived from the different data source as mentioned in table 1. 

Table 1 
Data sources of predictive variables.  

Factors Source 

Wind speed ESSL, ESWD, ERA5 (ECMWF) 
Vegetation water 

content 
SMAP Enhanced L3 Radiometer Global and Polar Grid Daily 
9 km EASE-Grid Soil Moisture, Version 5 

Tree age Bank Danych o Lasach (BDL) 2017 
Tree height Global Land Cover Facility, University of Maryland 
Slope gradient USGS SRTM DEM 
Distance from 

cropland 
Dynamic World image collection (2015–2020 average) 

Distance from bare 
land 

Dynamic World image collection (2015–2020 average) 

Distance from roads Global Roads Inventory Project - GRIP - version 4  
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in our model, highlighting areas significantly distanced from the core 
forest regions. This focus allowed for a detailed examination of the 
extent and impact of forest fragmentation, a key aspect of our study. 

4.3. Predictive variables through multicollinearity analysis 

In our study on forest fragmentation, we initially considered a 
diverse set of fifteen variables: tree species, aspect, tree age, forest type, 
elevation, slope, vegetation water content, soil type, tree height in 2015 
and 2020, distance from road, cropland, bareland, forest, and wind 
speed. However, upon a detailed examination using both a Correlation 
Coefficient Matrix and the Variance Inflation Factor (VIF), we identified 
multicollinearity issues that could lead to unreliable statistical in
ferences, as they contravene the assumption of independent regressors 
(O’Brien, 2007). Notably, variables such as tree species, aspect, and 
forest type displayed linear relationships with other factors, indicating 
redundancy, and were thus excluded. 

To enhance the precision of our model, we embarked on a rigorous 
exclusion process, following the guidelines recommended by García- 
Orozco et al. (2023) and incorporating fuzzy logic principles akin to 
those proposed by Omar et al. (2022). This refinement process resulted 
in the selection of eight independent factors deemed crucial for our 
model, as illustrated in Fig. 4: wind speed, vegetation water content, tree 
age, tree height in 2020, slope, distance from cropland, distance from 
bareland, and distance from roads. These variables were chosen due to 
their low correlation matrix scores and significant relevance to the 
fragmentation patterns observed from 2015 to 2020. During this period, 
numerous areas previously classified as patchy forest transitioned to 
bareland or cropland, pinpointing the importance of these selected 
factors in reflecting the current landscape conditions. 

This methodical selection process bolsters the robustness of our 

model by mitigating multicollinearity, a crucial aspect for ensuring the 
validity of regression-based predictions. Our approach aligns with the 
best practices in ecological modeling, aimed at providing reliable data to 
support informed forest management and conservation strategies. The 
final selection of variables represents a deliberate balance between 
comprehensive data inclusion and statistical integrity, recognizing that 
each factor independently contributes to our understanding of forest 
fragmentation dynamics. By refining the variables, our model’s predic
tive accuracy for areas at risk is significantly enhanced, which is vital for 
developing targeted conservation interventions. Our methodology 
showcases the adaptability required in ecological studies, ensuring that 
our conclusions are grounded in statistically sound practices and lay a 
solid foundation for ongoing and future forest management efforts. 

4.4. Construction of the forest fragmentation susceptibility map 

The methodical extraction of patchy areas, as discussed in section 
4.2, was crucial for the construction of the Forest Fragmentation Sus
ceptibility Map. This process involved correlating the eight variables 
detailed in Fig. 2—wind speed, vegetation water content, tree age, tree 
height in 2020, slope, distance from cropland, distance from bareland, 
and distance from roads—with these patchy zones (Fig. 7). This step was 
fundamental in providing an incisive investigation into the association 
between environmental factors and fragmentation susceptibility. By 
employing the weight-of-evidence approach, detailed in the subsequent 
section, our study precisely evaluated the susceptibility of these forested 
areas to fragmentation. This process enhanced our understanding of 
forest fragmentation dynamics, laying the groundwork for future dis
cussions on the implications of our findings. 

Fig. 3. Comprehensive methodological workflow. This figure presents the detailed methodological workflow employed in the study, starting from the derivation of 
vegetation cover maps using PALSAR-2 and Dynamic World datasets for the period 2015 to 2020. It illustrates the step-by-step process of image reclassification for 
forest/non-forest differentiation, forest area density (FAD) analysis focusing on ’Rare’ and ’Patchy’ fragmentation classes, multicollinearity analysis to refine pre
dictive variables, and the application of the weight of evidence (WOE) method for mapping forest fragmentation susceptibility. Validation using the relative 
operating characteristic (ROC) curve method and Cohen’s Kappa Index is included to confirm the robustness of the model. 
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4.5. Weight of evidence (WOE) method 

In our study, we utilize the Weight-of-Evidence (WOE) method, a 
Bayesian modeling technique, to map forest fragmentation susceptibil
ity. This quantitative approach, initially developed in the field of min
eral exploration (Bonham-Carter, 1990), has been widely applied in 
ecological studies due to its effectiveness in evaluating spatial associa
tions between variables and observed phenomena. 

We calculate the positive (W + ) and negative weights (W − ) for 
each variable class related to patch forests, using the method refined by 
Sterlacchini et al. (2011). These weights are determined using the 
following formulas: 

W+ = loge

(
P(B|D)

P(B|D)

)

W − = loge

(
P(B|D)

P(B|D)

)

Here, P denotes probability, B the presence of a class of patch forest 
predictive variable, ‾B its absence, D the presence of a patch forest, and 
‾D the absence of a patch forest (Fan et al., 2011). 

The contrast between these weights, known as the weight contrast 
(C), is defined as: 

C = W+ − W −

This measure reflects the spatial association strength between the vari
ables and patch forests. To refine our analysis, we calculate the stan
dardized weight contrast (Wstd) as the ratio of C to its standard 
deviation, S(C): 

For the standard deviation of the weight contrast S(C): 

S(C) =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
S2(W+) + S2(W − )

√

For the variances S 2 (W +) and S 2 (W − ): 

S2(W+) =
1

NB∩D
+

1
NB∩D  

S2(W − ) =
1

NB∩D
+

1
NB∩D  

The standardized weight contrast (Wstd) is then calculated: 

Wstd =
C

S(C)

A positive Wstd value indicates a factor’s favourable influence on forest 
fragmentation, while a negative value suggests an unfavourable influ
ence. A value close to zero indicates a minimal relation to forest frag
mentation. Finally, the Forest Fragmentation Susceptibility Index (FFSI) 
is derived by summing the standardized weight contrasts (Wstd) for each 
variable: 

FFSI =
∑

Wstd  

This detailed formulation of the WOE method, incorporating rigorous 
statistical analysis, ensures a robust approach for understanding and 
predicting patterns of forest fragmentation. This calculation methodol
ogy is consistent with the approach described by Batar et al. (2021). Our 
application aligns with the principles of objective and transparent sci
entific inquiry, as advocated in broader ecological studies (Dekant & 

Fig. 4. Correlation matrix displaying Pearson correlation coefficients for eight predictive variables. The variables are ordered as follows: distance from bareland, 
distance from cropland, distance from roads, tree height of 2020, slope, vegetation water content, tree age, and wind speed. High values represent higher correlation 
in red and vice versa. 
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Bridges, 2016). 

4.6. Validation of the forest fragmentation susceptibility map 

The validation of predictive models is a fundamental step in 
ecological research, particularly when addressing critical issues such as 
forest fragmentation. Given the complexity of forest ecosystems and the 
multifaceted influences leading to fragmentation, our approach in
tegrates both the Relative Operating Characteristic (ROC) curve method 
and Cohen’s Kappa Index to offer a comprehensive evaluation of the 
Forest Fragmentation Susceptibility Map. 

4.6.1. Validation by ROC method 
To validate our forest fragmentation susceptibility map, we 

employed the relative operating characteristic (ROC) curve method. 
This standard approach evaluates model performance by analyzing the 
area under the curve (AUC), which assesses a classifier’s overall ranking 
capability across all possible classification thresholds. Such a measure is 
crucial for comparing learning algorithms and optimizing model con
struction (Fawcett, 2006; Mingote et al., 2020). The ROC-AUC’s utility 
stems from its ability to provide a single, comprehensive value repre
senting model accuracy, with values closer to 1 indicating higher ac
curacy and values near 0.5 suggesting limited predictive capability 
(Fawcett, 2006; Batar et al., 2021). 

The AUC formula for a two-class problem is: 

AUC =

∑
rankings of positive samples − np(nn+1)

2
npnn  

Here, np and nn represent the counts of positive and negative samples, 
respectively. The AUC of the ROC reflects the quality of the probabilistic 
model in predicting the occurrence or non-occurrence of an event 
(Fawcett, 2006). 

4.6.2. Validation by Cohen’s Kappa Index 
The AUC-ROC method, while widely used, is not without its limita

tions, particularly in its potential to obscure model performance in 
specific operational contexts (Lobo et al., 2007; Vakhshoori and Zare, 
2018). As such, to complement our ROC curve analysis, we conducted a 
confused matrix and Cohen’s kappa index for validation. This statistical 
tool is essential for measuring the concordance between observed and 
predicted classifications within the forest fragmentation susceptibility 
map, while correcting for chance agreement (Cohen, 1960; Vakhshoori 
and Zare, 2018). 

Cohen’s Kappa (κ) is calculated to measure the agreement between 
two raters, adjusting for chance agreement. The formula is: 

κ =
Pobs − Pexp

1 − Pexp  

where (Pobs) is the observed agreement among raters, and (Pexp) is the 
expected agreement by chance. Our dataset, (Pobs) and (Pexp) are derived 
as follows: 

Pobs =
TP + TN

N  

Pexp =
(TP + FN) × (TP + FP) + (FP + TN) × (FN + TN)

N2  

Here, TP, TN, FP, and FN represent true positives, true negatives, false 
positives, and false negatives, respectively, with N being the total 
number of observations. 

5. Results 

5.1. Comparison of remote sensing datasets 

The comparative analysis of PALSAR (25 m resolution) and Dynamic 
World (10 m resolution) datasets in mapping forest fragmentation in 
Tuchola Forest, Poland, from 2015 to 2020, demonstrates a clear pref
erence for the PALSAR dataset. This is particularly evident in Fig. 5, 
which presents the trends in the ’Dominant’ and ’Interior’ classes 
(representing low and very low fragmentation, respectively) in both 
datasets. The line graphs for these classes in datasets (a) PALSAR and (b) 
Dynamic World reveal significant shifts post the 2017 derecho event, 
with the PALSAR dataset more markedly capturing the changes in forest 
structure. These shifts identify PALSAR’s enhanced capability to detect 
subtle and significant alterations in the forest landscape, especially in 
response to sudden environmental disturbances. 

