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Once, | heard an Indian mystic say that if you give a flower to a scientist, the first instinct is
to take it apart—study its parts, its functions, its design. In doing so, we uncover its structure
but lose the soul of the flower.

| have always feared becoming that scientist.
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Abstract

Forest fragmentation significantly affects biodiversity, carbon sequestration, and ecosystem
resilience. Yet temperate forests—such as those in northern Poland within the Tuchola Forest
Biosphere Reserve (TFBR; Polish: RBBT)—remain understudied compared with tropical
systems. This dissertation analyzes fragmentation dynamics in the TFBR, a landscape shaped
by monocultural forest management, strong land-use pressure, and extreme events, notably
the August 2017 windstorm. Using satellite remote sensing at multiple resolutions (Sentinel-
2, ALOS PALSAR, Landsat-8, CORINE), advanced landscape metrics (e.g., Forest Area
Density, FAD), and machine-learning methods, | examine multiscale and multitemporal
patterns, ecological consequences, and monitoring strategies to support adaptive protection
and increase resilience.

The thesis addresses four questions: (i) How have methods for assessing forest fragmentation
evolved? (ii) How do fragmentation and multiscale disturbances alter forest structure and
landscape coherence? (iii) Which ecological processes dominate across fragmentation zones
(core, transition, sparse)? (iv) Which vegetation indicators best support monitoring,
prioritization, and conservation effectiveness? Across five articles, the dissertation: traces a
methodological shift from patch-based metrics to connectivity-oriented approaches (Article
1); establishes reference conditions for pre-disturbance baselines and the onset of
fragmentation assessment (Article 2); quantifies post-2017 loss of core forest and expansion
of edge zones (Article 3); maps susceptibility to hurricane-force winds using a proprietary
fragmentation-risk framework that highlights interfaces with agricultural land (Article 4); and
identifies water stress and related processes using Sentinel-2 indices and machine learning
(Article 5).

This work provides a scalable, open analytical framework that integrates remote sensing,
landscape metrics, and machine learning to assess structural and functional fragmentation,
with applications to core-area protection and corridor restoration. Limitations include the lack
of LIiDAR for 3-D validation, dependence on detailed inventory data, and computational
constraints for large-scale modeling. Future research should incorporate voxel-based metrics,
deep learning, and continuous validation with high-quality field data.

The methodology is transferable beyond the Tuchola Forest Biosphere Reserve to temperate
and boreal forests using cloud platforms (e.g., Google Earth Engine). It supports the
Kunming—Montreal Global Biodiversity Framework (30x30 by 2030) and REDD+ MRV
objectives, and advances SDGs 15 (Life on Land), 13 (Climate Action), and 6 (Clean Water
and Sanitation) by providing practical elements for biodiversity conservation and climate
adaptation in temperate forests.

Keywords: Forest fragmentation, landscape metrics, connectivity, remote sensing, machine
learning, Tuchola Forest, TFBR, temperate forests, conservation planning, Kunming—Montreal
Framework, REDD+ MRV.
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Streszczenie

Fragmentacja lasow znaczaco wplywa na bioréznorodnos¢, sekwestracje wegla i odpornos¢ ekosystemow,
jednak lasy strefy umiarkowanej, takie jak te potozone w poocnej Polsce w granicach Rezerwatu Biosfery
Bory Tucholskie (RBBT), pozostaja niedostatecznie zbadane w poréwnaniu z innymi systemami, np.
tropikalnymi. Niniejsza rozprawa analizuje dynamike fragmentacji w RBBT, krajobrazie uksztattowanym
przez monokulturowg gospodarke lesna, intensywna presj¢ uzytkowania ziemi oraz ekstremalne zjawiska
klimatyczne, takie jak nawahica z sierpnia 2017 roku. Wykorzystujac teledetekcje satelitarng rdznej
rozdzielczosci (Sentinel-2, PALSAR, Landsat-8, CORINE), zaawansowane metryki krajobrazowe (np.
gestos¢ obszaru lesnego, ang. forest area density; FAD) oraz uczenie maszynowe, przeanalizowano wzorce
wieloskalowe 1 wieloczasowe, konsekwencje ekologiczne oraz strategie monitorowania, ktore powinny
wspiera¢ adaptacyjng ochrone srodowiska i zwigksza¢ odpornos¢ ekologiczng.

Praca odpowiada na cztery pytania badawcze: (i) Jak ewoluowaty metody oceny i analizy fragmentacji
laséw? (i) Jak fragmentacja i wieloskalowe zaburzenia zmieniaja strukture i spojnos¢ krajobrazu lesnego?
(1i1) Jakie procesy ekologiczne dominuja w wyrdznianych strefach fragmentacji, tj. strefie rdzenne;j,
przejsciowej 1 rzadkiej? (iv) Ktore wskazniki wegetacji najlepiej wspierajg monitorowanie oraz
priorytetyzacje i efektywno$¢ dziatan ochronnych? Podsumowujac pig¢ zalaczonych artykutow, rozprawa
doktorska prezentuje rozwoj metodologii od metryk opartych na ptatach do podejscia zorientowanego na
spojnosci krajobrazu (Artykul 1), wskazuje poziomy odniesienia przed wystapieniem zaburzen w
krajobrazie i rozpoczeciem oceny fragmentacji (Artykut 2), szacuje utratg zwartych (rdzennych) obszarow
lesnych i ekspansje stref krawgdziowych w krajobrazie po wystgpieniu nawatnicy w 2017 roku (Artykut
3), wskazuje (mapuje) obszary wysokiego ryzyka na skutki huraganowych wiatrow, spowodowane
bliskoscig gruntow rolnych i podatng ekspozycja terenu za pomoca autorskiej koncepcji oceny krajobrazu
z wykorzystaniem ,,modelu podatnosci na fragmentacj¢” (ang. Fragmentation Susceptibility Modeling
Framework) (Artykut 4) oraz identyfikuje stres wodny i inne wybrane parametry, jako efekt dominujacych
procesow ekologicznych analizowanych przy wykorzystaniu wskaznikoéw teledetekcyjnych opartych na
danych obrazowych Sentinel-2 i metodach uczenia maszynowego (Artykut 5).

Rozprawa doktorska jest pionierskim opracowaniem, ktore wykorzystuje skalowalne, otwarte ramy
analityczne, integrujace teledetekcje satelitarng, metryki krajobrazowe i uczenie maszynowe w celu
analizy fragmentacji pod katem struktury i funkcjonalnosci, zwlaszcza w kontekscie celowej
ochrony stref rdzeniowych i odbudowy korytarzy ekologicznych. W trakcie prac zauwazono
ograniczenia wynikajace z braku danych LiDAR do walidacji modelu 3D, zalezno$¢ wynikow
analiz od szczegdtowych danych inwentaryzacyjnych oraz ograniczenia obliczeniowe w
tworzonym modelowaniu wielkoskalowym. Przyszte badania nad podjeta problematyka, zwtaszcza
w zakresie ekologicznym, powinny juz wykorzystywaé¢ metryki oparte na wokselach, uczenie
glebokie i ciggla walidacj¢ modelu w oparciu o doktadne dane terenowe.

Opracowana metodologia ma zastosowanie takze poza obszarem analizy — Rezerwatem Biosfery Bory
Tucholskie, w monitorowanie lasow umiarkowanych i borealnych z wykorzystaniem danych satelitarnych
i platform chmurowych (np. Google Earth Engine; GEE). Narzgdzia te wspierajg globalne ramy
roznorodnosci biologicznej zawarte w ramach Porozumienia Kunming-Montreal (2022), ktore zaktada
odbudowe do 2030 roku 30% zdegradowanych ekosystemow i ochrone 30% obszaréw ladowych, oraz
dziatania zapisane w protokole REDD+ (Reducing Emissions from Deforestation and Forest
Degradation) w celu pomiaru i monitorowania pokrywy le$nej oraz zapasow wegla z wykorzystaniem
mechanizmu MRV (Measurement, Reporting and Verification) dla tagodzenia zmian klimatycznych.
Praca doktorska wspiera Cele Zréownowazonego Rozwoju ONZ (ang. Sustainable Development Goals UN;
SDG) w szczegolnosci SDG 15 (Zycie na lgdzie), SDG 13 (Dziatania w dziedzinie klimatu) oraz SDG 6
(Czysta woda i warunki sanitarne), dostarczajac praktycznych elementow strategii dla ochrony
bior6znorodnosci i adaptacji klimatycznej w lasach strefy umiarkowane;.

Stowa kluczowe: fragmentacja lasow, metryki krajobrazowe, spojnos¢ krajobrazu, teledetekcja
satelitarna, uczenie maszynowe, Bory Tucholskie, RBBT, lasy strefy umiarkowanej, ochrona
krajobrazu, Porozumienie Kunming-Montreal, REDD+, MRV.
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Chapter 1: Introduction

Forest fragmentation—the rearrangement of forest into smaller, more isolated patches—
reshapes ecological processes even when total forest area stays constant. By changing patch
size, isolation, and edge exposure (“fragmentation per se”), it intensifies light and wind at
boundaries, elevates vapor-pressure deficits, and raises fire and biotic stress (Arroyo-Rodriguez
et al., 2017; Fletcher et al., 2018; Fahrig, 2019; Ma., et al. 2023). Globally, edge proximity is
now pervasive—more than two-thirds of forests lie within ~1 km of an edge—so edge-mediated
impacts are rarely local anomalies but system-wide constraints (Siegel et al., 2024). Against
this backdrop, the Tuchola Forest Biosphere Reserve (TFBR) offers a stringent temperate test
case: its even-aged Scots pine (Pinus sylvestris) monoculture and shallow rooting accentuate
susceptibility to edge-driven moisture stress, wind exposure, and fire, especially after the 2017
derecho (Wulder et al., 2009; Britton et al., 2024).

This thesis positions fragmentation not only as a structural patterning problem but as a pattern
— process — action workflow: role-based and density metrics (MSPA, FAD) diagnose
structure; Sentinel-2 vegetation indices (e.g., NDRE for pigment stress; NDMI/NDWI for
moisture) capture functional responses; and zone-specific management (protect, buffer, restore)
follows logically for Core, Transitional, and Rare areas. Articles 1-5 build this case across
scales and sensors, and here | frame the ecological motivation, methodological evolution, TFBR
context, conservation implications, and the research questions, objectives, and hypotheses that
guide the work.

1.1 Background and Motivation

Forests sustain biodiversity, carbon storage, and hydrological regulation (Mazziotta et al.,
2025). Yet land-use pressures and intensifying disturbances reconfigure forest into smaller,
more exposed units that disrupt connectivity and processes (Fahrig, 2003; Fletcher et al., 2018).
Temperate systems like TFBR remain under-represented relative to tropical case studies, even
though their even-aged pine structure (>90%) increases edge sensitivity and limits rooting
depth, amplifying moisture stress and fire risk compared to mixed deciduous stands (Wulder et
al., 2009; Britton et al., 2024). Leveraging high-resolution remote sensing (Sentinel-2;
PALSAR), fixed-window density (FAD), role-based morphology (MSPA), and interpretable
machine learning, this thesis develops scalable, auditable monitoring tools aligned with
Kunming—Montreal targets and REDD+ MRV (Haneda et al., 2025; Mazziotta et al., 2025).

Definitions & Parameters used throughout the thesis (authoritative summary)

o Forest definition / MMU: FAO/HRL-FTY —> 0.5 ha, > 10% canopy cover, trees > 5
m at maturity.

o Edge width (for edge-based metrics/MSPA): 100 m; “core” is > 200 m from edges.

e FAD/FOS rolling window (harmonised): Sentinel-2 10 m: 51x51 px (~510 m);
Landsat-8 30 m: 17x17 px (~510 m); CORINE 100 m: 5x5 px (~500 m). Sensitivity: +
20% reported.

e FAD zones: Core > 90%, Transitional 40-60%, Rare < 10% forest cover.
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o Compositing (Sentinel-2): Medoid, leaf-on DOY ~180-260; S2 cloud/shadow mask
+ snow filter; despiking via robust z-score.

o Change detection (where applied): LandTrendr on NDVI/NDMI with standard
segmentation and recovery constraints (full params: Appendix A).

o Model evaluation: Spatial block CV (k = 5) + held-out test (by year/area); metrics
AUC, Kappa (and OOB-R? where relevant); permutation FI + PDP/ICE.

1.2 Ecological Impacts of Fragmentation

Edge environments alter light, wind, and moisture regimes, accelerating pigment decline and
desiccation, and increasing vulnerability to fire and pests (Arroyo-Rodriguez et al., 2017,
Fletcher et al., 2018). Figure 1 illustrates this as an “iceberg” cascade: the visible ecological
changes at edges trigger knock-on effects below the waterline—shifts in biodiversity, losses in
ecosystem services (carbon, water, recreation), risks to people, and long-term evolutionary
consequences. In TFBR, the 2017 derecho sharply expanded edges and reduced cores,
compromising interior-dependent species and services like carbon and hydrological buffering
(Ahmad et al., 2025). While small patches can act as stepping-stones for mobile taxa, population
stability of interior specialists still requires large, connected cores (Blake & Karr, 1984; Fahrig
etal., 2019). To avoid confounding composition with configuration, | stratify the landscape into
Core, Transitional, and Rare zones using FAD, then read functional responses with Sentinel-2
indices: NDRE and Clred-edge/GARI for pigment dynamics, NDMI/NDW!I for canopy water
status, and NDVI/EVI for greenness/biomass (Lausch et al., 2016; Wang et al., 2010; Xue &
Su, 2017).