Building upon these insights, Fig. 6 delves deeper into the ’Rare’ 
(very high fragmentation) and ’Patchy’ (high fragmentation) classes. 
Prior to 2017, the levels of fragmentation in these classes were almost 
negligible. However, post-2017, there was a significant rise, with the 
’Rare’ class in PALSAR data increasing from virtually 0 % in the years 
preceding 2017 to 38.68 % by 2020. Similarly, the ’Patchy’ class also 
showed a substantial increase, rising from 7.7 % in 2017 to 30.7 % by 
2020. In contrast, the Dynamic World dataset depicted these changes to 
a lesser extent, with the ’Rare’ class peaking at 23.47 % and the ’Patchy’ 
class at 20.32 % in 2020. 

These findings, illustrated through Figs. 5 and 6 are not mere sta
tistical variances but reflect the intrinsic capacity of the PALSAR dataset 
to accurately depict environmental dynamics, even during acute natural 
events. The implications of these results are substantial for forest con
servation efforts and policy-making, highlighting the critical need for 
selecting appropriate remote sensing tools that can faithfully represent 
environmental changes. 

5.2. Results of the multicollinearity analysis 

Our correlation coefficient matrix, refer to Fig. 4, indicates a pre
dominantly low to moderate interdependence among the environmental 
factors related to forest fragmentation. Most predictive variables show 
low correlation coefficients (mostly blue shades), suggesting their 
independence. 

Particularly, “Vegetation Water Content” is the most independent 
variable, displaying minimal correlation with others, while “Tree age” 
and “Wind speed” also show low intercorrelations. Despite some mod
erate correlations between “Distance from cropland” and “Distance from 
roads” with “Tree height of 2020″ and ”Slope,“ these are not substantial 
enough to indicate problematic multicollinearity. These findings affirm 
that the chosen variables in our model maintain their integrity for an 
unbiased analysis. 

5.3. Rare and patchy forest fragmentation assessment 

Utilizing the Forest Area Density (FAD) function within GTB using 
PALSAR, our analysis identified ’Rare’ and ’Patchy’ fragmentation 
classes as areas with FAD below 40 %. These classifications denote non- 
continuous and extensively fragmented forest sections. Subsequent 
spatial analysis for the period 2015–2020 quantified these patchy forests 
at 175.6 km2, equating to 5.49 % of the study’s total area. Over time, 
some of these regions have undergone further fragmentation, tran
sitioning into bareland or cropland, thus being excluded from further 
analysis. 

Incorporating the 2023 forest layer with a 10 m resolution allowed us 
to identify persistent rare and patchy forest fragments within the current 
forest boundaries. These areas, totaling 30.10 km2, constitute 0.94 % of 
the total study region and are integral to the subsequent susceptibility 
analysis. The forest cover has decreased by approximately 33.23 square 
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kilometers from the year 2020 to 2023. This represents a percentage 
change of approximately − 1.89 %, indicating a continued trend of forest 
fragmentation and loss within the study area. The utilization of the 2023 
forest layer was pivotal in our study to understand susceptible zones in 
the future, focusing on the rare and patchy fragments that were present 
in the 2023 forest cover layer for a comprehensive analysis of the 
landscape’s vulnerability. Fig. 7a and 7b illustrate the geographical 
distribution of these forests within the Tuchola Forest, showcasing the 

contrasts before and after the extraction process, and highlighting the 
changes in forest fragmentation susceptibility from the final year of the 
study period up until the current time. 

5.4. Forest fragmentation susceptibility analysis 

The forest fragmentation susceptibility map (Fig. 8) presents a 
detailed visualization of the areas within the Tuchola Forest that are 

Fig. 5. FAD values through the years 2015–2020 in datasets a) Palsar b) Dynamic World.  

Fig. 6. FAD values in the two datasets through the years 2015–2020 for a) rare class b) patchy class.  

Fig. 7. Rare and patchy fragments in a) entire study region (2015–2020) and b) current forest areas of 2023.  
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particularly vulnerable to fragmentation, integrating an exhaustive 
analysis that takes into account a variety of predictive variables. The 
importance of these factors has been quantitatively assessed using the 
Weight of Evidence (WoE) method (Table 2), with the results indicating 
significant influencers on forest fragmentation susceptibility. The anal
ysis revealed that the nearest distance from cropland, specifically within 
200 m, has the most substantial positive influence on forest fragmen
tation susceptibility, evidenced by a WoE value of 0.54. This finding 
illustrates that forest areas in closer proximity to croplands are at a 
higher risk of fragmentation. Other significant factors contributing to 
increased susceptibility include the closest distances from bareland (50 
m), tree height within the < 9 m range, and tree ages between 5 and 15 
years, highlighting the nuanced interplay of various environmental and 
anthropogenic elements in forest fragmentation. Additionally, external 
environmental conditions such as high wind speeds (25–27 km/h) and 
moderate vegetation water content further exacerbate the susceptibility 
to fragmentation. 

On the contrary, factors such as steeper slopes and greater distances 
from cropland and bareland correlated with reduced forest fragmenta
tion risk. The gentlest slopes were associated with the lowest suscepti
bility (WoE value: − 0.63), suggesting these areas are less likely to 
undergo fragmentation (see table 2). 

Overall, the results reveal the intricate interplay between various 
environmental factors and their impact on forest fragmentation sus
ceptibility. The findings from Table 1, coupled with the ROC analysis, 
provide a robust foundation for targeted conservation efforts aimed at 
mitigating the risks of further fragmentation within the Tuchola Forest 
landscape. 

5.5. Validation of forest fragmentation susceptibility map 

The validation of the Forest Fragmentation Susceptibility Map is 
further reinforced through comprehensive analyses, incorporating both 
the ROC curve and Cohen’s Kappa Index to evaluate model performance. 
The ROC curve analysis, illustrated in Fig. 9, demonstrates the model’s 

reliability in predicting susceptibility, achieving an AUC value of 0.82. 
This high discriminative capacity signifies the model’s adeptness at 
distinguishing between areas susceptible and not susceptible to 
fragmentation. 

The Cohen’s Kappa calculation yielded an index of 0.68, indicating 
substantial agreement beyond chance. These metrics offer compelling 
evidence of the model’s accuracy in classifying areas according to their 
fragmentation susceptibility, affirming the effectiveness of our meth
odological approach in forest conservation planning (see Table 3). 

6. Discussion 

6.1. Implication of fragmentation (FAD) in different datasets 

Our comparative analysis between the PALSAR and Dynamic World 
datasets reveals PALSAR’s superior sensitivity in detecting ’Rare’ and 
’Patchy’ forest fragmentation post-2017, an observation echoed by 
Atkins et al. (2023) and Balling et al. (2023). These studies highlight the 
advanced radar technologies, like PALSAR, for their nuanced detection 
of environmental changes and shifts in forest structure, especially 
following significant disturbances such as the 2017 windstorm. Micro
wave remote sensing, as employed by PALSAR, offers distinct advan
tages across various environmental settings. Awange & Kiema (2013) 
elucidate the critical role of microwave sensing in overcoming the lim
itations posed by persistent cloud cover and dense vegetation, notably in 
tropical regions where optical remote sensing faces significant chal
lenges. This technology’s ability to penetrate vegetation canopies and 
function effectively under conditions of high cloud cover, such as during 
wet seasons, is indispensable for comprehensive fragmentation studies, 
particularly after severe weather events. 

Furthermore, the integration of SAR and optical remote sensing 
methods, as demonstrated by Louzada et al. (2023), supports our find
ings and emphasizes the necessity of selecting the appropriate remote 
sensing technology tailored to specific environmental conditions and 
research objectives. Similarly, Meraner et al. (2020) highlight the po
tential of SAR-optical data fusion in removing clouds from optical im
agery, using deep learning approaches to preserve the integrity of 
surface observations beneath cloud cover. 

The effectiveness of PALSAR’s microwave remote sensing in accu
rately capturing changes in forest structure, despite its lower resolution 
compared to high-resolution optical sensing from Dynamic World, 
demonstrates its utility in forest fragmentation analysis. This is espe
cially relevant in post-disturbance scenarios, emphasizing the impor
tance of choosing SAR technologies like PALSAR for forest cover and 
fragmentation studies. Our research not only reinforces the significance 
of PALSAR in forest conservation and decision-making processes but 
also aligns with the broader scientific consensus on the adaptability and 
effectiveness of SAR technology in addressing the challenges of optical 
remote sensing limitations. 

6.2. Influence of environmental factors on forest fragmentation 
susceptibility 

6.2.1. Integrated analysis of forest fragmentation factors 
Challenging the conventional wisdom, Morreale et al. (2021) suggest 

that temperate forest edges may demonstrate increased growth and 
biomass compared to their tropical counterparts, casting new light on 
edge-induced vulnerability. This revelation underpins our investigation 
into the Tuchola Forest, where we dissect the influence of both envi
ronmental and anthropogenic factors on forest fragmentation. 

Our findings highlight proximity to cropland as a significant 
anthropogenic influence. Forest fragments within 200 m of cropland 
demonstrate the highest susceptibility to fragmentation, supporting 
global patterns observed by Haddad et al. (2015). The role of agricul
tural expansion and its impact on the floristic composition at the forest- 
cropland interface (Ribeiro et al., 2019) calls for a nuanced approach to 

Fig. 8. Forest fragmentation susceptibility map.  
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land-use planning that considers ecological impacts. Our results from 
the Tuchola Forest corroborate these observations and echo similar 
fragmentation patterns noted by Mengist et al. (2022) across Poland, 
emphasizing the enduring legacy of historical land-use on present-day 
forest structure and biodiversity (Mazgajski et al., 2010). 

Tree characteristics, notably height and age, emerged as pivotal 
natural factors. Our data indicates that younger forests (5–15 years) and 
shorter trees (less than 9 m) are more vulnerable to fragmentation. This 
is in line with the findings of Rodrigues et al. (2016), who observed long- 
term structural changes in forest canopies and the impact of anthropo
genic disturbances on tree height and spatial structure. Moreover, 
Wulder et al. (2009) provide insight into how forest age and fragmen
tation are interrelated, further suggesting the influence of these factors 
on the ecological dynamics of forest landscapes. 

Wind speed and vegetation water content are additional natural 
determinants of fragmentation risk. High wind speeds (25–27 km/h) 
and moderate water content conditions were associated with increased 
fragmentation risks, implying the necessity of incorporating meteoro
logical and hydrological considerations into forest management (Kon
ings et al., 2021; Doane et al., 2023; Li et al., 2023). 

Additionally, the influence of topography on fragmentation suscep
tibility is accentuated by our findings. Guo et al. (2024) found that 
extensively burned forest patches are often located at higher elevations, 
while more fragmented patches tend to occur in areas with gentle slopes. 

Our results corroborate this pattern, suggesting that less steep slopes 
may facilitate the spread of fragmentation. 