Ecological Visible effects on
=== Impacts ecosystems
Biodiversity Changes in species
Impacts distribution and diversity

Effects on arbon, wate,

Risks to human health

Sacietal Impacts and livelihoods

Evolutionary
Impacts

Long-term genetic and
stability consequences:

Figure 1: Fragmentation’s “iceberg” of impacts: edge-driven microclimate changes — visible
ecological effects — deeper consequences for biodiversity, ecosystem services, society, and
evolution.
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1.3 Evolution of Fragmentation Analysis

Methods progressed from patch/edge/shape metrics (e.g., FRAGSTATS) and neutral landscape
models to role-based morphology (MSPA), fixed-window density (FAD/FOS), and
connectivity graphs that generalize to policy scales (McGarigal, 1995; Vogt et al., 2007; Vogt
& Riitters, 2017). Advances in remote sensing (Sentinel-2; lidar for canopy height/structure)
and change detection (VCT, LandTrendr) enable multi-decadal, multi-sensor tracking of
structural change (Maier et al., 2006; Zald et al., 2016; Kennedy et al., 2018). Open, scriptable
tools (landscapemetrics, PyLandStats, GuidosToolbox; Google Earth Engine) make workflows
auditable and scalable, addressing long-standing issues of scale dependence and reporting
inconsistency when paired with explicit parameter disclosure (Hesselbarth et al., 2019; Bosch,
2019; Vogt et al., 2022). This thesis adopts that open pipeline to link structure and function in
TFBR.

1.4 Tuchola Forest Context

Designated a UNESCO Biosphere Reserve in 2010, Tuchola Forest Biosphere Reserve spans
post-glacial lowlands and wetlands but is dominated by even-aged Scots pine (~96-97%),
creating homogeneous canopies and shallow rooting that amplify edge effects and reduce
resilience (Jastrzebski et al., 2010; Ahmad et al., 2025). Superimposed windstorms (e.g., 2017
derecho; see photo 1 and 2) intensified fragmentation, particularly along cropland—forest and
road interfaces. TFBR’s core—buffer—transition zoning provides a natural scaffold for FAD-
based stratification and for testing how fragmentation alters ecological processes across zones.

Photo 1: View of the landscape of the Tuchola Forest after a catastrophic storm in August 2017
(courtesy of Daniel Janczyk)
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Photo 2: View of the landscape of the Tuchola Forest after a catastrophic storm in August 2017
(courtesy of Daniel Janczyk)

1.5 Conservation Implications

A zone-specific reading of fragmentation (see photo 3) translates directly into action: Core
zones require strict protection (> 200 m from edges) to maintain interior conditions as described
by Pfeifer., et al. (2017) and carbon stocks; Transitional zones benefit from buffers and
ecological corridors to stabilize pigment and moisture dynamics; Rare zones—highly
fragmented and edge-exposed—call for passive rewilding and stepping-stones, with species
mixes that improve rooting depth and moisture retention. Early-warning signals from NDRE
(pigment) and NDMI/NDW!I (moisture) help target interventions before structural decline is
visible. These tools align with Kunming—Montreal Targets 2 and 3 and strengthen REDD+
MRV by providing reproducible, high-resolution condition and risk layers for temperate forests
(Yeetal., 2020; Haneda et al., 2025; Mazziotta et al., 2025).
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Rare Area

Transitional area

Core area

Photo 3: View of the forest landscape of the Tuchola Forest demarcating the Core, Transitional,
and Rare areas based on canopy continuity vs. openings from field study by the author (not a
computed FAD surface) (photo: Mieczystaw Kunz).

1.6 Research Questions, Objectives, and Hypotheses

This thesis synthesizes five empirical articles (2016-2024) analyzing TFBR’s forest
fragmentation using remote sensing datasets (CORINE Land Cover, Landsat-8, PALSAR,
Sentinel-2), landscape metrics, and ecological ground data (Polish Forest Data Bank)
(Pekkarinen et al., 2009; Altunel & Celik, 2025).

Research Questions (RQ):

e RQZ1: How have forest fragmentation definitions and measurement methods evolved,
and which are most effective for temperate forest landscapes?

e RQ2: How do fragmentation dynamics (e.g., core loss, edge expansion) and the 2017
derecho affect ecological processes across TFBR’s Core, Transitional, and Rare zones?

o« RQ3: What are the ecological impacts of fragmentation on vegetation health and
ecosystem function across TFBR’s fragmentation zones?

e RQ4: Which Sentinel-2-derived vegetation indices, integrated with machine learning,
best support monitoring and prioritized conservation (e.g., core protection, transitional
buffering, rare restoration) in TFBR?
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Objectives (O):

o O1: Synthesize the evolution of fragmentation analysis to establish a methodological
foundation for temperate forests (Article 1).

o 02: Quantify temporal and spatial fragmentation changes in TFBR driven by the 2017
derecho (Articles 2-3).

e 0O3: Assess fragmentation’s ecological impacts on vegetation health and ecosystem
function across Core, Transitional, and Rare zones using FAD zoning (Articles 2—4).

o O4: Develop Fragmentation Susceptibility Models using Bayesian Weight-of-Evidence
(WoE) and machine learning to predict risk from drivers like cropland proximity and
windstorm exposure (Article 4).

o O5: ldentify sensitive Sentinel-2-derived vegetation indices (e.g., NDWI, GNDVI,
EVI) using machine learning to support conservation prioritization (Article 5).

Hypotheses (H):

e H1: Fragmentation increased post-2017 derecho, reducing core forest areas and
expanding edge zones, as measured by FAD and MSPA.

o H2: Vegetation health, assessed via NDWI, GNDVI, and EVI, is negatively correlated
with fragmentation intensity, particularly in Transitional and Rare zones.

e H3: Advanced landscape metrics (e.g., FAD, MSPA) and Bayesian WoE models,
integrated with PALSAR and Sentinel-2 data, accurately predict fragmentation
susceptibility, guiding conservation.

o H4: Sentinel-2-derived indices (NDWI, GNDVI, EVI), combined with machine
learning, robustly predict ecological conditions across TFBR’s zones, enhancing

monitoring.
- Y Ya > 4 Y =
Unquantified Quantify Assess Develop Managed Forest
Forest Changes Temporal Ecological Analytical Ecosystem
Unknown ecological Changes Impacts Frameworks Monitored, healthy,
fragmentation impacts Measure |land use and Evaluate effects on Create tools for and biodiverse forest
cover vegetation health monitoring

ul!" ' ’

'. : 1’&'{{} hi '\

Figure 2: Conceptual roadmap for forest fragmentation monitoring in Tuchola Forest. The
framework highlights five research goals: identifying unknown ecological impacts, quantifying
temporal change, assessing vegetation health, building analytical tools, and informing
sustainable forest management.
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1.7 Structure of the Thesis

Here I outline how the thesis unfolds and how the embedded articles fit together. The structure
moves from concepts to context, from methods to results, and finally to synthesis. Part |
motivates the problem and situates this work within the methods literature; Part Il details the
TFBR study area and analytical workflow that underpin all analyses; Part 11l compiles the
empirical articles into a coherent narrative of dynamics, drivers, and monitoring; and Part 1V
integrates findings, limitations, and implications for management and policy. This roadmap is
intended to help readers navigate cross-references between chapters and articles and to see how
each component contributes to the overarching research aims.

The thesis is organized into four parts:

e Part I: Conceptual Framework (Chapters 1): Introduces fragmentation impacts,
research objectives, and a systematic methodological review (Article 1).

e Part Il: Study Area and Analytical Framework (Chapters 2-3): Describes TFBR’s
ecological context and outlines methodologies, datasets, and analytical tools.

e Part Ill: Empirical Analyses (Articles 2-5, Chapter 4): Presents findings on
fragmentation dynamics, disturbance impacts, susceptibility mapping, and ecological
monitoring.

e Part IV: Conclusions (Chapter 5): Integrates insights, evaluates contributions and
limitations, and provides recommendations for research and management.

This synthesis advances understanding of temperate forest fragmentation, delivering actionable
tools for sustainable management and global conservation goals.
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Chapter 2: The Tuchola Forest Biosphere Reserve

The Tuchola Forest Biosphere Reserve (TFBR), designated by UNESCO in 2010, is a key case
study for analyzing forest fragmentation dynamics in temperate landscapes. This chapter details
TFBR’s geographical, ecological, and conservation contexts, emphasizing its postglacial
landscape, pine-dominated monoculture, and UNESCO zonation as a framework for studying
fragmentation and climatic disturbances. Detailed ecological analyses, such as Forest Area
Density (FAD) zoning and vegetation stress, are deferred to Articles 2-5 (Chapter 5), aligning
with the thesis’s empirical findings. By highlighting TFBR’s unique features, this chapter
underscores its significance for global temperate forest research and conservation policies,
including the Kunming—Montreal Global Biodiversity Framework and REDD+ MRV protocols
(Haneda et al., 2025; Mazziotta et al., 2025).

2.1 Geographical Context

The TFBR spans 3,195 km? across Poland’s Pomeranian and Kuyavian-Pomeranian
voivodeships, covering 22 communes (Nienartowicz et al., 2010; Nienartowicz & Kunz, 2018),
see figure 4. Its postglacial lowland landscape, featuring sandy outwash plains, lakes, and peat
bogs, creates a distinctive ecological setting for fragmentation studies (Kistowski, 2020).
Organized into a core zone (78.8 km?, including Tuchola Forest National Park and 25 nature
reserves), a buffer zone (1,046 km?), and a transition zone (2,069 km?), TFBR’s UNESCO
zonation, shown in Figure 3, supports multi-scale fragmentation analyses and restoration
planning (Kunz & Nienartowicz, 2013; Kunz, 2020). The reserve’s six physical regions—
Wysoczyzna Swiecka, Rownina Charzykowska, Pojezierze Kaszubskie, Pojezierze
Starogardzkie, Bory Tucholskie (Tuchola Forest), and Dolina Brdy—host diverse ecological
conditions, with Bory Tucholskie as the forested core and Dolina Brdy supporting critical
wetlands (Kistowski, 2020). This structure positions TFBR as a model for assessing temperate
forest responses to land-use and climatic pressures (Kunz & Nienartowicz, 2021; Ahmad et al.,
2025).
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Figure 4: Map of the Tuchola Forest Biosphere Reserve (TFBR) with detailed research areas.
2.2 Ecological Characteristics

Dominated by a Scots pine (Pinus sylvestris) monoculture (96.8% of forest cover), TFBR’s
historical forestry practices amplify its vulnerability to fragmentation and climatic disturbances
like the 2017 derecho (Jastrzebski et al., 2010; Ahmad et al., 2025). This homogeneity, unlike
mixed temperate or tropical forests, intensifies edge effects and connectivity loss, reducing
resilience (Fahrig, 2003; Blanchard et al., 2023). The 2017 derecho exacerbated core forest loss
and edge expansion, with impacts analyzed in Articles 2—4 (Chapter 5) (Taszarek et al., 2019;
Mazziotta et al., 2025). TFBR’s biodiversity, including unique wetlands and lobelia lakes,
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supports vital ecological functions, but fragmented patches threaten species like the hazel
grouse, facing dispersal barriers (Rutkowski et al., 2016; Peterson et al., 2025). These traits
make TFBR a compelling case for studying disturbance-driven fragmentation, with global
implications (Kunz et al., 2023; Saura, 2021).

Photo 4. Disturbance evidence in TFBR (field view). Basal charring on even-aged Scots pine
(Pinus sylvestris) with scattered windthrow indicates recent fire activity and edge-amplified
stress typical of Transitional/Rare FAD zones (photo: Sanjana Dutt).

2.3 Conservation Challenges and Policy Context

TFBR faces conservation challenges from its pine monoculture, climatic stressors, and
pressures from agriculture and forestry (Referowska-Chodak & Kornatowska, 2021; Ahmad et
al., 2025). As a Natura 2000 site, it reflects Poland’s biodiversity commitments, but the lack of
legal status for biosphere reserves limits management (Referowska-Chodak & Kornatowska,
2021). The thesis’s tools, including fragmentation susceptibility mapping and vegetation
monitoring (Articles 4-5), offer solutions, aligning with global policies:
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Photo 5. Timber extraction in TFBR. Harvest operations create new/temporary edges and
access tracks that can influence fragmentation metrics and spectral signals (photo: Sanjana
Dutt).

e Kunming—Montreal Global Biodiversity Framework (2022): Targets 2 (30%
ecosystem restoration) and 3 (30% protected areas) are supported by TFBR’s need for
ecological corridors and core zone protection. The thesis’s remote sensing and machine
learning tools (Articles 4-5) prioritize conservation actions, such as mapping high-risk
zones (Mazziotta et al., 2025; Ye et al., 2020).

e REDD+ MRV Protocols: These require precise forest cover and carbon stock
monitoring. The thesis’s integration of Sentinel-2 and PALSAR data (Articles 4-5)
enhances REDD+ compliance in temperate forests (Haneda et al., 2025).

« United Nations Sustainable Development Goals (SDGs): The research supports SDG
15 (Life on Land) via habitat conservation, SDG 13 (Climate Action) through carbon
mapping, and SDG 6 (Clean Water) by linking fragmentation to hydrological resilience
(Haneda et al., 2025; Mazziotta et al., 2025).