The interplay between forests and their topographic context is 
further elaborated by Doane et al. (2023), who delve into the concept of 
topographic roughness as a natural archive of wind events. Their work 
suggests that forests coevolve with their environment, with topography 
influencing the resilience of forests to windthrow events. 

In summary, our integrated analysis of forest fragmentation factors 
in the Tuchola Forest emphasizes the multifaceted nature of suscepti
bility. It highlights the urgency of incorporating a diverse range of 
ecological and physical variables into forest management and conser
vation strategies to ensure resilience against ongoing and future envi
ronmental challenges. 

6.2.2. Tree specie characteristics 
In the Tuchola Forest, the composition of tree species, including the 

predominance of Scots pine (Pinus sylvestris) (82.78 %), followed by 
Silver birch (Betula pendula) (7.39 %) and English oak (Quercus robur) 
(1.29 %), suggests a landscape largely shaped by the resilience and 
susceptibility of these species to fragmentation (see Figure S1). Despite 
not being the primary factors in our correlation analysis, the species 
characteristics significantly contribute to the nuanced ecological dy
namics of the forest. Scots pine (Pinus sylvestris), with its notable resil
ience, contrasts with the heightened vulnerability of Silver birch (Betula 

Table 2 
Weight of Evidence (WoE) values for forest fragmentation susceptibility factors.  
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pendula) and English oak (Quercus robur) near forest edges. This 
distinction is crucial for understanding the intricate effects of frag
mentation and is supported by the findings of Konôpka et al. (2020) and 
Budniak & Zięba (2022), which emphasize variable impacts on different 
species within Polish forests. Their findings resonate with our investi
gation into species-specific susceptibility and highlight importance of 
informed management practices tailored to the unique ecological roles 
and physiological needs of each species. 

Pimentel et al. (2013) and Roche and Campagne (2017) advocate for 
an ecosystem integrity framework that incorporates both species di
versity and environmental factors into forest management decisions. 
This approach is vital for addressing the specific needs of Scots pine 
(Pinus sylvestris), Silver birch (Betula pendula), and English oak (Quercus 
robur). The genetic robustness of Scots pine (Pinus sylvestris), as dis
cussed by González-Díaz et al. (2017), may underpin its resilience, of
fering insights into adaptive strategies for forest conservation. 
Conversely, the pioneering nature of Silver birch (Betula pendula), 
highlighted by Oksanen (2021) suggests a vulnerability to edge effects 
that necessitates careful consideration in forest management practices. 
Similarly, the decline of English oak (Quercus robur) in altered distur
bance regimes, as noted by Knoot et al. (2010), calls for a nuanced un
derstanding of its ecological and physiological sensitivities. 

Coates et al. (2018) contribute to this discourse by differentiating the 
effects of partial harvesting on species-specific windthrow susceptibility, 
particularly near forest edges. This aspect is crucial for managing frag
mented landscapes, where selective interventions and the recognition of 
tree-level heterogeneity can influence the overall resilience of forest 
ecosystems to storm events. 

By integrating these varied perspectives, our discussion offers a 
comprehensive examination of the physiological, ecological, and genetic 
dimensions that define the responses of Scots pine (Pinus sylvestris), 

Silver birch (Betula pendula), and English oak (Quercus robur) to frag
mentation. Such a multifaceted approach is essential for developing 
forest management practices that are sensitive to the distinct charac
teristics of each species, ensuring their continued health and viability in 
changing environmental conditions. Through this lens, we aim to 
enhance the resilience of forest ecosystems, mitigating the impacts of 
fragmentation and promoting sustainable forest landscapes. 

6.2.3. Holistic approach to forest management 
Incorporating diverse factors into our model not only enhances 

predictive accuracy but also aligns with the ecosystem integrity frame
work crucial for the resilience of forests like the Tuchola Forest. This 
holistic approach, informed by our findings and echoed by the 
comprehensive analyses of forest fragmentation in Poland by Refer
owska-Chodak & Kornatowska (2021), stresses the importance of 
considering both species diversity and environmental factors in forest 
management strategies. The integration of development and conserva
tion policies, as discussed by Szramka & Adamowicz (2020), becomes 
paramount, offering insights for anticipating high-risk fragmentation 
areas and emphasizing sustainable management practices that prioritize 
long-term ecosystem integrity and resilience. 

6.3. Methodological adaptation and predictive model refinement 

The refinement of variables in our study marked a pivotal transition 
towards an enhanced model for predicting forest fragmentation sus
ceptibility. Initial analyses using 15 variables were fine-tuned to focus 
on the current vegetation state, leading to the exclusion of non- 
vegetated areas formerly identified as susceptible. Ground-truthing 
revealed that the earlier model overestimated susceptibility in areas 
no longer forested. Subsequent multicollinearity analysis informed the 
removal of highly interdependent variables such as soil type, and less 
impactful ones like forest type and species, as well as aspect and 
elevation in this relatively flat region. 

A discernible shift in the susceptibility patterns was evident when 
comparing the previous and current maps. Where the initial model 
indicated heightened susceptibility at the forest edges, the refined model 
demonstrated more dispersed susceptibility zones, particularly in cen
tral areas with the highest wind speeds recorded between 2015 and 
2020 (Fig. 2). This adaptation not only corroborated the significant role 
of wind in forest fragmentation but also resulted in a notable increase in 
model accuracy, with the ROC curve’s accuracy improving from 0.64 to 
0.82 which suggests an accurate and reliable model along with the 
Cohen’s Kappa Index calculation. 

The adjustment of our analytical framework, informed by empirical 
evidence and expert field knowledge, illustrates the dynamic nature of 
ecological modeling. It highlights the importance of iterative analysis 
and underlines the value of precise variable selection in developing 
models with high predictive accuracy, crucial for the formulation of 
effective forest management and conservation strategies. 

7. Conclusion 

Our study in the Tuchola Forest region not only highlights the spe
cific challenges faced by this area but also serves as a microcosm for the 
broader, global imperative for adaptive forest management in the face of 
climate change. The heightened susceptibility of forests to windthrow 
events, particularly near croplands and barelands, coupled with the 
pivotal role of species diversity in bolstering ecosystem resilience, em
phasizes the universal relevance of our findings. This global perspective 
reinforces the necessity of implementing adaptive management strate
gies worldwide to safeguard forest ecosystems against the escalating 
threats posed by wind disturbances and other climate change-related 
stressors. 

Drawing on insights from Forzieri et al. (2020) regarding the 
increasing intensity of wind disturbances and Sanginés de Cárcer et al. 

Fig. 9. The accuracy of the forest fragmentation susceptibility map.  

Table 3 
Summary of classification metrics for Cohen’s Kappa Index.  

Metric Value 

True Negative (TN) 1,494,224 
False Positive (FP) 2013 
False Negative (FN) 426 
True Positive (TP) 2551 
Cohen’s Kappa Index 0.68  
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(2021) on effective post-windstorm management, our work highlights 
the necessity of integrating empirical data with best forestry practices. 
Customized strategies that consider specific forest types and site con
ditions are essential. 

Future research should explore the balance between ecological im
pacts and salvage logging, incorporating climate change considerations 
more explicitly into forest management plans. The findings from the 
Joint Research Centre (JRC) on forest landscape patterns and fragmen
tation in Europe highlight the need for comprehensive plans addressing 
spatial patterns and connectivity (European Commission, Joint Research 
Centre (JRC), 2023; Sanginés de Cárcer et al., 2021). 

In summary, our study advocates for dynamic forest management 
approaches that meld in-depth research, existing literature, and prac
tical insights. Such strategies are critical to maintain the ecological 
integrity of forests like the Tuchola Forest, enhancing ecosystem services 
and ensuring resilience amidst evolving environmental challenges 
(Pimentel et al., 2013). 

8. Declaration of Generative AI and AI-assisted technologies in 
the writing process 

During the preparation of this work the author(s) used ChatGPT for 
language polishing and editing the manuscript. After using this tool/ 
service, the author(s) reviewed and revised the content as needed and 
take(s) full responsibility for the content of the publication. 

CRediT authorship contribution statement 

Sanjana Dutt: Writing – review & editing, Writing – original draft, 
Visualization, Validation, Software, Resources, Methodology, Investi
gation, Funding acquisition, Formal analysis, Data curation, Conceptu
alization. Amit Kumar Batar: Writing – review & editing, 
Conceptualization, Data curation, Formal analysis, Methodology, Soft
ware, Supervision. Sławomir Sulik: Data curation. Mieczysław Kunz: 
Visualization, Supervision. 

Declaration of competing interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Data availability 

Data will be made available on request. 

Acknowledgements 

We extend our deepest gratitude to the European Severe Storms 
Laboratory (ESSL) and the team at the European Severe Weather Data
base (ESWD) for providing critical data that significantly contributed to 
the research presented in this article. Special thanks are extended to 
Thomas Schreiner and Igor Laskowski at ESSL for their invaluable sup
port and guidance. 

Our heartfelt appreciation goes to Marcin Myszkowski from the Bank 
Danych o Lasach (Forest Data Bank) at Biuro Urządzania Lasu i Geodezji 
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Abstract 37 

Forest fragmentation reshapes ecological dynamics, yet its zone-specific impacts remain poorly 38 
quantified. We assess degradation, moisture stress, habitat quality, and structural maturity in the Tuchola 39 
Forest Biosphere Reserve (Poland) across three Foreground Area Density (FAD) classes—Core (≥90%), 40 
Transitional (40–60%), and Rare (≤10%). Leveraging open Sentinel-2 data and field-based ecological 41 
attributes from the Polish Forest Data Bank, we integrate FAD zoning with interpretable ensembles (ET, 42 
LGBM) to model vegetation condition for 2016, 2020, and 2024. Partial dependence analyses reveal 43 
consistent ecological contrasts across zones: Rare areas show pronounced early-stage degradation tied 44 
to edge exposure and reduced connectivity, whereas Core areas maintain stable moisture regimes and 45 
structural maturity. Site-type responses and stand-age signals further indicate that spectral confusion in 46 
fragmented edges can mimic maturity, emphasizing the value of structural information in future 47 
applications. Validated against field observations, the workflow provides a spatially explicit, 48 
reproducible approach to diagnose fragmentation effects from open data. Results translate directly to 49 
management: strict protection for Core interiors, adaptive buffer and corridor strategies in Transitional 50 
zones, and targeted restoration/rewilding in Rare zones to enhance connectivity and drought resilience. 51 
The framework advances geospatial science by operationalizing FAD-aware, interpretable remote 52 
sensing for zone-specific conservation in temperate forests. 53 

Keywords: forest fragmentation; ecological processes; Sentinel-2; Foreground Area Density (FAD); 54 
machine learning; temperate forests 55 

1. Introduction 56 

Forest fragmentation—the division of continuous forest into smaller, more isolated patches—disrupts 57 
ecological processes governing biodiversity, hydrological regulation, and biomass productivity (Haddad 58 
et al., 2015; Wang et al., 2025). Fragmentation per se (independent of habitat loss) alters patch 59 
configuration and increases edge exposure, intensifying microclimatic stress through higher insolation, 60 
wind, and desiccation, and elevating fire susceptibility (Arroyo-Rodríguez et al., 2017; Fletcher et al., 61 
2018). These pressures are especially acute in the Tuchola Forest Biosphere Reserve (TFBR), a pine-62 
dominated landscape where even-aged Scots pine (Pinus sylvestris) stands (>90% of area) exhibit 63 
uniform canopy structure and shallow rooting, heightening vulnerability to edge-driven moisture stress, 64 
bark beetle outbreaks, and fire relative to mixed or deciduous systems (Wulder et al., 2009; Britton et 65 
al., 2024). Resulting changes—canopy thinning, moisture stress, and reduced connectivity—constrain 66 
dispersal of forest-interior specialists that depend on large, contiguous patches (Blake & Karr, 1984; 67 
Fahrig et al., 2019). While small patches can function as stepping stones for some taxa, large patches 68 
remain critical for sustaining interior specialists and population stability (Blake & Karr, 1984; Fahrig et 69 
al., 2019; Wang et al., 2025). 70 
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Sentinel-2’s 10 m multispectral record enables repeated monitoring of vegetation condition via indices 71 
(VIs) that capture gradients in greenness/biomass, canopy water content, and pigment dynamics (Lausch 72 
et al., 2016). Indices such as NDVI and EVI (greenness/biomass), NDMI (moisture), and CIred-73 
edge/NDRE (pigment dynamics) are sensitive to structural and disturbance regimes that co-vary with 74 
fragmentation (Wang et al., 2010; Xue & Su, 2017). However, few studies jointly integrate multi-75 
temporal Sentinel-2 data, Foreground Area Density (FAD)–based fragmentation zoning, and field-based 76 
ecological attributes (FEAs) to model zone-specific processes, limiting our understanding of how 77 
fragmentation effects differ across dense, mixed, and sparse forest contexts (Wang et al., 2010; Lausch 78 
et al., 2017). Stratifying by local forest density using FAD—into Core (≥90%), Transitional (40–60%), 79 
and Rare (≤10%) zones—helps disentangle ecological signal from spectral noise by conditioning 80 
analysis on neighborhood context (Vogt & Riitters, 2017; Wang et al., 2025). 81 

Here, we develop a framework for assessing fragmentation effects in TFBR, a system shaped by 82 
windstorms, silviculture, and historical land use (Łuców et al., 2021; Dutt et al., 2024). TFBR’s 83 
homogeneity—dominated by even-aged pine—reduces beta-diversity and may dampen species-level 84 
variability in spectral responses, yet increased edge density can magnify stress exposure (Wulder et al., 85 
2009; Kozak et al., 2018; Fahrig et al., 2019). We integrate multi-temporal Sentinel-2 (2016, 2020, 86 
2024) with FEAs from the Polish Forest Data Bank (degradation, soil moisture, site type, stand age) to 87 
model forest condition across FAD-defined zones spanning stable interiors to highly fragmented edges 88 
(Kozak et al., 2018). Our contribution is a spatially explicit, reproducible GIS workflow that combines 89 
FAD zoning, Sentinel-2 VIs, and interpretable ensembles to diagnose fragmentation-linked ecological 90 
processes from open data. 91 

Our objectives are to: 92 

1. identify sensitive indicators—determine which VIs best capture biomass productivity, moisture 93 
stress, pigment dynamics, and understory conditions in a fragmented landscape; 94 

2. map zone-specific patterns—quantify how VI–FEA relationships vary across Core, 95 
Transitional, and Rare zones under differing configuration pressures; and 96 

3. assess predictive power—evaluate how accurately VIs predict field-observed attributes using 97 
interpretable ensemble learning across zones and years. 98 

By combining Sentinel-2 with FAD-based zoning and interpretable models, we provide a scalable tool 99 
for monitoring fragmentation-linked ecological dynamics and for informing zone-specific conservation 100 
and restoration strategies under increasing climate pressures (González-Ávila et al., 2023; Wang et al., 101 
2025). 102 

2. Materials and Methods 103 

2.1. Study Area 104 
The Tuchola Forest Biosphere Reserve (TFBR; 53°30′N, 17°50′E; ~3,195 km²) occupies nutrient-poor 105 
fluvioglacial sands on the Pomeranian outwash plain of northern Poland and contains >900 kettle lakes 106 
and Sphagnum peatlands that generate sharp hydrological and edaphic gradients (Łuców et al., 2021). 107 
TFBR is dominated by even-aged Pinus sylvestris plantations (>90%), with minor Betula spp., Quercus 108 
robur, and Alnus glutinosa. Fragmentation arises primarily from silvicultural clear-cuts and salvage 109 
logging, compounded by biotic outbreaks (e.g., Panolis flammea) and extreme events—the 2012 F3 110 
tornado and the 2017 derecho are notable examples (Budniak & Zięba, 2022; Dutt et al., 2024). 111 

As Dutt et al. (2024) show using Bayesian mapping, edge expansion in TFBR is strongly associated 112 
with cropland proximity, younger stands, and high wind exposure. This configuration-driven change 113 
has progressed even where total forest area remains relatively stable, a pattern consistent with 114 
fragmentation-per-se effects emphasized by Fahrig (2017) and observed in other Polish landscapes by 115 
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Kozak et al. (2018). These characteristics make TFBR an apt natural laboratory for examining how local 116 
forest density and neighborhood context modulate ecological processes under fragmentation. 117 

 118 

Figure 1.  Location of the Tuchola Forest Biosphere Reserve (TFBR) in northern Poland, overlaid with 119 
CORINE land cover types (2018), major roads, and commune boundaries.  120 

2.2. Data Collection 121 

2.2.1. Sentinel-2 Imagery 122 

We used Sentinel-2 Level-2A surface reflectance for the growing season (May 1–August 31) in 2016, 123 
2020, and 2024. Where Level-2A was unavailable in 2016, the corresponding Level-1C scenes were 124 
converted to L2A using ESA’s Sen2Cor (atmospheric correction from top-of-atmosphere to surface 125 
reflectance; also produces the Scene Classification Layer, SCL). We removed cloud-affected pixels 126 
using the SCL by excluding class 3 (cloud shadow), 8 (cloud—medium probability), 9 (cloud—high 127 
probability), and 10 (thin cirrus). For consistency, we also excluded class 11 (snow/ice), although snow 128 
is rare in May–August in Poland. We retained bands B2, B3, B4, B5, B8, B11 due to their sensitivity to 129 
vegetation biochemistry and structure (Lausch et al., 2016; Xue & Su, 2017). The overall workflow—130 
preprocessing, vegetation-index (VI) calculation, FAD-based zoning, model fitting, and interpretation—131 
is outlined in Figure 2. 132 
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 133 

Figure 2: Forest Fragmentation Analysis Workflow. Overview of the methodology combining Sentinel-134 
2 imagery and forest inventory data, preprocessing steps, vegetation index calculation, FAD-based 135 
fragmentation zoning, ensemble modeling (Extra Trees, LightGBM), and visualization through PDPs 136 
and boxplots. 137 

2.2.2. Field Data 138 

Forest inventory data from the Polish Forest Data Bank (BDL) provided polygon-level attributes—139 
degradation, moisture content, forest site type, and stand age—hereafter field-based ecological attributes 140 
(FEAs). Polygons correspond to operational management units (e.g., stands/compartments) delineated 141 
by the State Forests National Forest Holding for planning and monitoring. These attributes, recorded by 142 
professional foresters using standardized protocols, serve as the reference for evaluating how well 143 
Sentinel-2 VIs represent on-the-ground ecological conditions (cf. Peters et al., 2007; Nguyen et al., 144 
2020). The semantics and numeric encodings for categorical FEAs are summarized in Supplementary 145 
Tables S2–S4. Procedures for spatial alignment with the Sentinel-2 composites (CRS, grid, and 146 
rasterization choices) and preparation for modeling are detailed in Section 2.5.1. 147 

2.3. Data Processing 148 

2.3.1. Image Preprocessing 149 

All inputs are Sentinel-2 Level-2A surface reflectance (0–1). We produced annual median composites 150 
in Google Earth Engine to reduce cloud/phenology noise and reprojected them to PUWG 1992 151 
(EPSG:2180) at 10 m. 20 m bands (B5, B11) were upsampled to 10 m with bilinear interpolation to 152 
preserve radiometric continuity; nearest-neighbor was used only for categorical layers (e.g., masks, 153 
classes). To restrict analyses to forested pixels, we applied a binary mask from Dynamic World “trees” 154 
probability with a primary threshold of 0.60 (Brown et al., 2022; Dutt et al., 2024). We note that simple 155 
threshold sensitivity checks (e.g., 0.50/0.60/0.70) can further assess robustness and are recommended 156 
for future extensions. 157 

2.3.2. Vegetation Indices and Field Data Integration 158 

We computed 17 VI’s  (Table 1) in Python (rasterio 1.3; NumPy 1.26) spanning greenness/biomass 159 
(e.g., NDVI, EVI, EVI2, GNDVI, GRNDVI, GSAVI, LAI, DVI), moisture (NDMI, GVMI), 160 
pigment/chlorophyll (GARI, MCARI, MTVI2, NDRE, GBNDVI), and indices addressing soil/shadow 161 
effects (CVI, MSAVI). Formal definitions and Sentinel-2 band mappings are provided in Supplementary 162 
Table S1 (see Xue & Su, 2017; Wang et al., 2010; Lausch et al., 2016). 163 

 164 
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Polygon-level FEAs (degradation, moisture content, site type, stand age) from BDL were rasterized to 165 
10 m with nearest-neighbor to preserve categorical labels and aligned to the Level-2A composite grid. 166 
This ensured congruence between FEAs and VI rasters while avoiding interpolation artefacts in class 167 
data. Where polygon boundaries did not coincide exactly with pixel edges, attributes were assigned to 168 
the pixel containing the polygon centroid, and simple overlay checks were used to flag potential 169 
misalignments for QA/QC (Budniak & Zięba, 2022; Brown et al., 2022). 170 

Table 1: Sentinel-2 Vegetation Indices Used in the Study 171 

Functional Domain Indices Ecological Focus References 

Greenness/Biomass NDVI, EVI, EVI2, GNDVI, 

GRNDVI, GSAVI, LAI, 

DVI 

Leaf area, 

productivity, 

biomass 

Xue & Su, 2017; 