These alignments position TFBR as a model for integrating local and global conservation
efforts, providing scalable tools for temperate forest management, see photo 5.

Page | 26



Sanjana Dutt — Forest Fragmentation Dynamics in Tuchola Forest, Poland. A Multiscale Analysis Using RS

Chapter 3: Materials, Methods, and Analytical Framework

We quantify forest fragmentation in the Tuchola Forest Biosphere Reserve (TFBR) using a
scalable, open workflow that links structure (FAD/MSPA and classical landscape metrics) to
function (Sentinel-2 vegetation indices) and to action (susceptibility mapping and zone-specific
guidance), refer to figure 5. All parameters affecting scale and comparability (minimum
mapping unit, edge width, rolling-window sizes, compositing policies, resampling rules, and
cross-validation design) are declared here to ensure full reproducibility and policy-grade
reporting. Choices are aligned with Kunming—Montreal Targets 2 and 3 and with REDD+ MRV
practices.

Output

Generating risk zones and conservation
recommendations

Ecological Interpretation

Analyzing and interpreting ecological data

Ground Validation

Verifying data with field observations

Spatial Tools

Utilizing software for spatial analysis

Advanced Analytics

Applying machine learning and Bayesian models

Fragmentation Metrics

Calculating landscape fragmentation

Classification & Indexing

Categorizing land cover and vegetation

Preprocessing

Cleaning and preparing data for analysis

Remote Sensing Inputs

Gathering data from various satellite sources

Figure 5: Conceptual workflow for forest fragmentation analysis in the Tuchola Forest
Biosphere Reserve. The framework illustrates the stepwise integration of satellite inputs,
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preprocessing, classification, landscape metrics, advanced analytics, spatial tools, ground
validation, and ecological interpretation to produce spatially explicit outputs that inform
conservation planning.

3.1 Evolution of Fragmentation Analysis

Early work emphasized patch/edge/shape statistics (e.g., FRAGSTATS), which are replicable
but weakly linked to connectivity and processes. Subsequent advances introduced (i) role-
based morphology (MSPA) that distinguishes core/edge/bridge roles; (ii) fixed-scale density
(e.g., Forest Area Density, FAD) that standardizes configuration across sensors and eras; and
(i) connectivity indicators and graph/circuit analogues that generalize to corridor planning.
In parallel, disturbance “feeders” (LandTrendr, VCT, CCDC) stabilized time-series diagnostics,
and open pipelines (R, Python, GEE) made analyses auditable at scale. This study adopts that
trajectory: MSPA + FAD for structural diagnostics, paired with interpretable ML on Sentinel-
2 indices to read zone-specific functional responses in Core, Transitional, and Rare contexts.

3.2 Datasets and Satellite Platforms

We use multi-sensor data to span regional (100 m), local (30 m) and fine (10-20 m) scales:

e CORINE Land Cover (1990-2018, 100 m) — regional baselines for
composition/configuration, cautioning under-detection of fine fragmentation. Use:
Article 2 baselines.

e Landsat-8 OLI (30 m) — local trajectories for the 2017 derecho context;
atmospherically corrected (Collection 2 L2), cloud/shadow masked, composited to
annual leaf-on medoids. Use: Article 3.

e ALOS PALSAR (25 m, L-band SAR) — structure under clouds/debris; radiometric
calibration to y°, terrain correction, and Refined-Lee speckle filtering prior to
FAD/MSPA and susceptibility modeling. Use: Article 4.

e Sentinel-2 MSI (10-20 m, L2A) — fine-scale VIs and FAD zoning; QA60 +
cloud/shadow masks; leaf-on medoid composites (DOY = 180-260) to harmonize
phenology. Bands: B2 (Blue), B3 (Green), B4 (Red), B5-B7 (Red-edge), B8 (NIR),
B11/B12 (SWIR). Use: Article 5.

e Polish Forest Data Bank (BDoL) — stand attributes for validation/interpretation
(degradation, moisture/site type, age), acknowledging variable thematic granularity.

Preprocessing common to all rasters. Reprojection to EPSG:2180 (PUWG 1992); alignment to
a common extent/grid; resampling rules: nearest-neighbour for categorical (classes/MSPA),
bilinear for continuous (indices); explicit data lineage and parameter files. Compositing policy
(optical). Annual medoid of leaf-on stack to suppress outliers; sensitivity £DOY 20 d reported.
Rolling-window harmonization. FAD/FOS windows standardized at ~500 m across sensors:

e Sentinel-2 (10 m): 51x51 px,
e Landsat-8 (30 m): 17x17 px,
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« CORINE (100 m): 5x5 px.
Edge width = 100 m; Core defined as >200 m from edge. Sensitivity £20% reported.

Alternative datasets, such as Dynamic World (10 m, Sentinel-2, near real-time), World Cover
(10 m, Sentinel-2), and Esri Land Cover (10 m, Sentinel-2), offer high accuracy for forest
classes (72—-75%) but were not used due to limited historical coverage for TFBR’s long-term
analysis (Brown et al., 2022, 2023; Venter et al., 2022; Altunel & Celik, 2025). MODIS (250—
1000 m) and Sentinel-1 (10 m, SAR) were excluded for coarser resolution or limited spectral
bands for vegetation analysis (Radeloff et al., 2024). High-resolution platforms like
PlanetScope or Pléiades Neo were considered but deemed cost-prohibitive (Mazziotta et al.,
2025). Preprocessing, including atmospheric correction and cloud masking, was conducted
using Google Earth Engine (GEE), chosen over proprietary platforms like ENVI or ArcGIS for
scalability and accessibility (Mutanga & Kumar, 2019; Zhao et al., 2021). Specific dataset
applications are detailed in Articles 2-5.

Table 1: Evolution of toolsets and datasets for forest fragmentation analysis (1990-2025).

Period Tools/Datasets Characteristics Thesis Application
FRAGSTATS, Patch-based, Baseline metrics
Lell=2b00 Landsat coarse resolution (Article 2)
20002010 GuidosToolbox, Landscape connectivity — Connectivity analysis
B MODIS focus (Article 3)
GEE, Sentinel-2,  High-resolution, SUBEE TN 157 el TG

2010-2025 ecological monitoring

PALSAR process-oriented (Articles 4-5)

3.3 Landscape Metrics

Landscape metrics quantify TFBR’s fragmentation patterns across core, buffer, and transition
zones using the R package landscapemetrics (Kupfer, 2012; McGarigal et al., 2012, as cited in
Ahmad et al., 2025). Key metrics include Number of Patches (NP), Edge Density (ED), and
Shannon’s Diversity Index (SHDI), with FAD zoning classifying areas into Core (=90% forest
cover), Transitional (40-60%), and Rare (<10%) zones (Riitters et al., 2000, as cited in Article
3). MSPA, implemented via GuidosToolbox, enhances core-edge-bridge analysis, supporting
connectivity assessments (Vogt & Riitters, 2017; Ye et al., 2020). Functional metrics, such as
least cost distance and graph-based connectivity (e.g., node degree, centrality), were evaluated
but not used due to data constraints and TFBR’s focus on structural patterns (Kupfer, 2012;
Fletcher et al., 2018). Alternatives like ArcGIS or QGIS were considered but excluded for open-
source preference. Metric calculations and ecological implications are detailed in Articles 3-5.

3.4 Remote Sensing Analysis

Remote sensing datasets were processed to map forest cover, detect disturbances, and assess
ecological conditions. Sentinel-2 and PALSAR data generate FAD maps and monitor structural
changes, while Landsat-8 provides temporal context for the 2017 derecho’s impacts (Articles
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3-4) (Altunel & Celik, 2025; Radeloff et al., 2024). GEE facilitates cloud-free composite
generation and time-series analysis, outperforming proprietary platforms due to its scalability
and open access (Mutanga & Kumar, 2019; Zhao et al., 2021). Dynamic World’s near real-time
capabilities and probability scores were considered but not used due to TFBR’s historical focus
(Brown et al., 2022, 2023). Sentinel-1 and GOES were excluded for lower optical resolution or
regional focus (Radeloff et al., 2024). Change detection algorithms, including LandTrendr for
NDVI breakpoints, are detailed in Articles 2-5 (Mazziotta et al., 2025).

3.5 Statistical and Machine Learning Methods

Here | outline the statistical and machine-learning toolbox used in this thesis and the principles
guiding model selection, training, and evaluation. Section 3.5.1 motivates the use of tree-based
ensembles for high-dimensional, non-linear relationships in Sentinel-2 and ancillary predictors,
while Section 3.5.2 introduces a Bayesian Weight-of-Evidence approach to quantify driver
contributions and produce interpretable susceptibility maps. Across methods, | specify data
partitioning, cross-validation, and performance metrics, and indicate how model outputs are
interpreted alongside vegetation indices (Section 3.6) and integrated into the end-to-end
pipeline (Section 3.7). This subchapter thus links algorithms to ecological questions, balancing
predictive accuracy with transparency and reproducibility.

We framed prediction problems for four Forest Ecological Attributes (FEAS): Degradation
(ordinal), Moisture content (ordinal), Site type (ordinal), Stand age (continuous).

3.5.1 Ensembles

e Extra Trees (ET) for primary modeling (robust to high-dimensional, non-linear
interactions; fast; low variance through randomized splits).

o LightGBM (LGBM) as a secondary comparator (gradient-boosted trees).

e Hyperparameters: tuned via Bayesian or coarse-to-fine grid (trees, max depth, min
samples per split/leaf, subsampling where applicable).

o Class imbalance: stratified sampling / class weights for ordinal FEAs.

3.5.2 Spatial evaluation & interpretability

o Leakage control: spatial block cross-validation (k=5) + held-out test split by year/area.

e Metrics: AUC and Cohen’s Kappa for ordinal FEAs, OOB-R*’MAE for stand age;
distributional diagnostics (boxplots of normalized errors).

o Explanations: Permutation Feature Importance (FI), Partial Dependence (PDP) and ICE;
interpretation is zone-aware (Core vs Transitional vs Rare).

3.5.3 Bayesian Weight-of-Evidence (WOoE)

For fragmentation susceptibility, WoE quantifies the log-odds contribution of drivers (e.g.,
distance to cropland/roads, wind speeds, slope, tree height/age). Categories are constructed to
minimize multicollinearity (checked by correlation matrices) and maximize monotonic
interpretability. Outputs: susceptibility map + ROC/Kappa validation.
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3.6 Vegetation Indices

Vegetation indices, derived from Sentinel-2, monitor ecological health across TFBR’s
fragmentation zones. We standardize VI usage and terminology (Sentinel-2 bands in
parentheses):

« NDVI = (B8—B4)/(B8+B4) — greenness/biomass; saturates at high LAI.

e EVI =2.5-(B8B4)/(B8+6-B4-7.5-B2+1) — greenness with aerosol/soil correction;
less saturation.

« GNDVI = (B8-B3)/(B8+B3) — chlorophyll-leaning greenness

« NDRE = (B8—B5)/(B8+B5) [alt: B6/B7] — early pigment stress, red-edge sensitive
(pine-appropriate).

e Clred-edge = (B8/B5) — 1 [alt: B6/B7] — chlorophyll proxy, very sensitive.

« NDMI = (B8-B11)/(B8+B11) — canopy water status; we use this as the moisture
index.

e GARI = (B8 — [B3 — (B2 — B4)])/(B8 + [B3 — (B2 — B4)]) — pigment stress,
atmospherically resistant.

Detailed analyses and conservation applications are presented in Article 5.

3.7 Analytical Integration

The analytical framework integrates datasets, metrics, and models to address RQs 1-4 (Chapter
1), as summarized in Table 2. Figure 6 illustrates the pipeline, from data acquisition to
conservation recommendations, ensuring traceability across Articles 2-5. The framework
supports Kunming—Montreal Targets 2 and 3 and REDD+ MRV by providing scalable tools for
temperate forest management, addressing edge effects and connectivity thresholds (Haneda et
al., 2025; Peterson et al., 2025; Saura, 2021).

Article 1: Article 5: Vegetation
Methodological Article 3: Local Stress
Foundation Landscape Metrics Links spectral traits to
Establishes the methodological Assesses fragmentation using ecological stress using
groundwork for the thesis Landsat-8 data Sentinel-2 data

Article 2: Regional Article 4:
LU/LC Change Fragmentation
Analyzes long-term land use Susceptlblhty

and land cover changes Models fragmentation risk

zones using PALSAR and
Dynamic World data

Figure 6: Conceptual framework linking the five core research articles. Article 1 provides the
methodological foundation, while Articles 2-5 apply and extend specific techniques (e.g., FAD,
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RF, WOE, NDVI/GNDVI) to map fragmentation dynamics, model susceptibility, and assess
ecological condition.

Table 2: Summary of Articles’ Contributions and Methodological Links

Links to other

Article Focus Data Methods Key outputs .
articles
Methodological Literature  Systematic Tool and index Frar.n_ewqu for
: ; . . . 2-5; justifies tool
evolution review review, synthesis evolution .
selection
. FAD
Regional LU/LC : 62% to 55% .
change (1990- CORINE (NGPUIS%STSOSIDb?X)’ Intact decline, ias_elllne; or
2018)  ED, SHDI rise to 1.6 \rticles 3-5
(FRAGSTATYS) '
Local FAD, RF (GEE), 12% Intact loss, Supplies inputs to
fragmentation  Landsat-8 NDVI, ED (Patch 67% ED 4, supports
(Brusy) Analyst) increase validation in 5
Eragmentation PALSAR, High-risk Extends 2-3,
suscge tibilit Dynamic  WOE, RF, FAD Patchy zones inputs ecological
P y World mapped zones for 5

Vegetation Extra Trees, 25% canopy Synthesizes 2—4;

5  stress and Sentinel-2 NDWI, GNDVI, loss, stress in applies ST/STV
index analysis SVH Patchy zones framework

3.8 Methodological Gaps and Future Directions

Limitations include the absence of LIiDAR for 3D canopy analysis, reliance on Polish Forest
Data Bank for validation, and computational constraints in large-scale machine learning
(Blanchard et al., 2023; Haneda et al., 2025). Emerging methods, such as deep learning (e.g.,
convolutional neural networks), voxel-based LiDAR for carbon stock estimation, and graph-
based connectivity metrics, could enhance TFBR’s monitoring capabilities, as discussed in
Chapter 4 (Brown et al., 2022; Kupfer, 2012; Mazziotta et al., 2025). Dynamic World and GEE
advancements offer potential for real-time integration, while small patch conservation could
boost biodiversity, per landscape-scale findings (Riva & Fahrig, 2023; Venter et al., 2022).
These gaps highlight opportunities to refine tools and support global conservation efforts

(Peterson et al., 2025).
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Chapter 4: Synthesis, Contributions, and Future Directions

This chapter synthesizes findings from five empirical articles (Articles 1-5, Chapter 5)
examining forest fragmentation in the Tuchola Forest Biosphere Reserve (TFBR), a temperate
landscape shaped by the 2017 derecho, intensive forestry, and agricultural pressures.
Addressing four research questions (RQs) through a multi-scale framework integrating remote
sensing (CORINE, Landsat-8, PALSAR, Sentinel-2), landscape metrics (e.g., Forest Area
Density [FAD]), and advanced analytics (machine learning, Bayesian modeling), it highlights
ecological impacts and methodological advancements. Contributions to science and
conservation are outlined, alongside limitations and future research directions, aligning with
global policy frameworks like the Kunming—Montreal Global Biodiversity Framework and
REDD+ MRV protocols (Haneda et al., 2025; Mazziotta et al., 2025).

4.1 Synthesis of Key Findings

This section integrates evidence across Articles 1-5 to answer RQs 1-4, merging structural
diagnostics (FAD, MSPA, connectivity) with functional signals from Sentinel-2 vegetation
indices and SAR-optical comparisons. Regionally (CORINE), intact forest declined even
before 2017; locally (Landsat-8), the derecho accelerated edge expansion and patch
proliferation; at fine scale (Sentinel-2), Transitional and Rare FAD zones carry the brunt of
pigment decline (NDRE/GARI) and moisture stress (NDMI/NDWI). SAR (PALSAR)
improves classification of Rare/Patchy states under post-disturbance/cloudy conditions, while
interpretable ensembles (Extra Trees/LightGBM) expose zone-specific processes that translate
directly into management actions.

4.1.1 Cross-Scale Ecological and Methodological Patterns

RQ1: Methodological evolution (Article 1).

The field has moved from patch/edge/shape + fractal descriptors to role-based morphologies
(MSPA), fixed-window density (FAD/FOS), and connectivity graphs, implemented in
reproducible, open pipelines (R/Python/GEE). This shift matters for temperate forests because
fixed-window density stabilizes policy-scale comparisons and role classes (core/edge/bridge)
scale to regional reporting.

RQ2 & RQ3: Processes & disturbance (Articles 2-4).

* Regional/Landsat-8 (Brusy): Post-2017, Number of Patches +38%, Mean Patch Size —30%,
Edge Density up, with a 177.5% increase in damaged forest and —25.2% forest cover in one
year—classic fragmentation signatures.

* FAD zones (S2): Core shows stable PDPs (buffered), Transitional/Rare show steep, volatile
PDPs—consistent with edge microclimates, desiccation, nutrient drawdown. NDRE & GARI
are strongest for early degradation in Rare; NDMI/NDRE best capture moisture dynamics
(sharp contrasts in Rare; stable in Core).
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* Drivers: Proximity to cropland (<200 m), roads, high wind speeds (25-27 km/h), and
younger/shorter stands elevate susceptibility; gentler slopes coincide with more fragmented
patches.

* Species context: Pine dominance buffers some responses but increases edge vulnerability;
birch and oak exhibit higher edge sensitivity—relevant for restoration mixes.

RQ4: Monitoring tools (Article 5).

 Predictors: NDRE, GARI, GRNDVI flag pigment decline (degradation); NDMI/NDRE
capture soil-canopy moisture interplay; NDVI/NDRE support site-type filtering; CVI/NDRE
track age but can confuse rapid edge regrowth with maturity.

* Models: Extra Trees/LightGBM + PDPs give directional, zone-aware insights.

» Optical vs SAR: PALSAR outperforms Dynamic World for Rare/Patchy detection post-
storm; SAR-optical fusion is advantageous where clouds or debris complicate optical-only

mapping.
Table 3: Cross-Scale Fragmentation Patterns and Conservation Implications

Scale Data Source Key Finding Conservation Implication

Regional CORINE Gradual intact forest decline pre- Prioritize corridor

2017 (Article 2) restoration
i 67% edge density increase post- Protect core zones (>200
Local Landsat-8 derecho (Article 3) m from edges)
o “ “ .
Fine Sentinel-2 25 /o canopy loss in Rare zones  Monitor ve_getatlon stress
(Article 5) for restoration

4.2 Contributions to Science and Conservation

This thesis contributes (i) a joined-up, open workflow that ties morphology (FAD/MSPA) and
connectivity to functional Vs via interpretable ensembles; (ii) a validated susceptibility model
that elevates SAR where optical is limited; and (iii) a reporting canon that addresses the field’s
L1-L5 issues (scale, regional tuning, validation, bio-links, reporting).

4.2.1 Methodological Innovations

e Fragmentation Susceptibility (Article 4). WoE + FAD + environmental drivers using
PALSAR & Sentinel-2 maps high-risk zones (AUC 0.82; Kappa 0.68). Iterative
refinement lifted ROC from 0.64 — 0.82 by removing non-forest confounders and
multicollinear variables, and by aligning to wind severity patterns.

e Interpretable ML for processes (Article 5). Extra Trees/LightGBM link
NDRE/NDMI/NDVI to degradation, moisture, site type, and age, with PDPs exposing
zone-specific response regimes (stable Core vs volatile Rare).

e Open, reproducible stack. R/Python/GEE workflows + parameter disclosure
(windows, edges, MMU, compositing, CV) make results auditable and portable.
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4.2.2 Management Strategies

o Core: Strict protection (>200 m from edges), minimize new edges; preserve carbon &
interior specialists.

e Transitional: Buffers + corridors to damp pigment/moisture volatility; selective
thinning where it moderates extremes.

o Rare: Passive rewilding + stepping-stones, mixed-species (incl. deeper-rooted)
plantings; prioritize patches proximate to cropland/roads and high-wind corridors.

4.2.3 Global Policy Alignment

Beyond local and regional insights, the thesis engages directly with international frameworks
for biodiversity and climate action. By situating its findings within the SDGs, the Kunming—
Montreal Global Biodiversity Framework, and REDD+ MRV protocols, the research
demonstrates how temperate forest monitoring can contribute to broader sustainability goals
and reporting mechanisms.

The thesis aligns with:

o SDGs: Supports SDG 15 (biodiversity), SDG 13 (carbon mapping), and SDG 6
(hydrological resilience) (Haneda et al., 2025).

o Kunming—Montreal Global Biodiversity Framework (2022): Targets 2 (30%
ecosystem restoration) and 3 (30% protected areas) are supported by tools for mapping
high-risk zones and monitoring stress (Mazziotta et al., 2025).

« REDD+ MRV Protocols: High-resolution mapping and vegetation index analysis track
fragmentation-driven carbon loss, enhancing temperate forest monitoring (Haneda et
al., 2025).

4.3 Applicability Beyond TFBR

The approach generalizes to temperate/boreal forests and can be adapted to tropics with region-
tuned windows/thresholds and cloud-robust SAR-optical fusion. Practical on-ramps: (i) free S2
L2A + PALSAR mosaics; (ii) open code; (iii) a standard reporting checklist. Priorities differ:
pine-dominated systems emphasize edge buffering; mixed broadleaf/tropical mosaics require
stricter validation to mitigate spectral confusion and stronger graph-connectivity components.

4.4 Limitations

While the thesis advances both methodology and ecological understanding, several limitations
must be acknowledged. These include data and resource constraints, methodological
sensitivities, and reliance on existing field datasets. Recognizing these boundaries is essential
for interpreting the findings appropriately and for charting a realistic path forward in future
work.
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e Data & scale. Sentinel-2 (10 m) and Landsat-8 (30 m) cannot resolve microhabitats;
CORINE under-detects fine-scale change, and SAR—optical performance varies with
disturbance context and cloud/debris conditions. The absence of LiDAR restricts
explicit 3D canopy and vertical connectivity analyses (Blanchard et al., 2023;

Pekkarinen et al., 2009).

e Modeling choices. Treating categorical ecological attributes as continuous improves
gradient detection and PDP interpretability, but may obscure ecological thresholds in
edge-dominated Rare zones. Ensemble ML is computationally demanding and sensitive

to feature sets, partitioning schemes, and hyperparameters.

e Validation. Reliance on the Polish Forest Data Bank provides consistent labels but
limited physiological detail; broader field/biodiversity validations would strengthen

causal inference and reduce site-specific bias (Ahmad et al., 2025).

e Transferability. Results are derived from a pine-dominated temperate system; applying
thresholds, windows, and susceptibility drivers elsewhere requires regional calibration

and local validation.

e Parameter sensitivity. Outcomes depend on rolling-window size (FAD/FOS) and edge
width; reported +20% sensitivity tests bracket this uncertainty. Compositing and
change-detection policies (e.g., BAP vs. medoid; segmentation/recovery thresholds)

also influence detected trends.

e Computing constraints. Large-area ML pipelines and SAR—optical fusion incurred
processing bottlenecks that limited the breadth of model comparison and frequency of

re-runs.

Net effect: these limitations do not overturn the main conclusions, but they bound precision at
fine scales, argue for expanded validation (including LIDAR/GEDI and biodiversity data),
and motivate region-tuned parameterization before transfer to non-temperate, mixed-species
forests.

4.5 Future Research Directions

To push this framework from “very good” to “decision-grade,” next steps should (1) add missing
data dimensions (vertical structure, traits, climate), (ii) adopt richer models that link
pattern—process—action, (iii) harden pipelines for repeatable operations at scale, and (iv) test

generalisation across biomes and disturbance regimes.

1) Enrich the data stack (what to add)

e Vertical structure & biomass: GEDI L2A/L4B, ICESat-2 ATLO08, country
airborne/UAV LIDAR, ESA Biomass/CCI Aboveground Biomass — resolve edge

regrowth vs. true maturity; quantify vertical connectivity.
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Traits & chemistry: PRISMA/EnMAP hyperspectral (red-edge/pigments; water
absorption), Sentinel-3 OLCI; field leaf traits where available — tighten VI-process
links.

Moisture & heat: SMAP soil moisture; ERA5-Land (met), ECOSTRESS/LST
(thermal) — couple microclimate with edge stress.

SAR for all-weather change: Sentinel-1, ALOS-2 PALSAR-2; (near-term) NISAR —
robust in cloudy/post-disturbance periods.

Disturbance & alerts: GLAD/Global Forest Watch, RADD, FIRMS — near-real-time
disturbance feeders.

Biodiversity & field networks: GBIF/eBird occurrences, ICP Forests, national plot
networks — external validation for L3/L4.

2) Strengthen methods (how to model)

Edge—process coupling: Joint models of NDRE/NDMI/LST/soil moisture with
distance-to-edge; estimate thresholds where stress accelerates (segmented
regression/Bayesian change points).

Multi-hazard risk: Spatio-temporal models combining wind (reanalysis), drought
(SP1/SM), biotic pressure; stack into a composite hotspot index with uncertainty.
Connectivity that “thinks”: Integrate MSPA with Circuitscape/Omniscape and
graph neural networks for species-aware corridors; parameterise by dispersal
distances.

Hybrid physics-ML: Couple PROSAIL/RTM simulations with Extra
Trees/LightGBM (or NGBoost) to reduce confounding and improve extrapolation;
report SHAP for mechanism hints.

Causal & design-based inference: Use design-based area estimation, spatial block
CV, and (where data permit) difference-in-differences/causal forests to separate drivers
from correlates.

Restoration optimisation: Multi-objective siting (cost, carbon, connectivity, drought
refuge) via prioritizr/Marxan; outputs = ranked corridor/buffer portfolios.

3) Production-grade pipelines (how to run)

Workflow & versioning: Snakemake/Airflow + DVC/MLflow for data/model lineage;
containerise (Docker) for portability.

Cloud & cadence: Earth Engine for ingestion/compositing; batch ML on HPC/cloud
(AWS/GCP). Publish quarterly/seasonal updates.

FAIR & reproducibility: Pin window sizes, edge widths, MMU, compositing
policies, CV schemes in a machine-readable config; emit a “model card” per run
(metrics, features, SHAP/PDP, sensitivity).

Policy hooks: Export KM-GBF T2/T3 indicators, REDD+ MRV layers (activity data
+ emission factors), and NFMS-ready summaries.
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4) Where to test next (geographies & contexts)

Temperate/boreal: Carpathians, Biatlowieza, Baltic & Scandinavian storm corridors —
wind—edge interactions; spruce/birch—pine mixes.