Wang et al., 2010 

Moisture Stress NDMI, GVMI Canopy water 

content, drought 

Wang et al., 2010 

Pigment/Chlorophyll GARI, MCARI, MTVI2, 

NDRE, GBNDVI 

Chlorophyll, 

nutrient status 

Lausch et al., 2016 

Soil/Shadow 

Correction 

CVI, MSAVI Soil background, 

shadow 

Xue & Su, 2017; 

Lausch et al., 2016 

2.4. Landscape Stratification 172 

Foreground Area Density (FAD) was computed in GuidosToolbox (Vogt & Riitters, 2017) using a 173 
moving square window on the 10 m grid. The primary window was 243 × 243 pixels (i.e., 2.43 km per 174 
side; 5.90 km²), which emphasizes neighborhood forest amount/configuration and highlights areas with 175 
sparse cover (low FAD) (Figure 3). We selected the 243 × 243 window to better resolve sparsely forested 176 
neighborhoods (the Rare class) while preserving local context at ~2.4 km, a scale relevant to edge-driven 177 
processes and operational planning. We applied the binary forest mask from Section 2.3.1 (Dynamic 178 
World “trees” probability, threshold 0.60) prior to FAD calculation. From the six native FAD classes, 179 
we retained Core (FAD ≥ 90%), Transitional (40–60%), and Rare (≤ 10%) given their ecological 180 
relevance in TFBR (Dutt et al., 2024; Brown et al., 2022). While FAD provides a compact, spatially 181 
explicit descriptor of neighborhood forest density, it does not fully disentangle habitat amount from 182 
configuration; complementary metrics—such as edge density (boundary complexity) and patch 183 
cohesion (connectedness)—can refine fragmentation assessment (Fahrig, 2017; Riitters & Wickham, 184 
2012; cf. González-Ávila et al., 2023). Sensitivity to alternative window sizes (e.g., 121 × 121 and 365 185 
× 365) is recommended for future robustness checks. See Supplementary Figure S1 for temporal 186 
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overlaps among zones (2016, 2020, 2024).187 

 188 

Figure 3. Foreground Area Density (FAD)-derived fragmentation zones—Core (green, ≥90% forest 189 
cover), Transitional (orange, 40–60%), and Rare (red, ≤10%)—mapped across TFBR in 2016, 2020, 190 
and 2024, showing spatial patterns of forest density. 191 

2.5.1 Data Preprocessing and Feature Engineering 192 

FEAs (degradation, moisture content, site type, stand age) were linked to FAD classes (Core, 193 
Transitional, Rare) for 2016, 2020, 2024, then rasterized to the 10 m grid of the Sentinel-2 L2A 194 
composites for pixel-wise modelling. Rasterization of categorical labels used nearest-neighbor to 195 
preserve class integrity. 196 

• Degradation: eight ordered classes from Degraded to Transformed (Table S2). 197 
• Moisture content: thirteen ordered classes from very wet bogs to fresh soils (Table S3). 198 
• Site type: fifteen nominal categories spanning soil–moisture gradients (Table S4). 199 
• Stand age: continuous years of growth, also summarized into developmental stages. 200 

The combined L2A-based dataset was >99% complete; pixels with missing spectral or ancillary values 201 
(<1%) were removed. No outliers were discarded, to avoid biasing models away from ecologically 202 
meaningful extremes. 203 

For modelling, ordinal FEAs (degradation, moisture) were integer-encoded to retain rank; site type was 204 
one-hot encoded; stand age remained numeric. VI sensitive to pigment loss (e.g., NDRE, GARI), 205 
moisture stress (e.g., NDMI), and canopy structure/pigment contrast (e.g., CIred-edge) were derived 206 
from Sentinel-2, composited to midsummer for each year (Section 2.3.2; Table S1). Tree-based models 207 
required no additional feature scaling (Pedregosa et al., 2011). 208 

2.5.2. Variable Importance and Effect Interpretation 209 

Our geocomputational focus was on interpretable ensemble learning. Following Breiman’s seminal 210 
perspective on variable importance in tree ensembles, we combined impurity-based importance (from 211 
Extra Trees) with Permutation Importance (PI) to diagnose drivers across FAD zones and years 212 
(Breiman, 2001; cf. Grömping, 2009; Nicodemus et al., 2010). Impurity scores summarize split-level 213 
reductions (e.g., variance) but may favor high-cardinality features; PI provides a model-agnostic 214 
estimate by shuffling a feature and recording the error increase (MSE), which better reflects out-of-215 
sample impact. 216 

 217 
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To assess stability, we repeated PI with multiple random permutations per feature and summarized the 218 
resulting spread; this emphasizes robust patterns rather than single-run artefacts. Interpretation 219 
leveraged partial dependence plots (PDPs)—including 2D PDPs for key VI pairs—to visualize nonlinear 220 
and zone-specific responses, aiding ecological interpretation and transfer to management (Molnar, 221 
2019). We report importance rankings for each FEA × year × FAD class (Supplementary Figs. S3, S5, 222 
S7, S9), highlighting indices recurrently associated with degradation, moisture, site type, and stand age 223 
in temperate forests (e.g., NDRE, NDMI, NDVI; see Lausch et al., 2016; Xue & Su, 2017; Yu et al., 224 
2021; Britton et al., 2024). 225 

2.5.3. Model Comparison and Selection 226 

We compared two ensemble regressors widely used in spatial data mining—Extra Trees (ET) and 227 
LightGBM (LGBM)—to predict FEAs within Core, Transitional, and Rare zones across 2016, 2020, 228 
2024 (Geurts et al., 2006; Ke et al., 2017). Regression was preferred over multinomial classification 229 
because several ordered levels (e.g., degradation, moisture) are uneven or absent in certain zones; 230 
treating them as quasi-continuous preserves rank information and avoids extrapolating to unseen 231 
categories (cf. Pedregosa et al., 2011). 232 

To mitigate spatial autocorrelation, hyperparameters were tuned under spatial k-fold cross-validation 233 
with non-overlapping geographic partitions, and evaluated on held-out folds. This scheme reduces 234 
leakage between train/test and better reflects mapping use-cases in GIS. Key ET hyperparameters 235 
(number of trees, features per split, min samples to split/leaf) were optimized per FEA × zone × year 236 
(Supplementary Table S5). Model performance (MSE/MAE) is summarized in Supplementary Table 237 
S6, and ET was selected for downstream interpretation due to its stability and transparency (see also 238 
Łoś et al., 2021). For completeness, predictions were subsequently mapped back to management classes 239 
for interpretation in Results; agreement metrics beyond MSE/MAE (e.g., RMSE, R², Spearman’s ρ, 240 
Weighted Kappa) are noted as complementary perspectives. 241 

2.5.4. Partial Dependence Plots (PDPs) 242 

We used partial dependence plots (PDPs) to visualize how VIs influence model predictions after 243 
averaging over the distribution of all other features (Molnar, 2019). Let 𝑓(⋅) denote the trained model 244 
and split the features into a set of interest 𝑥S and its complement 𝑥𝑐The partial dependence of 𝑓 with 245 
respect to 𝑥S is 246 

𝐹𝑠(𝑧) =  ∫ 𝑓(𝑧, 𝑥𝑐)𝑝(𝑥𝑐)𝑑𝑥𝑐 =  𝐸{𝑋𝑐}[𝑓(𝑧,𝑋𝑐)] 247 

 where 𝑝(𝑥𝐶) is the marginal distribution of the complementary features. In practice, we approximate 248 
this expectation using the brute-force empirical average over the observed dataset: 249 

F̂ₛ( 𝑧) = (1/n) ∑ 𝑓(𝑧, 𝑥{𝑐,𝑖})𝑛
{𝑖=1}  250 

where 𝑥{𝐶,𝑖}   are the observed values of the complementary features for sample 𝑖, and 𝑛 is the number 251 

of samples used in the average. 252 

Because fragmentation effects are context-dependent, we emphasized 2D PDPs (i.e., ∣ 𝑆 ∣= 2|) to 253 
capture nonlinear responses and interactions between key VI pairs for each FEA: e.g., NDRE–GARI 254 
(degradation), NDRE–NDMI (moisture content), NDVI–NDRE (site type), and CVI–NDRE (stand 255 
age). To support direct comparison across conditions, PDPs were organized in 3×3 grids—rows: FAD 256 
classes (Rare, Transitional, Core); columns: years (2016, 2020, 2024). We implemented PDPs using 257 
scikit-learn’s brute method, evaluating grids within observed feature ranges to avoid extrapolation. 258 

 259 
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2.5.6: Model Accuracy Assessment 260 

The predictive performance of ET and LGBM models was assessed using Mean Squared Error (MSE) 261 
and Mean Absolute Error (MAE), computed separately for training and test datasets to evaluate model 262 
fit and generalization. For each FEA predicted values ŷᵢ were compared against ground-truth values 𝑦ᵢ 263 
derived from the Polish Forest Data Bank, rasterized at 10 m resolution to align with Sentinel-2 L2A 264 
imagery (Section 2.3.1). MSE was calculated as the average squared difference between predicted and 265 
actual values, emphasizing larger errors: 266 

𝑀𝑆𝐸 =  (
1

𝑛
) ∑(𝑖 = 1 𝑡𝑜 𝑛)(𝑦ᵢ −  ŷᵢ)2 267 

MAE was computed as the average absolute difference, providing an interpretable metric in the original 268 
units of the GI: 269 

𝑀𝐴𝐸 =  (
1

𝑛
) ∑(𝑖 = 1 𝑡𝑜 𝑛)|𝑦ᵢ −  ŷᵢ| 270 

Here, 𝑛 represents the number of sampled pixels per fragmentation zone (10% stratified random 271 
sample). Metrics were computed per FEA, per zone (Rare, Transitional, Core), and per year (2016, 2020, 272 
2024) to preserve ecological context. We also summarized error distributions with boxplots of 273 
predictions versus ground truth to assess stability across zones. All values are reported in Supplementary 274 
Table S6.  275 

3. Results 276 

3.1. Model Performance Across Fragmentation Zones 277 

The ET model, tuned via hyperparameters such as number of trees and split thresholds (Supplementary 278 
Table S5; Section 2.5.3), predicted FEAs across Core, Transitional, and Rare zones for 2016, 2020, and 279 
2024. Its performance was compared with LGBM on held-out test data (Supplementary Table S6; 280 
Section 2.5.6). As shown in Figure 4, ET produced lower or more stable errors for most FEAs—281 
particularly degradation, site type, and stand age—while LGBM was occasionally lower for moisture in 282 
specific zones but more variable overall. Boxplots of prediction errors (Supplementary Figure S2) 283 
confirm ET’s narrower error spread and fewer extremes across zones and years, supporting its selection 284 
for interpretability in Section 3.2. Full training and test metrics for both models are reported in 285 
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Supplementary Table S6.286 

 287 

Figure 4. Test-set error distributions (raw units) for ET (orange) and LGBM (blue) across FAD classes 288 
(Rare, Transitional, Core) and years (2016, 2020, 2024), shown per FEA (Degradation, Moisture, Site 289 
Type, Stand Age).  290 