Mediterranean: Fire-prone mosaics (Portugal/Spain/Italy) — add burn severity &
post-fire recovery to fragmentation dynamics.

Tropical pilots: Western Kenya, Amazon sub-basins — high cloud; rely on SAR-
optical fusion and strong local validation.

Interfaces: Urban—forest fringes and cropland ecotones (your highest-risk context) for
corridor/stepping-stone effectiveness.

Peatland—forest ecotones: Coupling fragmentation with hydrological stability (SDG-6
co-benefits).

5) Concrete, near-term studies (fit to your thesis)

Voxels at the edge: Fuse GEDI with S2 over TFBR to quantify vertical permeability
vs. NDRE-inferred maturity (resolve the age misclassification in Rare zones).
Corridor short-list: Run Omniscape + prioritizr for TFBR Transitional zones; deliver
a top-10 corridor list with costs and expected NDMI/NDRE gains.

Alert-to-action pilot: Trigger workflows from GLAD/RADD alerts — update FAD +
risk layer within 7-14 days; produce a one-page “Ops Bulletin.”

Species-specific connectivity: Parameterise corridors for pine, birch, oak using
dispersal kernels and patch quality (NDRE/NDVI + LIDAR height).

Deliverables to aim for

A public checklist + config template (scale, edge, MMU, compositing, CV,
validation).

A sensor/method trade-off table (PALSAR vs S2 vs CORINE) bundled with the code.
Quarterly risk & condition maps (Core/Transitional/Rare) with uncertainty bands.

These additions make the framework more mechanistic, transferable, and operational, while
staying compatible with your current stack (S2, PALSAR, FAD/MSPA, Extra Trees/WOE).
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Chapter 5. Conclusions

This chapter synthesizes the thesis into clear answers, contributions, and actionable guidance.
First (Section 6.1), I distill what the results show by explicitly addressing each research question
and linking structural diagnostics to functional responses and management actions. | then
summarise methodological contributions (Section 6.2) and translate findings into practical
strategies and policy relevance (Section 6.3). Finally, | delineate limitations and boundary
conditions (Section 6.4) and outline a focused roadmap for future work that would elevate the
framework to decision-grade operations (Section 6.5).

5.1 What this thesis shows

Forest fragmentation in the Tuchola Forest Biosphere Reserve (TFBR) is not merely a
patterning issue but a coupled pattern — process — action problem. By combining fixed-
window density and role-based morphology (FAD, MSPA) with Sentinel-2 vegetation indices
and interpretable machine learning, this thesis demonstrates that structural configuration
reliably anticipates functional stress—especially in edge-dominated parts of the landscape—
and that these insights can be operationalised into concrete conservation choices.

RQ1 — How have methods for assessing forest fragmentation evolved?

The field has moved from patch/edge/shape metrics toward density-based diagnostics
(FAD/FOS), role classes (MSPA), and connectivity-aware thinking, implemented in open,
auditable pipelines (R/Python/GEE). This evolution matters for temperate systems such as
TFBR because:

« fixed windows stabilise comparisons across sensors and scales,

« role classes (core/edge/bridge) translate naturally to management units,

o explicit parameter disclosure (edge width, window size, MMU) improves
reproducibility and reporting.

RQ2 — How do fragmentation and the 2017 derecho change forest structure/coherence?

Across scales, TFBR exhibits classic fragmentation signatures: core loss and edge
proliferation, with post-2017 acceleration. Regional products (CORINE) indicate pre-storm
erosion of intactness; Landsat-8 resolves the derecho-triggered jump in edge density and patch
number; within Sentinel-2, FAD zoning makes the spatial redistribution of core, transitional,
and rare states explicit. Coherence declines are strongest along cropland—forest and road
interfaces, aligning with known exposure pathways.

RQ3 — What ecological processes dominate Core/Transitional/Rare zones?

Functional signals track structural context. Core zones show buffered, stable partial-
dependence responses; Transitional and Rare zones show steep, volatile responses consistent
with edge microclimates (higher VPD, wind/light), pigment decline, and moisture stress.
Among indices, NDRE/GARI are most sensitive to early pigment degradation, while
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NDMI/NDWI capture canopy—soil water coupling; NDVI/EVI assist with greenness/biomass
but can conflate rapid edge regrowth with maturity without additional constraints.

RQ4 — Which vegetation indicators and models best support monitoring and
prioritisation?

An interpretable ensemble (Extra Trees / LightGBM), paired with NDRE + NDMI (+
NDWI/NDVI) and a small set of environmental drivers, provides directional, zone-aware
predictions suitable for decision support. PALSAR strengthens mapping of Rare/Patchy states
under cloudy or debris-rich conditions, and SAR-optical fusion improves robustness in post-
disturbance periods. The resulting layers—stress, susceptibility, and zone maps—prioritise
core protection, buffering and corridor restoration in Transitional, and passive rewilding
with stepping-stones in Rare.

5.2 Methodological contributions

1. A joined-up, open workflow that links morphology (FAD/MSPA) and connectivity
concepts to functional VIs via interpretable ML, with parameter transparency (edge
width, window size, MMU, compositing, CV).

2. Fragmentation Susceptibility Modeling Framework: Bayesian Weight-of-Evidence
plus ensembles integrates drivers (cropland/roads/wind corridors) with SAR/optical
features to map high-risk zones (reported AUC/Kappa indicate strong discrimination),
offering an auditable alternative to black-box risk scores.

3. Zone-aware interpretation: Partial-dependence/ICE curves read differently by FAD
class, turning models into process hints (stable Core vs. volatile Rare) rather than
opaque predictions.

4. Operational scaling: Harmonised FAD windows across sensors (S2/L8/CORINE) and
Earth Engine—based compositing make the approach portable across time, sensors,
and reporting units.

5.3 Implications for management and policy

« Protect the interior you still have: Maintain >200 m edge offsets in remaining Core;
avoid new perforations that convert Core — Transitional.

o Stabilise the middle: In Transitional zones, buffers and corridors lower
pigment/moisture volatility; prioritise connectors across cropland—forest breaks and
wind corridors.

e Repair where fragmentation dominates: In Rare zones, emphasise passive rewilding
and stepping-stones, with deeper-rooted, mixed-species plantings to improve water
retention and reduce edge desiccation.

e Routine, reproducible monitoring: Publish seasonal/annual stress + susceptibility
updates using the same parameters, enabling transparent progress toward Kunming—
Montreal Target 2 & 3 and strengthening REDD+ MRV with condition-aware layers
for temperate forests.
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5.4 Limitations and boundary conditions

Precision at fine scales is bounded by sensor resolution (10-30 m), CORINE’s coarseness for
historical baselines, and the absence of LiDAR for 3-D canopy validation. Ensemble models
remain sensitive to feature sets, partitioning, and parameter choices; although spatial block CV
mitigates leakage, site-specific labels from the Forest Data Bank limit physiological generality.
Thresholds and windows are calibrated for a pine-dominated temperate system; transferring
to other biomes requires re-tuning and local validation. None of these caveats overturn the main
conclusions; they define where and how the framework should be extended.

5.5 Outlook: from good diagnostics to decision-grade operations

The fastest path to a production-grade programme is to (i) add vertical structure
(GEDI/ICESat-2/LIDAR) to separate edge regrowth from true maturity, (ii) couple stress
drivers (soil moisture/LST/wind) with distance-to-edge to identify thresholds, (iii) harden
pipelines (versioned configs, scheduled updates), and (iv) validate with biodiversity
networks (ICP Forests/GBIF/eBird) to link spectral stress to living systems. In TFBR, a
targeted follow-up could:

o deliver a top-10 corridor short-list for Transitional zones (Omniscape + prioritizr),

e run a quarterly “condition & risk” bulletin (NDRE/NDMI + susceptibility) with
uncertainty bands,

o fuse GEDI + Sentinel-2 to quantify vertical permeability across FAD classes,
clarifying management thresholds for interior integrity.
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ABSTRACT

Context

Forest fragmentation—the breakup of continuous habitat into isolated patches—alters landscape processes and
biodiversity. Rapid advances in sensors and computing have diversified diagnostic methods, but comparability and
ecological linkage remain uneven.

Objectives

Synthesize 138 methodological studies (1990-2025) to: (i) chart shifts in metric families, including emerging 3-D
approaches; (ii) assess how data and processing choices shape indicator performance; and (iii) distill limits and
reporting practices that improve portability.

Methods

We reviewed studies using lidar/TLS and Sentinel-2 inputs, change detection, and indicators implemented in
landscapemetrics, GuidosToolbox, and Google Earth Engine, tracing transitions from patch/edge metrics to
morphology-aware roles, connectivity, fixed-window density, and 3-D/voxel measures.

Results

The field is moving toward morphology-aware roles, multiscale connectivity, fixed-scale density, and vertical
structure. Five recurring limits are: scale sensitivity and habitat-amount confounding; region-tuned parameters that
hinder transfer; scarce field validation of global/automated products; weak or inconsistent biotic links of structural
metrics; and incomplete reporting that curbs reproducibility. Gaps include uneven tropical coverage and limited 2-
D/3-D cross-walks. Priorities are transparent parameterization and sensitivity checks, precise documentation of
spatial/detector settings, region-specific benchmarking, shareable workflows, and integration of field data.

Summary

Standardizing documentation, validation, and cross-scale linkages can improve the reliability of fragmentation
measures for monitoring and conservation. Emphasis should be on refining and harmonizing existing methods rather
than proposing new indices

Keywords: forest fragmentation; landscape metrics; change detection; lidar; open-source workflows; methodological
synthesis

1. Introduction

Forest fragmentation—the division of continuous forest into smaller, more isolated patches—creates edge
environments, reshapes ecological processes, and can accelerate biodiversity loss (McGarigal & Marks, 1995;
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Heilman et al., 2002; Riitters et al., 2007; Bennett & Radford, 2008). Over two-thirds of global forests now lie within
1 km of an edge (Haddad et al., 2015; Siegel et al., 2024), with pressures most pronounced in tropical and subtropical
regions (Lung & Schaab, 2006; Giriraj et al., 2010). Fragmentation is distinct from habitat loss: loss reduces area,
whereas fragmentation concerns how a fixed amount of forest is arranged by patch size, shape, and isolation (Fahrig,
2003, 2019, 2024; Fardila et al., 2017). Connectivity—the degree to which landscape structure facilitates or restricts
movement—adds a further interpretive layer (Bogaert et al., 2000; Vogt et al., 2007; Lausch et al., 2015). Although
patch-scale edge effects are well documented, landscape-scale responses do not always follow directly from local
patterns (Fletcher et al., 2018; Fahrig, 2024), underscoring the need for scale-declared, method-transparent
assessments that can be linked to ecological data where available (Bennett & Radford, 2008).

Methodologically, practice has progressed from early patch/edge/shape tallies to morphology- and connectivity-aware
approaches, fixed-window density measures, and first-generation 3-D/voxel indicators. FRAGSTATS and Patch
Analyst established a common language for pattern quantification (McGarigal & Marks, 1995; Elkie et al., 1999).
Role-based morphology—exemplified by morphological spatial pattern analysis (MSPA)—made cores, edges,
bridges, corridors, and perforations legible at reporting scales (Vogt et al., 2007; Wickham et al., 2010). Advances in
remote sensing, including lidar/TLS for canopy structure, together with robust time-series change detection (e.g.,
Vegetation Change Tracker, LandTrendr, Two-Thresholds Method), have enabled consistent disturbance trajectories
that feed downstream indicators (Maier et al., 2006; Huang et al., 2010; Zald et al., 2016; Kennedy et al., 2018;
Giannetti et al., 2020). Open, scriptable ecosystems and cloud platforms—Ilandscapemetrics, PyLandStats,
GuidosToolbox, and Google Earth Engine—now support auditable pipelines from data ingestion to indicators. In
parallel, neutral landscape generators (e.g., Landscape Generator; flsgen) provide realistic, controlled mosaics to test
sensitivity and to separate composition from configuration (van Strien et al., 2016; Peura et al., 2018; Justeau-Allaire
etal., 2022).

Despite this expansion in capability, five recurring issues complicate inference and comparability across studies: (i)
sensitivity to grain and extent and the attendant conflation with habitat amount; (ii) regional dependence of thresholds
and assumptions; (iii) gaps in external/empirical validation—especially for global products and emergent 3-D
indicators; (iv) loose coupling to biological responses; and (v) incomplete parameter reporting (O’Neill et al., 1999;
Hernando et al., 2017; Zatelli et al., 2019; Fletcher et al., 2018; Vergara et al., 2021; Feleha et al., 2025). Recent
families—fixed-window density measures such as Forest Area Density (FAD), role-based morphology paired with
graph metrics, and voxel/3-D approaches—address parts of this problem yet introduce assumptions that must be
declared and tested.

This review analyzes 138 methodological studies (1990-2025) to:

1. map the evolution from patch-based measures to connectivity, shape complexity, fixed-window density, and
emerging 3-D approaches;

2. evaluate how remote sensing and time-series/change-detection  methods—together  with
compositing/segmentation choices and cloud platforms—condition the accuracy and comparability of
fragmentation indicators; and

3. diagnose common limitations and summarize practical reporting elements (e.g., grain/extent, edge width,
window size, detector settings, MMU, validation) that make results more portable across regions and scales.