3.2. FEA Prediction Performance 291 

For each FEA, we selected a representative VI pair based on PI rankings (Section 2.5.2; Supplementary 292 
Figures S3, S5, S7, S9). This approach ensures interpretability and consistency across fragmentation 293 
classes and years while retaining ecological relevance. Selected pairs were: NDRE + GARI 294 
(Degradation), NDRE + NDMI (Moisture Content), NDVI + NDRE (Site Type), and CVI + NDRE 295 
(Stand Age). Additional VI pairs and detailed PDP layouts are provided in Supplementary Figures S4, 296 
S6, S8, and S10. 297 

3.2.1. Degradation 298 

PI analysis (Supplementary Figure S3) identifies NDRE as the most influential VI for degradation 299 
prediction, particularly significant in Rare zones, while GARI and GRNDVI also consistently rank high 300 
in fragmented contexts. 301 

PDPs for NDRE + GARI (Figure 5) illustrate: 302 

• Core zones consistently represent natural or semi-natural forest conditions, exhibiting minimal 303 
degradation signals throughout the studied period. 304 
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• Transitional zones progressively shift towards distorted or strongly degraded forest states by 305 
2024, evidenced by brighter regions indicating intensified canopy stress and pigment 306 
deterioration. 307 

• Rare zones prominently feature transformed or devastated conditions, as indicated by 308 
pronounced bright regions, clearly reflecting increased fragmentation-induced ecological stress 309 
and significant canopy loss. 310 

Alternative influential indices, such as GRNDVI and NDWI, demonstrate similar ecological trends, 311 
particularly in Rare zones, as shown in Supplementary Figure S4. 312 

 313 

Figure 5. PDPs illustrating degradation using NDRE + GARI across Core, Transitional, and Rare zones 314 
(2016, 2020, 2024). Brighter areas indicate more severe degradation (see Supplementary Table S2 for 315 
degradation classes). 316 

3.2.2. Moisture Content 317 

PI rankings (Supplementary Figure S5) highlight NDMI and NDRE as key predictors, notably during 318 
drier conditions (2020), when moisture stress intensified in Rare zones. 319 

PDPs for NDRE + NDMI (Figure 6) show: 320 

• Core zones predominantly characterized by fresh or moist soil conditions, maintaining 321 
consistent moisture levels across years. 322 
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• Transitional zones display increasing variability and heterogeneity, transitioning between 323 
moist and fresh soils by 2024, indicative of altered hydrological patterns due to fragmentation. 324 

• Rare zones exhibit clear transitions towards drier or partially drained soil conditions, signaling 325 
intensified moisture stress associated with exposure and fragmentation. 326 

Alternative indices sensitive to moisture variations, including NDWI and CIred-edge, are presented in 327 
Supplementary Figure S6. 328 

 329 

Figure 6. PDPs depicting moisture content using NDRE + NDMI across Core, Transitional, and Rare 330 
zones (2016, 2020, 2024). Brighter regions represent drier conditions (refer to Supplementary Table S3 331 
for detailed moisture classes). 332 

3.2.3. Site Type 333 

PI analysis (Supplementary Figure S7) emphasizes NDVI and NDRE as the primary predictors for site 334 
type classification, with CIred-edge becoming significant particularly in fragmented forest zones. 335 

PDPs for NDVI + NDRE (Figure 7) reveal: 336 

• Core zones consistently associated with fresh or moist broadleaf and coniferous forest habitats, 337 
reflecting stable ecological conditions. 338 

• Transitional zones exhibit intermediate habitat heterogeneity, progressively shifting towards 339 
mixed moist broadleaf or swamp forest types by 2024. 340 
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• Rare zones present pronounced contrasts, notably transitioning towards bog forests and riparian 341 
floodplain habitats, indicative of significant ecological disruptions linked to fragmentation. 342 

Supplementary Figure S8 provides additional vegetation index pairs used for site type prediction. 343 

 344 

Figure 7. PDPs illustrating site type conditions using NDVI + NDRE across Core, Transitional, and 345 
Rare zones (2016, 2020, 2024). Brighter regions indicate habitats with more fertile and fresh conditions, 346 
whereas darker regions represent bog or swamp habitats (see Supplementary Table S4 for detailed site 347 
type categories). 348 

3.2.4. Stand Age 349 

PI analysis (Supplementary Figure S9) identifies CVI as the leading predictor of stand age in Core and 350 
Transitional zones, while NDRE emerges as essential in Rare zones, capturing younger regrowth 351 
dynamics. 352 

PDPs for CVI + NDRE (Figure 8) illustrate: 353 

• Core zones prominently represent older, mature stands, indicated by stable bright regions 354 
reflecting relatively undisturbed forest conditions. 355 

• Transitional zones highlight varied age structures, showing mixed-age stands reflective of 356 
selective disturbances and ongoing regrowth. 357 

• Rare zones clearly show younger stands interspersed with isolated older remnants, consistent 358 
with fragmented forest landscapes and repeated disturbances. 359 
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Supplementary Figure S10 provides additional vegetation index pairings utilized for stand age 360 
prediction. 361 

 362 

Figure 8. PDPs illustrating stand age patterns using CVI + NDRE across Core, Transitional, and Rare 363 
zones (2016, 2020, 2024). Brighter regions indicate older forest stands. 364 

4. Discussion 365 

4.1. Ecological Drivers and Degradation Trends Across FAD Zones 366 

Across fragmentation zones, NDRE, GARI, and GRNDVI consistently captured canopy stress, 367 
reflecting their sensitivity to pigment decline and early warning signals (Lausch et al., 2016; Rossini et 368 
al., 2006). Treating degradation as a continuous gradient helped reveal subtle shifts before major 369 
structural change, in line with trait-based remote sensing calls for anticipatory indicators (Trumbore et 370 
al., 2015; Wang et al., 2010). 371 

In Core areas, PDPs were notably stable—consistent with buffered microclimates and structural 372 
continuity that reduce edge stress and aid dispersal of wide-ranging species (Hanski, 2015). By contrast, 373 
Transitional and Rare zones showed steeper, more variable PDP gradients, symptomatic of heightened 374 
microclimatic variability, nutrient depletion, and wind exposure near edges (Briant et al., 2010; Arroyo-375 
Rodríguez et al., 2017). These patterns echo global evidence that edge effects accelerate pigment 376 
degradation and moisture stress, especially where habitat falls below critical thresholds of ~20–30% 377 
(Haddad et al., 2015; Fahrig, 2017). 378 
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The strong performance of NDRE and GARI in Rare zones supports their use as operational early-379 
warning indicators of functional decline, enabling interventions before biomass losses accrue. By 380 
linking pigment-sensitive indices to fragmentation gradients, this study shows how open-access 381 
Sentinel-2 data can form a reproducible early-warning system for canopy decline, directly addressing 382 
the challenge of detecting subtle degradation before structural loss becomes visible. 383 

4.2. Moisture Dynamics and Spectral Predictability 384 

Moisture responses diverged by zone: NDMI and NDRE consistently ranked as the most informative 385 
indices for soil–canopy interactions under disturbance (Peters et al., 2007; He et al., 2013). Core zones 386 
retained stable, fresh–moist conditions—consistent with closed canopies and mature root systems that 387 
buffer drought (Schwartz et al., 2019). Rare zones, in contrast, displayed sharp moisture contrasts and 388 
higher variability, pointing to localized drying under reduced canopy cover and altered 389 
evapotranspiration—hallmarks of fragmentation-driven desiccation risk (Briant et al., 2010; Wei et al., 390 
2022). 391 

A brightening of PDP signals in Rare areas by 2024 may indicate secondary hydrological recovery after 392 
thinning or disturbance, a dynamic noted elsewhere (He et al., 2013; Schwartz et al., 2019). These results 393 
emphasize the importance of rewilding Rare zones with deeper-rooted, mixed plantings to enhance soil-394 
water retention, and adaptive thinning in Transitional zones to dampen extremes. The clear separation 395 
of hydrological dynamics across zones also underscores the value of FAD-based stratification, which 396 
disentangles fragmentation signals otherwise obscured in whole-forest averages, offering a scalable 397 
approach for climate resilience assessments. 398 

4.3. Site Type as a Landscape Filter 399 

Fragmentation reshaped habitat quality gradients, with NDVI and NDRE emerging as primary 400 
predictors and CIred-edge distinguishing pigment-related fertility differences. Core zones exhibited 401 
homogeneous PDP responses—consistent with fertile, moist broadleaf–conifer conditions and the value 402 
of intact interiors (Lausch et al., 2017). Transitional and Rare zones, however, showed marked 403 
heterogeneity, reflecting shifts in soils and successional stages driven by disturbance histories (Nguyen 404 
et al., 2020; Budniak & Zięba, 2022). 405 

Modeling site type on a continuous scale aided comparative reading across zones but may blur fine-406 
scale heterogeneity—particularly in Rare fragments mixing pioneer regrowth with remnant mature 407 
patches. A pragmatic extension is to combine vegetation indices with LiDAR-derived structure or 408 
detailed soils to sharpen habitat delineation (Alonzo et al., 2016). In extensive forests lacking detailed 409 
inventories, NDVI and NDRE still offer an efficient proxy for fertility mapping, while targeted ground 410 
checks in high-risk or disturbed areas remain necessary. The framework therefore advances forest 411 
ecology by operationalizing fragmentation-sensitive indices into zone-specific habitat filters, bridging 412 
spatial modeling with practical monitoring. 413 

4.4. Stand Age and Structural Maturity 414 

Stand age patterns linked CVI and NDRE closely with canopy developmental stages, reflecting pigment 415 
dynamics during forest succession. Core and Transitional zones showed stable PDPs indicative of 416 
mature and uniform stand ages, confirming that optical indices remain reliable age predictors in low-417 
disturbance contexts (Wulder et al., 2009). Rare zones, however, posed greater predictive challenges: 418 
regenerating edges often spectrally resembled older stands, risking misinterpretation of maturity—a 419 
difficulty previously noted in fragmented forests (Dobor et al., 2018). 420 

Incorporating structural metrics from LiDAR or GEDI alongside vegetation indices could significantly 421 
enhance accuracy in fragmented, heterogeneous landscapes (Bauer et al., 2024; Burns, Hakkenberg, & 422 
Goetz, 2024). In practice, prioritizing Rare zones for integrated structural–spectral assessment can help 423 



16 
 

avoid misallocation of restoration resources to stands that appear mature optically but remain 424 
ecologically young. 425 

4.5. From Process Detection to Management Application 426 

The fragmentation processes identified in this study translate directly into zone-specific management 427 
strategies. Core zones, with their stable conditions, require strict protection to sustain carbon 428 
sequestration potential and safeguard interior specialists dependent on large, contiguous habitats (Blake 429 
and Karr, 1984; Fahrig et al., 2019). Transitional zones, which exhibited intermediate and variable 430 
ecological responses, call for adaptive approaches such as selective thinning and corridor creation to 431 
stabilize pigment and moisture dynamics, echoing recommendations from Fletcher et al. (2018). Rare 432 
zones, by contrast, showed pronounced ecological stress, emphasizing the need for targeted restoration 433 
and passive rewilding to restore connectivity, reduce desiccation risk, and support the persistence of 434 
edge-sensitive species. 435 

This framework is consistent with global findings that even small, well-managed patches can 436 
significantly strengthen connectivity and biodiversity outcomes across fragmented landscapes (Fahrig, 437 
2017; González-Ávila et al., 2023). Remote sensing adds a practical dimension to these strategies: 438 
indices such as NDRE, NDMI, and NDVI provide cost-effective monitoring tools, enabling managers 439 
to detect stress early and act before irreversible declines occur. Because the data used are open-access 440 
and globally available, the same playbook—protect Core, adapt in Transitional, restore Rare—can be 441 
readily applied to other temperate forest systems. 442 

4.6. Limitations and Methodological Considerations 443 

Several methodological considerations temper the interpretation of these results. Treating categorical 444 
FEAs (degradation, moisture, site type) as continuous variables facilitated the detection of ecological 445 
gradients, yet risks obscuring sharp thresholds—especially in edge-dominated Rare zones where 446 
variability in species composition, soil conditions, wind exposure, and microclimatic dynamics may 447 
play disproportionate roles. This limitation has practical implications, as restoration often depends on 448 
identifying precise thresholds beyond which ecological collapse is likely. 449 

Resolution presents another challenge. Sentinel-2’s 10 m pixel size may fail to capture microhabitat 450 
heterogeneity, particularly in species-rich stands or highly fragmented mosaics. As Alonzo et al. (2016) 451 
and Burns et al. (2024) note, integrating UAV- or LiDAR-derived data could complement spectral 452 
indices by providing finer structural detail. Managers may therefore require such information before 453 
committing restoration resources in heterogeneous forests. 454 

Finally, transferability beyond temperate pine-dominated systems may be constrained. In more diverse 455 
tropical or broadleaf systems, spectral confusion between canopy species can reduce predictive 456 
accuracy, necessitating careful local calibration (Fahrig, 2003; Lausch et al., 2017). 457 

Despite these caveats, the integration of Extra Trees with permutation importance and PDPs proved 458 
effective in linking fragmentation to ecological processes. The workflow itself—built on open-access 459 
data and reproducible tools—offers a scalable template for forest monitoring. Future developments 460 
could involve hybrid approaches combining climate, soil, and structural covariates, or radiative transfer 461 
model–machine learning hybrids, to refine predictions and improve resilience forecasting under diverse 462 
disturbance regimes. 463 

5. Conclusion 464 

This study demonstrates how fragmentation reshapes key ecological processes—degradation, moisture 465 
dynamics, habitat quality, and structural maturity—across Core, Transitional, and Rare zones in the 466 
Tuchola Forest Biosphere Reserve, using Sentinel-2 vegetation indices. Pigment-sensitive indices such 467 
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as NDRE and GARI emerged as early-warning signals of degradation in Rare zones, where edge stress 468 
and connectivity loss precede structural decline, particularly affecting forest interior specialists reliant 469 
on stable habitats (Blake and Karr, 1984). Moisture-sensitive indices like NDMI captured hydrological 470 
stability in Core zones and sharp variability in Rare areas, reflecting cumulative disturbance and rooting-471 
depth limitations tied to the monodominant Scots pine structure, which reduces beta-diversity and 472 
stabilizes responses but heightens edge vulnerability (Fahrig et al., 2019; Wulder et al., 2009). Site type 473 
predictions distinguished fertile core habitats from fragmented mosaics, while stand age modeling 474 
revealed a critical risk of misinterpreting edge regrowth as maturity—highlighting the need to integrate 475 
structural metrics for accurate assessment. 476 

By combining FAD-based zoning with interpretable machine learning (Extra Trees and PDPs), this study 477 
establishes an operational framework for linking spectral traits to ecological processes under 478 
fragmentation. Beyond diagnosis, the results translate into clear, zone-specific strategies: (1) strict 479 
protection of Core zones to sustain carbon storage and interior biodiversity; (2) adaptive management 480 
in Transitional areas through corridor planting and selective thinning; and (3) intensive restoration of 481 
Rare zones via passive rewilding and stepping-stone creation to reduce edge stress and reconnect 482 
habitats. 483 

Future research should validate this framework across diverse ecological contexts and explore 484 
integration with structural and climatic datasets to enhance predictive accuracy and applicability. 485 
Because it is grounded in open-access Sentinel-2 data and reproducible workflows, the approach is 486 
readily transferable to other temperate and boreal landscapes. In doing so, it aligns with global 487 
biodiversity and climate targets by enabling cost-effective, scalable monitoring of fragmentation 488 
impacts. Ultimately, integrating vegetation indices with zone-based planning transforms remote sensing 489 
into a practical tool for anticipating ecological decline and guiding resilience-oriented forest 490 
management under accelerating climate and land-use pressures (González-Ávila et al., 2023; Wang et 491 
al., 2025). 492 
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Supplementary Material for How Does Fragmentation Reshape Forests? Tracking Dominant 691 
Ecological Processes Across Core, Transitional, and Rare Zones 692 

 693 
 694 

695 
Supplementary Figure S1. Spatial persistence and transitions of Core, Rare, and Transitional zones in 696 
TFBR across 2016, 2020, and 2024. Color hues indicate temporal overlap and shifts of zone types, 697 
offering insight into fragmentation trajectory over time. 698 
 699 
Supplementary Table S1. Vegetation Indices Used in This Study with Corresponding Formulas 700 
and Ecological Relevance 701 
The table summarizes the vegetation indices computed from Sentinel-2 bands (B2–B11), grouped by 702 
their functional ecological domains. Each formula reflects the actual implementation used in this study, 703 
and the indices are categorized based on their relevance to greenness/biomass, moisture stress, pigment 704 
content, and soil or shadow correction. 705 
 706 

  Greenness / Biomass Indices 707 

Index Formula Notes 

NDVI (B8 − B4) / (B8 + B4) Normalized Difference Vegetation Index 

EVI 2.5 × (B8 − B4) / (B8 + 6 × B4 − 7.5 × 

B2 + 1) 

Enhanced Vegetation Index using Blue for 

atmospheric correction 

EVI2 2.5 × (B8 − B4) / (B8 + 2.4 × B4 + 1) Two-band EVI, avoids blue band 

GNDVI (B8 − B3) / (B8 + B3) Green NDVI, more sensitive to chlorophyll 

content 

GRNDVI (B5 − B3) / (B5 + B3) Red Edge NDVI, useful for early stress 

detection 

GSAVI ((B8 − B4) × (1 + 0.5)) / (B8 + B4 + 0.5) Green Soil-Adjusted Vegetation Index, L = 

0.5 

LAI 3.618 × ((B8 − B4) / (B8 + 6 × B4 − 7.5 

× B2 + 1)) − 0.118 

Proxy for Leaf Area Index, derived from 

EVI 

DVI B8 − B4 Difference Vegetation Index, simple 

reflectance gap 

 708 

  Moisture Stress Indices 709 

Index Formula Notes 
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NDMI (B8 − B11) / (B8 + B11) Normalized Difference Moisture Index using 

NIR and SWIR 

GVMI (B8 + 0.1 − (B11 + 0.02)) / (B8 + 0.1 + 

(B11 + 0.02)) 

Global Vegetation Moisture Index, atmospheric-

corrected variant 

 710 

  Pigment / Chlorophyll Indices 711 

Index Formula Notes 

GARI (B8 − (B3 − (B2 − B4))) / (B8 + (B3 − (B2 − 

B4))) 

Green Atmospherically Resistant 

Index, sensitive to chlorophyll 

MCARI ((B5 − B4) − 0.2 × (B5 − B3)) × (B5 / B4) Modified Chlorophyll Absorption 

Ratio Index 

MTVI2 1.5 × [1.2 × (B5 − B3) − 2.5 × (B4 − B3)] / 

√[(2 × B5 + 1)² − (6 × B5 − 5 × √B4) − 0.5] 

Modified Triangular Vegetation Index 

2 

NDRE (B8 − B5) / (B8 + B5) Normalized Difference Red Edge 

Index 

GBNDVI (B8 − (B3 + B2)) / (B8 + (B3 + B2)) Green-Blue NDVI, sensitive to 

nutrient/pigment shifts 

 712 

  Soil / Shadow Correction Indices 713 

Index Formula Notes 

CVI (B8 × B4) / (B3²) Chlorophyll Vegetation Index, proxy for 

vegetation cover density 

MSAVI (2 × B8 + 1 − √[(2 × B8 + 1)² − 8 × 

(B8 − B4)]) / 2 

Modified Soil-Adjusted Vegetation Index, soil 

background minimized 

 714 

Band Mapping (Sentinel-2) 715 

• B2 – Blue (490 nm) 716 
• B3 – Green (560 nm) 717 
• B4 – Red (665 nm) 718 
• B5 – Red Edge 1 (705 nm) 719 
• B8 – Near Infrared (842 nm) 720 
• B11 – Shortwave Infrared (1610 nm) 721 

 722 
Supplementary Table S2. Degradation Codebook 723 

Code English 

Description 

Assigned 

Number 

D1 Degraded 1 

D2 Strongly 

degraded 

2 

D3 Devastated 3 

N1 Natural 4 
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N2 Semi-natural 5 

Z1 Distorted 6 

Z2 Strongly 

distorted 

7 

Z3 Transformed 8 

 724 
 725 
Supplementary Table S3. Moisture Content Codebook 726 

Code Description Assigned 

Number 

BBM Very wet bog 1 

BM Wet bog 2 

BO Drained bog 3 

BSO Strongly drained 

bog 

4 

SU Dry soils 5 

SŚ Very fresh soils 6 

WO Drained moist 

soils 

7 

WSW Very moist soils 8 

WW Moist soils 9 

ŁP Floodplain forest 

(flooded/drained) 

10 

ŁZ Floodplain forest 

(flooded) 