2. Methodology
2.1 Literature search

We followed PRISMA 2020 (Page et al., 2021) to ensure a transparent, reproducible process. We targeted peer-
reviewed journal articles published 1990-2025 and ran searches from 3 Oct 2024 to 9 Sep 2025 using Publish or
Perish (Harzing, 2010) across Google Scholar, Scopus, and Web of Science. We limited results to English and article
document types; conference papers, theses, books/chapters, and reports were excluded. Studies were included if they
proposed, evaluated, or systematically applied methods/metrics/workflows for forest fragmentation (e.g.,
structural/configurational metrics, change-detection feeding fragmentation indicators, graph/MSPA/fixed-window/3-
D approaches), and excluded if purely ecological case studies without methodological contribution or non-forest
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contexts unless methods were demonstrated for forests. To keep scope forest-specific we filtered out terms such as
“urban,” “animal*,” and “bird*” unless paired with “forest.” Database searches returned 1,160 records;
Litmaps/Connected Papers, citation chasing, and colleague recommendations added 46, for 1,206 records prior to
deduplication. Title/abstract and full-text screening applied the criteria above; reasons for exclusion are shown in
PRISMA Figure 1, and verbatim database search strings are provided in Supplementary Table S1.
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-
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Figure 1. PRISMA 2020 flow diagram for a systematic review of methods to assess forest fragmentation (1990—
2025).
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—_—

Included

2.2 Screening Process

We removed 313 duplicate records using Rayyan (Ouzzani et al., 2016), leaving 847 unique articles.
Title/abstract/keyword screening excluded 233 items without a methodological focus, 152 outside a forest context,
and 251 that reported ecological impacts only without a fragmentation-methods component. We sought 211 full texts;
5 could not be retrieved, leaving 206 for full-text assessment. In parallel, we identified 46 additional records via
reference tracking (Litmaps, Connected Papers) and colleague recommendations, which were included at the full-text
stage.

2.3 Study Selection

Full texts were assessed against predefined criteria: (i) proposes, evaluates, or systematically applies methods to
measure forest fragmentation (spatial/configurational metrics, remote-sensing/change-detection feeding
fragmentation indicators, graph/MSPA/fixed-window/3-D approaches); (ii) forest context or forest-reporting subset;
(iii) peer-reviewed journal article; (iv) publication 1990-2025; (v) English, full text available; and (vi) unique
contribution.

Of the 206 database-sourced articles, 96 were excluded: 24 background/narrative, 28 not methodological, 10 not
forest-related, 17 redundant (repetitive case applications of standard landscape-metrics workflows—e.g.,
FRAGSTATS or Patch Analyst—without methodological novelty or evaluation), and 17 other reasons (insufficient
methodological detail or peripheral scope).
Of the 46 additional records, 12 were excluded at full text (5 impact-focused only, 5 outside scope/publication window,
2 background). The final set comprised 138 methodological studies: 110 from databases and 34 from other sources
(see PRISMA Figure 1).
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2.4 Limitations

This review is limited to English-language, peer-reviewed journal articles. While this may omit some regional
contributions, English dominates publication in this domain, and citation chasing in our included papers did not
repeatedly surface non-English methodological keystones. Our search emphasized method/tool terms (e.g.,
FRAGSTATS, GuidosToolbox) to capture studies that develop or evaluate fragmentation methods; broader ecological
terms would have inflated returns with impact-only studies and diluted the methodological focus. This emphasis could
favor papers that explicitly name software; we countered it through snowballing (Litmaps, Connected Papers) and
colleague recommendations. By design, we prioritized methods-focused work and excluded descriptive case studies
that simply reuse existing metrics, which limits ecological context but preserves a clear methods synthesis. Finally,
full-text screening was conducted by one reviewer using predefined criteria and Rayyan, with co-author oversight at
inclusion; this does not remove selection bias entirely, but it provides a consistent and auditable screen.

3. Results
3.1 Scope and Organization

This review synthesizes 138 studies (1990-2025) on methodological approaches to quantifying forest fragmentation.
We organize findings along three linked components: (i) data sources (remote-sensing and ground-based inputs), (ii)
change-detection methods (time-series analyses that derive disturbance/transition signals), and (iii) landscape pattern
indicators (metrics of configuration and connectivity). In practice, data sources feed change detection, which then
supports indicator calculation (Fig. 2). The columns in Fig. 2 group periods by sensor-era shifts, showing a progression
from early, primarily Landsat-based work to multi-sensor approaches that integrate increasingly higher spatial and
temporal resolution sensors, including lidar, to improve temporal fidelity and structural sensitivity.

Pre-2000 2000-2009 2010-2019 2020-2025

Policy-scale density: FAD-FOS (5

Graph/connectivi
pREL - plconnecivly classes; FAD_AV/AVCON)

Patch/class/landscape

Structural S core, edge, islet, bridge, PC, IIC, ECA, components,

diagnosti || or, or, b, pROX, CORE Joop; perfzstion DelWamawss G :'rac:/aB:FH'FFtD-I]quchgMA
cs et CONTAG ! < Mesh: splitting, effective Aggregation/mosaic: Al, fadier) CO"?;%SI' £ +
st st B fesmic ndicss N 3-D/vertical: voxel/Lidar/TLS

:2:?:5' Threshold & simple st_d::s';;f:éz I: iange VCT (time-series change) TTM (three-date change)
faeders differencing Z‘ID\JDVI / ANBR threshol%s LandTrendr (segmentation) 313D (three-vector trajectories)

Data ey - Sentinel-2; Landsat 8/9;

a—— ‘ Landeat SMZETHAL MODIS ’ Planet/UAV: GEDI/ALS/TLS

Figure 2. Evolution of forest-fragmentation methods (1990-2025). Rows depict the chain from data sources (bottom)
— change-detection methods (middle) — landscape pattern indicators (top). Columns group eras by sensor availability
and resolution, illustrating the transition from early single-sensor paradigms to multi-sensor integrations (including
lidar) that enhance change detection and indicator robustness.

3.2 Evolution of Landscape Pattern Indicators

Initial investigations in the 1990s emphasized two-dimensional assessments of forest patches, including patch counts,
area metrics, edge lengths, and core area delineations (Ripple et al., 1991; McGarigal & Marks, 1995; Jorge & Garcia,
1997; Walker & Kenkel, 1998). These methodologies, while systematically replicable, offered limited insight into
ecological connectivity or species dispersal potential. By the early 2000s, the introduction of effective mesh size
provided a more nuanced metric for evaluating landscape subdivision (Jaeger, 2000). Subsequent developments
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around 2007 incorporated role-based classifications—such as core areas, edge zones, and connective bridges—

enhancing the spatial resolution of forest network analyses (Vogt et al., 2007; Tejaswi, 2007).

Post-2010, connectivity-focused indicators, including Probability of Connectivity (PC) and Integral Index of
Connectivity (11C), gained prominence, featuring in approximately 25% of studies, particularly for informing wildlife
corridor design (Estreguil & Mouton, 2009; Ye et al., 2020; Lin et al., 2021; Ramezani & Ramezani, 2021). Recent
advancements have diversified into three categories: (1) fixed-scale density metrics, exemplified by Forest Area
Density (FAD), enabling inter-regional comparability (Vogt & Caudullo, 2025); (2) shape and connectivity indices,
such as Forest Fragmentation Index (FFI) and Local Connectedness (LCFD), which account for patch morphology
and local linkages while mitigating data inaccuracies (Alage et al., 2025); and (3) three-dimensional assessments
leveraging lidar to elucidate canopy structure and vertical connectivity, addressing limitations of planar analyses (Zald
et al., 2016; Nowosad & Stepinski, 2021; Remmel, 2022; Zhen et al., 2023; Lin et al., 2024). A comprehensive
overview of these tools is presented in Table 1 and Supplementary Table S2.

Table 1. Evolution of toolsets for forest fragmentation—concise view. Grouped by period, showing key tools, their
contributions, and tags. Full details in Supplementary Table S2.

Pre-2000

2000-2009

2010-2019

2020-2025

Period Exemplary toolsets

FRAGSTATS; Patch Analyst;
pMAP

Khoros

GUIDOS/APACK

ERDAS/IDRISI/eCognition

ArcIMS + FRAGSTATS

LFT

Conefor +
Circuitscape/Linkage
landscapemetrics;
PyLandStats;
ShrinkShape?2

PolyFrag; FRAGSTATS v3.3

Feeders: VCT; LandTrendr;
CCDC; TTM
GUIDOS—GuidosToolbox;
GWB—Graph-Based
Workflow

FAD-FOS pipelines

motif;
LecoS;

Patternbits; geodiv; Intra

VeclLl;
LDTtool/LDT4QGIS

VARLI;

flsgen

What it adds

Baseline patch/class metrics (area, edge, shape,
core); early proximity/contagion (RS/GIS)
Simulated patterns; metric correlation; early eco-
response tests

MSPA roles; moving-window (FAD/entropy);
continental mapping (QGIS/Prog)

object-based image analysis (OBIA)
segmentation; Lidar-derived metrics; early CA—
Markov

Web-mapping + classical metrics (Web-GIS)

Core/edge/perforated/patch; morph segmentation
(ArcGIS)
Connectivity  (PC/lIC/dl;  circuit/least-cost

corridors) (Graph/Circuit)

Reproducible pipelines; pattern
rotation-invariant shape (R/QGIS/Py)

signatures;

Vector-aware metrics; custom edge width (GIS)

Stable  time-series
(GEE/RS)

MSPA expansions; distance/similarity (Jensen—
Shannon multiscale) (QGIS/C/GDAL)

disturbance  detection

Fixed-scale classes;

comparability

density policy-scale

Config elements & KL; gradient surface metrics;
CWA intra-patch connectivity (R)

Vector indices;  composition/configuration
change typologies; perimeter-area  fixes
(Py/QGIS)

Neutral landscapes with controlled fragmentation
(API/R/CLI)

Key refs

McGarigal &  Marks
(1995); Elkie et al. (1999)

Hargis et al. (1999)

Vogt et al. (2007); Wulder
et al. (2008); Soverel et al.
(2010)

Maier et al. (2006);
Meddens et al. (2008)

Wang (2002); Southworth
et al. (2004)
Kopecka
(2010);
Saura & Torné (2009);
McRae et al. (2008)

Hesselbarth et al. (2019);
Remmel (2015)

MacLean & Congalton
(2013)

Huang et al. (2010);

Vogt & Riitters (2017);
Vogt et al. (2022); Dultt et
al., (2024)

Vogt & Caudullo (2025)

Remmel (2020, 2022);
Justeau-Allaire et al.
(2024)

Yao et al. (2022); Huang
et al. (2024)

Justeau-Allaire et al.
(2022)

& Novacek
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204
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ENVI+GeoDa; PCA/ANN/CA-MC composite fragmentation;
MapBiomas+IDRISI (FFCI) forecasting (RS) (2024)
3-D voxel fragmentation; fractal dim; succolarity Andronache (2024)

Fiji/lmageJ2 + ComsystanJ (3-D)

ESIS/Imalys; AMAPVox

impacts (3-D/TLS) Nunes et al. (2022)
. PA-network connectivity metric; simple bounded
ProNet scripts index (Py/R) Theobald et al. (2022)

Recent provincial apps to 2025 (feeder in

LandTrendr (apps) practice)

Qiu et al. (2025)

Lin et al. (2024); Moreira
et al. (2024); Wu et al.

Hybrid PMM-GM; TLS-PAI; phenology Selsam et al. (2024);

3.3 Change-Detection Methods

Change detection supplies the time-stamped events that feed downstream fragmentation indicators; contemporary
practice matches the detector family to the disturbance regime (abrupt vs. gradual) and documents
compositing/parameter choices.

Trajectory segmentation: Vegetation Change Tracker (VCT) formalizes long Landsat histories with strict filtering,
and LandTrendr fits piecewise trends to locate breakpoints and recovery segments at scale on cloud platforms (Huang
et al., 2010; Kennedy et al., 2018). These approaches work best when long, relatively clean series are available and
when both loss and recovery matter.

Tri-date detectors: When time series are sparse or disturbances are short and sharp, calibrated three-date methods
perform well. The Two-Thresholds Method (TTM) applies paired loss and recovery thresholds on ANBR (delta
Normalized Burn Ratio), and 313D uses Sentinel-2 vector angles and magnitudes to flag clear-cuts with minimal
tuning (Giannetti et al., 2020; Francini et al., 2021).

Continuous/harmonic models: Continuous Change Detection and Classification (CCDC) models seasonal cycles
and longer-term trends, capturing gradual or compound deviations that step/tri-date detectors may miss;
implementations in Google Earth Engine enable regional coverage (Gorelick et al., 2017; Mahapatra et al., 2025).

Across all families, data handling choices strongly shape outputs. Compositing strategies (e.g., Best Available Pixel
vs. medoid) trade noise suppression against radiometric consistency and day-of-year proximity, which can shift
estimated break timing and raise edge-adjacent false positives if not reported (Francini et al., 2023). Sensor stacks
have moved from Landsat-only to Landsat+Sentinel-2, with commercial very-high-resolution small-sat constellations
(e.g., Dove/Skysat) used selectively for fine-scale confirmation and lidar for canopy structure/validation (Zald et al.,
2016; Nunes et al., 2022). Global baselines such as Global Forest Change provide standardized context but require
local checks for omission/commission—especially in coppice, selective logging, and fire landscapes (Hansen et al.,
2013). Recent provincial deployments (e.g., Guangdong) route detector outputs directly into fragmentation indices
and driver analyses (Qiu et al., 2025).