11 

Ś Fresh soils 12 

Supplementary Table S4. Site Type Codebook 727 

Code Description Assigned 

Number 

BB Bog 

coniferous 

forest 

1 
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BMB Mixed bog 

forest 

2 

BMW Mixed moist 

coniferous 

forest 

3 

BMŚW Mixed fresh 

coniferous 

forest 

4 

BS Dry 

coniferous 

forest 

5 

BW Moist 

coniferous 

forest 

6 

BŚW Fresh 

coniferous 

forest 

7 

LMB Mixed swamp 

forest 

8 

LMW Mixed moist 

broadleaf 

forest 

9 

LMŚW Mixed fresh 

broadleaf 

forest 

10 

LW Moist 

broadleaf 

forest 

11 

LŁ Riparian 

floodplain 

forest 

12 

LŚW Fresh 

broadleaf 

forest 

13 

OL Alder swamp 

forest 

14 

OLJ Ash-alder 

swamp forest 

15 
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Supplementary Table S5: Extra Trees Settings for Predicting Field-Based Ecological Attributes 728 

Below are the tuned settings for Extra Trees models, organized by field-based ecological attribute 729 
(FEA), fragmentation zone (Core, Transitional, Rare), and year (2016, 2020, 2024). Settings include: 730 
Number of Trees (trees in the model), Features for Decisions (number of input features considered), Min 731 
Samples to Split (minimum samples to split a decision point), and Min Samples per Node (minimum 732 
samples in a final node). 733 

a) Degradation 734 

Zone Year Number of 

Trees 

Features for 

Decisions 

Min Samples 

to Split 

Min Samples 

per Node 

Rare 2016 1000 16 2 1 

Rare 2020 1000 9 2 1 

Rare 2024 1000 9 2 1 

Transitional 2016 1000 17 18 1 

Transitional 2020 1000 17 20 4 

Transitional 2024 1000 17 20 4 

Core 2016 1000 15 20 1 

Core 2020 878 17 6 10 

Core 2024 474 16 18 7 

b) Stand Age 735 

Zone Year Number of 

Trees 

Features for 

Decisions 

Min Samples 

to Split 

Min Samples 

per Node 

Rare 2016 1000 13 2 1 

Rare 2020 1000 11 10 1 

Rare 2024 1000 13 10 1 

Transitional 2016 978 10 20 1 

Transitional 2020 1000 8 20 2 

Transitional 2024 1000 10 20 1 

Core 2016 1000 12 20 1 

Core 2020 1000 9 20 5 

Core 2024 1000 12 20 1 

c) Moisture Content 736 

Zone Year Number of 

Trees 

Features for 

Decisions 

Min Samples 

to Split 

Min Samples 

per Node 

Transitional 2016 822 14 13 3 

Transitional 2020 1000 15 20 4 

Transitional 2024 822 14 13 3 

Core 2016 822 14 13 3 

Core 2020 1000 17 20 4 

Core 2024 1000 17 20 5 

d) Site Type 737 
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Zone Year Number of 

Trees 

Features for 

Decisions 

Min Samples 

to Split 

Min Samples 

per Node 

Rare 2016 1000 17 2 1 

Rare 2020 1000 9 6 1 

Rare 2024 1000 17 2 2 

Transitional 2016 1000 17 20 1 

Transitional 2020 1000 17 20 5 

Transitional 2024 1000 17 20 5 

Core 2016 1000 17 20 1 

Core 2020 1000 17 20 4 

Core 2024 1000 12 18 1 

 738 
 739 
Supplementary Table S6: Mean Squared Error (MSE) and Mean Absolute Error (MAE) values from 740 
Extra Trees and LightGBM models trained to predict four ecological ground indices (Degradation, 741 
Moisture Content, Site Type, and Stand Age) across FAD fragmentation classes (Rare, Transitional, 742 
Core) and years (2016, 2020, 2024). Values are presented separately for training and test sets. These 743 
results guided model selection for subsequent feature importance and interpretability analyses. 744 
 745 

Ground 

validation 

yea

r 

metr

ic 
set 

rare transitional core 

Extra 

Trees 
LGBM 

Extra 

Trees 
LGBM 

Extra 

Trees 
LGBM 

Degradation 

201

6 

MSE 

trai

n 
0.0000 0.3167 0.3800 0.8457 0.2979 0.5777 

test 0.4911 0.5279 0.9247 0.9420 0.6316 0.6417 

MA

E 

trai

n 
0.0000 0.4306 0.5276 0.7977 0.4263 0.5985 

test 0.5245 0.5625 0.8286 0.8423 0.6257 0.6311 

202

0 

MSE 

trai

n 
0.0000 0.4801 0.4824 0.8213 0.5137 0.7235 

test 0.6481 0.6825 0.8907 0.8954 0.7463 0.7521 

MA

E 

trai

n 
0.0000 0.5846 0.6215 0.8175 0.6061 0.7226 

test 0.6711 0.7014 0.8478 0.8534 0.7316 0.7365 

202

4 

MSE 

trai

n 
0.0000 0.4850 0.5011 0.8782 0.4142 0.6342 

test 0.7421 0.7705 0.9254 0.9338 0.6733 0.6781 

MA

E 

trai

n 
0.0000 0.5970 0.6422 0.8568 0.5240 0.6501 

test 0.7335 0.7557 0.8760 0.8838 0.6701 0.6724 

Moisture 

Content 

201

6 

MSE 

trai

n 
0.0000 1.0585 1.7015 3.2823 0.5173 0.8878 

test 3.3411 3.7551 3.5456 3.6115 1.0064 1.0239 

MA

E 

trai

n 
0.0000 0.4931 0.6683 0.9437 0.1860 0.2468 

test 0.8570 0.9317 0.9812 0.9886 0.2665 0.2654 

202

0 
MSE 

trai

n 
0.3579 2.1324 2.4190 3.5762 0.8985 1.3300 

test 3.2964 3.4204 3.8757 3.9129 1.3901 1.3988 
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MA

E 

trai

n 
0.2535 0.6679 0.7522 0.9225 0.2729 0.3350 

test 0.8222 0.8384 0.9649 0.9644 0.3444 0.3428 

202

4 

MSE 

trai

n 
0.3928 3.1530 2.0689 3.8898 0.7678 1.0182 

test 4.0947 4.1929 4.1683 4.1982 1.1778 1.1846 

MA

E 

trai

n 
0.2793 0.8529 0.7280 1.0086 0.2345 0.2711 

test 0.9463 0.9663 1.0519 1.0451 0.2950 0.2925 

Site Type 

201

6 

MSE 

trai

n 
0.0000 1.9109 2.2577 4.7335 0.9002 1.8913 

test 5.2886 5.6835 5.2355 5.3250 2.0667 2.1100 

MA

E 

trai

n 
0.0000 1.0254 1.2079 1.7744 0.6082 0.9005 

test 1.7347 1.8018 1.8396 1.8715 0.9208 0.9399 

202

0 

MSE 

trai

n 
0.5164 3.0805 3.0707 4.9907 0.9378 1.5775 

test 4.8349 5.0059 5.3062 5.3329 1.6627 1.6764 

MA

E 

trai

n 
0.5562 1.4202 1.4073 1.8230 0.5783 0.7604 

test 1.7519 1.7903 1.8583 1.8765 0.7718 0.7782 

202

4 

MSE 

trai

n 
0.3550 3.2902 3.1324 5.1645 0.8189 1.7311 

test 5.3478 5.4392 5.5047 5.5089 1.8546 1.8734 

MA

E 

trai

n 
0.4502 1.4702 1.4347 1.8707 0.5519 0.8120 

test 1.8459 1.8957 1.9095 1.9253 0.8335 0.8381 

Stand Age 

201

6 

MSE 

trai

n 
0.0000 

268.95

10 
405.2102 

769.396

7 
281.4542 

562.26

17 

test 747.3080 
793.07

72 
845.6752 

856.314

4 
608.6250 

618.27

95 

MA

E 

trai

n 
0.0000 

11.954

4 
16.0089 22.1318 12.7420 

18.136

9 

test 19.4408 
20.288

2 
23.0373 23.2354 18.6947 

18.915

5 

202

0 

MSE 

trai

n 
169.4794 

462.74

94 
615.2930 

1030.30

12 
431.9596 

651.39

72 

test 652.9835 
672.69

03 

1094.188

6 

1098.02

16 
673.1787 

678.05

56 

MA

E 

trai

n 
9.0716 

15.473

1 
19.6523 25.5795 16.0512 

19.911

5 

test 18.1192 
18.519

7 
26.2680 26.3333 20.1023 

20.230

0 

202

4 

MSE 

trai

n 
141.7045 

412.31

92 
569.7954 

1097.18

61 
327.6254 

654.17

38 

test 586.8752 
600.78

07 

1183.474

7 

1189.85

87 
709.3864 

713.35

02 

MA

E 

trai

n 
8.2464 

14.458

4 
18.9441 26.3012 13.8434 

19.635

9 

test 17.0806 
17.196

7 
27.2026 27.2870 20.2769 

20.362

5 

 746 
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 747 
 748 

 749 
Supplementary Figure S2. Boxplots of prediction errors on the train set for Extra Trees (ET) and 750 
LightGBM (LGBM) models across three forest fragmentation classes (Rare, Transitional, Core) and 751 
years (2016, 2020, 2024), for each of the four ground indices 752 



30 
 

 753 
Supplementary Figure S3: Partial Importance (PI) grid showing the relative importance of vegetation 754 
indices used in predicting degradation levels across fragmentation classes (Core, Transitional, Rare) 755 
and years (2016, 2020, 2024), based on Extra Trees regressors. NDWI, GNDVI, and NDRE frequently 756 
emerged as key contributors. 757 

 758 

Supplementary Figure S4. Additional PDP layouts for degradation prediction, illustrating alternative 759 
VI pairs across zones and years. 760 
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 761 
 762 

 763 
Supplementary Figure S5. Partial Importance (PI) grid for moisture content, summarizing vegetation 764 
index relevance for moisture predictions across zones and years. NDWI and NDRE emerged as the most 765 
important indices, particularly in less fragmented areas. 766 

 767 
Supplementary Figure S6. Additional PDPs for moisture content, displaying alternative vegetation 768 
index pairings used to model moisture variation across FAD zones and time. 769 
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 770 

 771 
Supplementary Figure S7. Partial Importance (PI) grid showing the relative contribution of vegetation 772 
indices to Site Type predictions across fragmentation classes (Core, Transitional, Rare) and years (2016, 773 
2020, 2024), based on Extra Trees regressors. NDVI, CIre, and NDWI emerged as consistent top 774 
predictors. 775 
 776 

777 
Supplementary Figure S8. PDP layouts for alternate VI pairs used for Site Type prediction across 778 
different FAD zones and years. 779 
 780 
 781 
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 782 
Supplementary Figure S9. Partial Importance (PI) grid showing the relative importance of vegetation 783 
indices used in predicting stand age across fragmentation classes (Core, Transitional, Rare) and years 784 
(2016, 2020, 2024), based on Extra Trees regressors. CIre, NDVI, and NDRE emerged as key predictors, 785 
with CIre particularly influential in fragmented areas. 786 

 787 
Supplementary Figure S10. PDP layouts for alternate VI pairs used for stand age prediction across 788 
different FAD zones and years. 789 

 790 
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