3.4 Software and Reproducibility

The earliest implementations of fragmentation metrics were deeply tied to GIS workstations. In the Cascade Range,
Ripple et al. (1991) used the pMAP GIS to introduce GISfrag, one of the first spatially explicit fragmentation indices,
combining proximity mapping with edge removal to estimate interior habitat. By the late 1990s, ArcView GIS linked
directly to FRAGSTATS outputs, allowing stand attributes to be translated into spatial metrics in boreal systems
(Vernier & Cumming, 1999). National-scale studies soon followed: Heilman et al. (2002) integrated FRAGSTATS
with ArcGIS and TIGER road data to derive intactness scores, while Wang (2002) prototyped ArcIMS as an early web-
based GIS for fragmentation services. Continuous and discrete classifications were also tested in Western Honduras,
where Southworth et al. (2004) combined FRAGSTATS with local indicators of spatial association in GIS, showing
how socioeconomic context shaped patterns. Remote sensing platforms were integrated next: Lung and Schaab (2006)
paired ERDAS IMAGINE time-series clustering with moving-window GIS metrics in Kenyan rainforests, and Maier
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et al. (2006) combined airborne laser scanning with object-based segmentation in eCognition and ArcGIS to relate
canopy structure to fragmentation indices. At continental scales, Wickham et al. (2008) advanced multi-scale forest
density mapping using GIS-based moving windows on NLCD data, highlighting scale sensitivity.

Legacy metric calculators such as FRAGSTATS and Patch Analyst codified patch/class metrics and seeded
reproducibility by standardizing formulas (McGarigal & Marks, 1995; Elkie et al., 1999). The GuidosToolbox lineage
expanded role-based morphology (MSPA) and fixed-scale density (FAD), making edge, core, and corridor classes
directly comparable across regions (Vogt et al., 2007; Vogt & Riitters, 2017; Vogt et al., 2022). In India’s Western
Ghats, Ramachandra, Setturu, and Chandran (2016) applied FRAGSTATS with Riitters’ indices to quantify
biodiversity-rich fragmentation, illustrating how classical software remained embedded in regional GIS workflows.
Predictive modeling extended this further, with IDRISI’s CA—Markov used alongside FRAGSTATS to forecast
degradation trajectories (Malhi et al., 2020).

Since ~2018, open ecosystems in R and Python have standardized reproducible workflows. landscapemetrics and
motif embed FRAGSTATS-style indices in tidy pipelines, while PyLandStats, LecoS, and ShrinkShape2 extend
analysis into Python/QGIS contexts and provide rotation-robust shape descriptors (Hesselbarth et al., 2019; Nowosad,
2021; Bosch, 2019). Vector-native frameworks (e.g., VecLIl) and raster—vector integrators (e.g., VARLI) mitigate
biases from rasterization, and connectivity platforms such as Conefor and Circuitscape now link directly to
morphology roles. General-purpose GIS platforms have become orchestration hubs: QGIS (with Processing, GRASS
GIS, and SAGA), ArcGIS Pro (via ModelBuilder and ArcPy), and companion spatial-statistical software such as
GeoDa allow analysts to integrate patch metrics, network measures, and machine-learning scripts within auditable
environments. Increasingly, these analyses are distributed through cloud infrastructures like Google Earth Engine,
which couples detectors to downstream metrics while preserving reproducible logs.

Reproducibility now extends beyond tool choice to parameter transparency. Analysts increasingly report grain, extent,
edge width, compositing policy, and detector settings, and share code or notebooks alongside outputs. This mitigates
reporting inconsistency (L5 in Fig. 4) by making studies portable and comparable, while enabling sensitivity checks—
such as varying window sizes or compositing rules—without re-engineering full workflows (Marchesan et al., 2018;
Yao etal., 2022; Huang et al., 2024; Munhoz et al., 2025). Overall, the trajectory has been from workstation calculators
to documented, interoperable pipelines that allow independent verification and cross-study synthesis.

3.5 Advances in New Methods (post-2016)

This subsection emphasizes methodological expansions since 2016, grouped into arcs that show how capabilities
accreted.

2016-2019: from 2-D patterns to structure and information.
The first shift was explicit incorporation of vertical structure. Lidar-based methods captured canopy height and
porosity, reframing connectivity as three-dimensional rather than planar (Zald et al., 2016; Remmel, 2018). In parallel,
information-theoretic approaches gained ground: Nowosad and Stepinski (2019) described landscapes as
configuration distributions rather than lists of indices, and Remmel (2020) formalized hyper-local configuration
elements for pattern diagnostics. During this period, GIS platforms still anchored workflows, with Ramachandra et al.
(2016) using FRAGSTATS within ArcGIS and PCA environments to analyze forest hotspots in India.

2020-2022: connectivity inside patches and networks between them.
Connectivity refinements unfolded at multiple scales. Within patches, Complexity-Weighted Patch Area (CWA) and
related formulations weighted area by form/roughness, capturing intra-patch navigability in ways comparable to
classical graph indices (Justeau-Allaire et al., 2024). At broader scales, ProNet provided a bounded, report-ready index
for protected-area systems (Theobald et al., 2022). Representation also matured: vector-native indices (VecLl) reduced
raster biases, and GuidosToolbox/Workbench introduced multiscale distance—similarity operators that integrate
directly with MSPA roles (Vogt, 2015; Yao et al., 2022; Vogt et al., 2022). Integration with GIS remained central,
with predictive CA—Markov modeling in IDRISI tied to FRAGSTATS outputs for long-term forecasts (Malhi et al.,
2020).
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2023-2025:  composites, edges, density at policy scale, and controlled experiments.
Recent years have seen consolidation across pattern, trajectory, and driver domains. Composite indices such as the
Forest Fragmentation Comprehensive Index (FFCI) combine spectral change, configuration, and context to separate
loss from recovery (Wu et al., 2024; Lin et al., 2024). The Forest Edge Index (FEI) standardizes edge-centric states
for driver analyses, and the Multiscale Similarity Index (MSI) applies Jensen—Shannon similarity to benchmark
observed mosaics against fully forested references (Zhen et al., 2023; Netzel et al., 2024). At the policy scale, FAD—
FOS pipelines have matured into tools for inter-regional comparability with explicit spatial supports (Vogt &
Caudullo, 2025). Methodological frameworks have also tightened raster—vector integration (VARLI) and coupled
detailed indicators with machine learning to attribute processes (Huang et al., 2024; Lin et al., 2024).

Where time series underpin inference, operational feeders such as provincial LandTrendr applications now pipe
disturbance segments directly into fragmentation indicators, and sensitivity tests quantify how fixed-scale choices
affect outcomes—relevant to scale sensitivity (L1 in Fig. 4) (Qiu et al., 2025; Zhang et al., 2025). Neutral generators
such as flsgen permit stress-testing of metrics under controlled fragmentation mosaics before transfer to real
landscapes (Justeau-Allaire et al., 2022). Recent case studies also demonstrate tighter GIS integration: Zhang et al.
(2024) combined GuidosToolbox, Conefor, and ArcGIS to construct ecological security patterns; Lin et al. (2024)
fused FRAGSTATS, ENVI, and GeoDa with machine learning in R; and Netzel et al. (2024) used GDAL/OGR and
custom C code to implement MSI. Together these highlight how GIS platforms are not superseded but remain the
backbone environments in which fragmentation innovations are operationalized.

4. Discussion — overview

Across 138 studies, forest-fragmentation methods progress from patch tallies to role-aware, connectivity-explicit, and
increasingly 3-D representations. We interpret this trajectory through five recurring limitations (L1-L5) that affect
transferability: L1—scale sensitivity and habitat-amount conflation; L2—region-specific thresholds and assumptions;
L3—weak empirical validation (especially for global products); L4—limited linkage to biological responses; and
L5—incomplete parameter reporting. Figure 3 is a schematic of these limitations; evidence and implications appear
below.
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Figure 3. Visual summary of five limitations (L1-L5) in forest-fragmentation methods: L1 scale sensitivities; L2
regional parameterization; L3 validation gaps; L4 metric—biology linkage; L5 reporting inconsistency. Interpretation

is developed in 4.1-4.4.
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4.1 Tracing the evolution of metric suitability

Ripple et al. (1991) showed early on that GIS-derived indices could reveal fragmentation trajectories, and the
FRAGSTATS era formalized patch, edge, shape, and core metrics for reproducible mapping (McGarigal & Marks,
1995; Walker & Kenkel, 1998; Remmel & Csillag, 2003; Sun & Southworth, 2013). The central weakness—L1—is
that many indices vary with grain and extent, so differences can reflect pixel size or window choice rather than
ecological change (O’Neill et al., 1999; Long et al., 2010; Pe’er et al., 2013). Remmel (2009) explains part of the
mechanism: coincidence matrices summarize composition well but capture little about configuration unless
augmented, making composition—configuration conflation likely when one class dominates.

MSPA reframed maps into roles—cores, edges, bridges, corridors, perforations—useful at reporting-unit and
continental scales (Vogt et al., 2007; Estreguil & Mouton, 2009; Wickham et al., 2010). Connectivity metrics followed.
Roberts et al. (2000) and later Lin et al. (2021) and Theobald et al. (2022) translated dispersal and resistance
assumptions into graph-based indicators (PC, IIC, dI; ProNet) with clearer decision relevance, while surfacing L2
(context dependence of species/guild parameters) and L4 (the gap to observed responses).

Recent families aim to curb conflation and tighten links to process. Fixed-scale density (FAD/FOS) declares spatial
support up front, stabilizing inter-regional comparisons (Vogt & Caudullo, 2025). Information-theoretic and local-
connectedness measures separate form complexity from neighborhood linkage (Peptenatu et al., 2023; Alage et al.,
2025). And voxel/3-D approaches bring canopy permeability and edge penetration into scope, advancing structure—
function hypotheses but raising data and validation demands (Remmel, 2020, 2022). Across these arcs, results travel
best when spatial support, thresholds, and connectivity parameters are stated and stress-tested; otherwise, method
settings masquerade as ecological differences (Wang et al., 2012; Fahrig, 2019; Nunes et al., 2022; Zhang et al., 2025).

4.2 Transforming accessibility through open-source, GIS, and cloud ecosystems

Open, scriptable ecosystems have turned isolated metric runs into auditable pipelines. In R, landscapemetrics and
motif expose FRAGSTATS-style indices within reproducible workflows; in Python, PyLandStats and LecoS fill a
similar role; and GuidosToolbox with its Graph-based Workflow Builder scales role-based morphology for large
reporting units (Hesselbarth et al., 2019; Nowosad, 2021; Vogt & Riitters, 2017; Vogt et al., 2022). General -purpose
GIS—QGIS (with Processing, GRASS GIS, SAGA) and ArcGIS Pro (ModelBuilder, ArcPy)—now acts as the
orchestration layer where parameters are modeled, batched, and versioned, while GeoDa provides spatial-
autocorrelation diagnostics. Google Earth Engine has democratized compositing and change detection at scale without
bespoke infrastructure (Wulder et al., 2008; Coops et al., 2010; Gorelick et al., 2017).

Two practice gaps persist. First, L5: key parameters are too often omitted—grain, extent, edge rules, windowing,
compositing policy, detector settings—with our screen suggesting roughly a sixth of papers miss at least one
(Hernando et al., 2017; Zatelli et al., 2019). Second, L3: reliance on global products without local checks (e.g., Global
Forest Change) risks omission/commission errors in selective logging, coppice, and fire mosaics (Hansen et al., 2013;
Nunes et al., 2022). Addressing both rarely requires new software; it requires concise parameter logs and validation
notes attached to each map product. Ramachandra et al. (2016) offer a good template, combining FRAGSTATS and
PCA in ArcGIS to surface regional drivers in India’s Western Ghats.

Machine learning extends these pipelines from description to attribution. Zanella et al. (2017) and Zhen et al. (2023)
demonstrate how Random Forest applied to PD, LPI, Division, or FFCI composites can illuminate drivers, while
Moreira et al. (2024) and Lin et al. (2024) show forward scenarios via ANN or CA-Markov. The same features that
add explanatory power raise the bar for transparency: credible ML use reports features and neighborhoods, data
partitioning and cross-validation, model settings and interpretability steps, and—crucially—external or hold-out
checks (Hansen et al., 2013; Hernando et al., 2017; Zatelli et al., 2019).

4.3 Elevating fidelity with advanced data sources

Multi-sensor regimes sharpen structural detection and help separate composition from configuration (Maier et al.,
2006; Long et al., 2010; Zald et al., 2016; Mshelia et al., 2022). Airborne and terrestrial laser scanning reveal vertical
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heterogeneity that 2-D indicators miss—central for permeability and microclimate—while detector families (VCT,
LandTrendr, TTM, tri-temporal Sentinel-2) stabilize disturbance trajectories before indicators are computed (Huang
et al., 2010; Kennedy et al., 2018; Giannetti et al., 2020; Francini et al., 2021, 2023). These gains amplify familiar
trade-offs: finer spatial and temporal support heightens L1 sensitivities and can invite over-interpretation without
ecological corroboration (Ostapowicz et al., 2008; Fahrig, 2024). Voxel/3-D formulations promise tighter links to
structure and biomass but are data-hungry and demand stronger validation beyond instrumented sites (Remmel, 2022;
Mazziotta et al., 2025). In practice, high-fidelity inputs work best when paired with explicit parameter disclosure and
targeted field or higher-resolution checks.

4.4 Bridging research and practice: targeted fixes for L1-L5

Validation first (addresses L3, L4). Mac Nally (2008) argued for design-based estimation when mapping prevalence;
following that guidance, fragmentation workflows should link indicators to field plots, biodiversity proxies, or
independent structure data and report design-based or model-assisted area estimates where feasible (Nunes et al.,
2022).

Standardized reporting (addresses L1, L5). Rather than rely on defaults, specify the spatial support and thresholds
that govern outputs: grain, extent, edge width, and window size for rolling measures (for FAD, stabilization typically
occurs at tens to low hundreds of pixels in dissected landscapes: Zatelli et al., 2019; Zhang et al., 2025); forest
definitions and MMU (e.g., FAO/HRL-FTY; Vogt & Caudullo, 2025); compositing policy (Best Available Pixel vs.
medoid, target phenology, sensor priority, despiking; Francini et al., 2023); and detector settings—VCT masking/IFZ,
LandTrendr segmentation/recovery, TTM cross-validation, tri-temporal Sentinel-2 cut-offs (Huang et al., 2010;
Kennedy et al., 2018; Giannetti et al., 2020; Francini et al., 2021).

Region-tuned implementations (addresses L2). Calibrate thresholds, windows, and resistance/dispersal
assumptions to local disturbance regimes and canopy architecture so metrics reflect regional realities rather than
imported defaults (Geri et al., 2010; Rosa et al., 2017; Kozak et al., 2018; Osewe et al., 2022). Ramachandra et al.
(2016) exemplify this tuning in a biodiversity hotspot.

Multi-scale integration (addresses L1, L4). Combine complementary families to reduce conflation and expose
process: pair MSPA roles with graph metrics for movement potential; deploy fixed-window FAD-FOS for policy
comparability; use INCOMA/gradient surfaces for heterogeneous mosaics; and add voxel morphology where vertical
connectivity matters (Nowosad & Stepinski, 2021; Remmel, 2022; Vogt & Caudullo, 2025).

Open, cloud-based reproducibility (enables L1-L5). Share R/Python/GEE workflows—Ilandscapemetrics, motif,
geodiv, VecLI/VARLI, LDT4QGIS—so parameters are visible, versioned, and re-runnable, making sensitivity checks
straightforward and enabling like-for-like comparisons (Mairota et al., 2013; Hesselbarth et al., 2019, 2021; Yao et
al., 2022; Smith et al., 2021; Paixdo & Machado, 2023).

5. Summary statements

Across three decades and 138 studies, fragmentation analysis has shifted from patch/edge tallies to role-aware,
connectivity-explicit, and increasingly three-dimensional descriptions. The most useful way to read that shift is as a
linked chain—data sources — change detectors — pattern indicators—where choices made upstream condition what
indicators can say downstream.

Five limitations repeatedly shape inference. Scale sensitivity and habitat-amount dependence remain the main source
of comparability problems (L1). Parameters tuned in one region do not travel cleanly to another (L2). Adoption of
global or automated layers without local checks is still common (L3). Structural metrics are too rarely tied to biological
responses (L4). And key settings—spatial support, edge rules, compositing policy, detector thresholds—are
inconsistently reported (L5).

What works in practice is incremental rather than novel. Declaring spatial support (e.g., fixed-window density)
stabilizes comparisons; pairing role-based morphology with connectivity metrics clarifies movement options; and,
where vertical structure matters, targeted lidar/TLS or voxel summaries add needed realism. The common
denominator is transparent parameterization with light-weight sensitivity checks, so that apparent differences reflect
landscapes rather than hidden settings.
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Evidence gaps are evident. Validation is often lacking and could benefit from design-aware, independent approaches;
methods might be more effective when tuned to regional disturbance regimes and canopy architecture; and clearer
cross-walks between 2-D indicators and 3-D/voxel measures could enhance understanding. Geographic coverage also
remains uneven, with several tropical regions under-represented.

Looking ahead, future progress may hinge less on new indices and more on refining existing ones through precise
specification and validation. Key considerations include: (i) documenting spatial support and detector settings as
metadata, (ii) exploring region-balanced benchmarking and neutral-landscape challenges to assess sensitivity, (iii)
developing simple, shareable workflows for inspection, and (iv) integrating field or high-resolution data where
possible. Adopting these approaches could strengthen fragmentation measures’ reliability for ecological interpretation,
monitoring, and decision-making amid accelerating habitat change.
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Supplementary Table S1.
Search queries used for the systematic review across Google Scholar, Scopus, and Web of Science.

Source Query Mandatory Terms  Alternative Terms (OR) Excluded Terms
ID

Google 1 “forest “new tools”, “new methods”, “emerging tools”, “software for —

Scholar fragmentation” spatial analysis”

“GIS”, “remote sensing”

2 “FRAGSTATS”, “GuidosToolbox”, “MSPA”, “Patch Analyst”, -
“PolyFrag”, “VecLI”, “ZonalMetrics”, “Landscape Fragmentation
Tool”, “V-LATE”, “morphological image processing”

3 “spatial analysis”, “spatial pattern detection”, “landscape structure —

analysis”, “landscape metrics”, “patch analysis”, “morphological
analysis”, “fragmentation indices”


mailto:sanjana.dutt@doktorant.umk.pl

Scopus & 1 “forest loss” or
Web of “forest
Science fragmentation”
2
3

b3 9% ¢

“new tools”, “new methods”,
spatial analysis”

99 ¢

emerging tools”, “software for -

“FRAGSTATS”, “GuidosToolbox”, “MSPA”, “Patch Analyst”, “urban
“PolyFrag”, “VecLI”, “ZonalMetrics”, “Landscape Fragmentation

Tool”, “V-LATE”, “morphological image processing”

2 ¢

29 ¢

“spatial analysis”,

analysis”, “landscape metrics”,
analysis”, “fragmentation indices”

spatial pattern detection”, “landscape structure

“urban

RN LIS

patch analysis”, “morphological

EE 134

“disease
services

animal”, “bird”,

“wetland”, “land use”

insect”, “bird”, “climate”,

9

, “soil”, “ecosystem

EE TS

, “peatland”, “land use”

Supplementary Table S2. Evolution of software/toolsets for forest fragmentation analysis (by period)

Period

Pre-
2000

2000—
2009

Toolset

PMAP GIS; FRAGSTATS;
Patch Analyst & Habitat
Analyst

Khoros® Image Processing

ArcIMS + FRAGSTATS

ERDAS IMAGINE, IDRISI,
eCognition

GUIDOS Toolbox / APACK

Platform Notes

Custom GIS; Arc/Info
AML, C; ArcView plug-
ins

Image-processing
environment

Web-GIS; desktop
program

RS & GIS; OBIA

Program; command-line

Features

Patch/class/landscape metrics (area, edge, shape,
core); GISfrag proximity; habitat valuation;
contagion & nearest-neighbor

Simulated landscapes; metric correlation;
ecological response tests

Web mapping; LISA integration;
patch/class/landscape indices
Classification/segmentation; early LIDAR-
derived canopy metrics; early CA—Markov
MSPA (core, edge, islet, loop, bridge,
perforation); moving-window metrics (FAD,
entropy); continental assessments

References

Ripple et al. (1991);
McGarigal & Marks
(1995); Elkie et al.
(1999)

Hargis et al. (1999)

Wang (2002);
Southworth et al. (2004)

Maier et al. (2006);
Meddens et al. (2008)

Vogt et al. (2007);
Waulder et al. (2008);
Ostapowicz et al. (2008)



Period Toolset Platform Notes Features References

RULE (neutral map MSPA for phase transitions; (multi)fractal

Stand-alone Riitters et al. (2009)

generator) segmentation
Circuitscape / Linkage Python; ArcGIS/QGIS Clrc_wt-th_eory connectivity; current flow; McRae et al. (2008)
Mapper tools corridor/linkage mapping
Graph connectivity (PC, 11C, dl); node/edge .
Conefor GUI/CLI orioritization: pairs with MSPA Saura & Torné (2009)
2010- Landscape Fragmentation . Core/edge/perforated/patch classes; Kopecka & Novacek
ArcGIS extension . : DT (2010); Singh et al.
2019 Tool (LFT) morphological segmentation of intensity (2017)
. Tang et al. (2012);
ARC/INFO GRID’_ . Cross-tab & temporal analyses; vector-based MacLean & Congalton
FRAGSTATS v3.3; GIS modules; ArcMap o vable ed idth: based o t
PolyFrag; ZonalMetrics; G- toolbox (Python) metrics; _customlza e edge width; process-based (2013); Pe’er et al.
RaFEe ’ ’ pattern simulators (2013); Adamczyk &
Tiede (2017)
Definiens Developer Image analysis software  OBIA classification; advanced rulesets Newman et al. (2011)

Jung (2016); Remmel
(2015); Hesselbarth et al.
(2019); Lovelace et al.

LecoS; ShrinkShape2;
landscapemetrics; motif;

Automated landscape metrics; rotation-invariant

QGIS plug-in; RISAGA; polygon shape spectra; tidy/testable pipelines;

Python

PyLandStats pattern-based analysis (2019): Bosch (2019)
Landscape Generator (LG); Java: Python Neutral/optimized landscape generation; van Strien et al. (2016);
DYPAL ’ parameterizable dilation/erosion Bonhomme et al. (2017)
SPIP (surface metrics) Stand-alone dG_radler)t-surface metrics {roughness, fractal Kedron et al. (2018)
imension)
. . .NET/C# API (OpenGIS ~40 vector/raster metrics; extensible, platform- ,
Land-metrics DIY (library) SFA) independent programming library Zaragozi et al. (2012)

Gradient-surface threshold
scalograms (FRAGSTATS +
GSM)

FRAGSTATS v4.x + Thresholded continuous canopy; scalograms of

GSM workflow MPS/PD/LPI/ED across density bands Frazier & Kedron (2017)



Period Toolset Platform Notes Features References

Semi-automatic pattern analysis (core area, PD,

connectivity) Wegmann et al. (2018)

r.pi (GRASS GIS) GRASS add-on

) ] . _ o : Huang et al. (2010);
VCT; LandTrendr; CCDC  Algorithms; GEE/desktop Time-series segmentation (loss/recovery) and Kennedy et al. (2018):

(change feeders) ports continuous change models Zhu & Woodcock (2014)

Planetary-scale compositing, time series, and
reproducible workflows

Configuration elements & KL divergence; 3-D- Remmel (2020, 2022);

Google Earth Engine

(platform) Gorelick et al. (2017)

Cloud platform

2020~ Patternbits (ShapePattern); R packages ready morphological segmentation; gradient Smith et al. (2021);
2025 geodiv; Intra P g surface metrics; complexity-weighted patch area Justeau-Allaire et al.
(intra-patch connectivity) (2024)

Yao et al. (2022);
Vector indices (area—edge, shape, aggregation);  Machado et al. (2020);

VecLl; VARLI; LDTtool; Python; QGIS/ArcGIS  composition/configuration change typologies; Paixdo & Machado

LDT4QGIS

perimeter—area corrections (2023); Huang et al.

(2024)
A Neutral landscape generator with control of 14 Justeau-Allaire et al.

flsgen Java API; R; CLI indices (incl. MESH, Splitting) (2022)
i ) Forestry/fragmentation workflows; biodiversity & . ]
ForestryAnalysisInR; Patch R (Shiny) LIDAR structural metrics; simple patch Atkins et al. (2022);

Fragmentation Index (PFI) Rivas et al. (2022)

fragmentation index

MSPA expansions; distance & similarity; Jensen— Vogt et al. (2022); Netzel
Shannon multiscale similarity; large-area et al. (2024); Zhang et al.
workbench (2024, 2025)

FAD-FOS pipelines (fixed- Forest Area Density classes & summaries (policy-
scale density) scale, fixed window)

Fractal/Disorder toolchains  ImageJ2/ComsystanJ; Compactness & spatial disorder; local Peptenatu et al. (2023);
(FFI/FFDI/LCFD) Python/ArcGIS connectedness; robust to binary artifacts Alage et al. (2025)

GUIDOS Toolbox Program; QGIS plug-in;
Workbench (GWB) C/GDAL

GUIDOS + scripts Vogt & Caudullo (2025)



Period

Toolset

ENVI & GeoDa; MapBiomas
& IDRISI (FFCI)

Fiji/lmageJ2 + ComsystanJ
(3-D)

ESIS/Imalys; AMAPVox
(TLS)

LFT (applications)

ProNet scripts; LandTrendr
(recent apps)

Platform Notes

RS & spatial analysis

Image analysis

Python/C++; TLS
processing

ArcGIS extension

R/Python; GEE

Features
PCA-based composite indices; ANN & CA—
Markov forecasting
Voxel-based 3-D fragmentation; fractal
dimension; succolarity
Hybrid PMM-GM toolkit; NDVI/NIRYv;
voxelized TLS for PAI; phenology impacts
Recent use-cases of LFT in susceptibility
mapping
Protected-area network connectivity metric;
provincial LandTrendr deployments

References

Lin et al. (2024); Moreira
et al. (2024)

Andronache (2024)

Selsam et al. (2024);
Nunes et al. (2022)

Batar et al. (2021)

Theobald et al. (2022);
Qiu et al. (2025)
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Land use/cover changes using Corine Land Cover
data following hurricanes in the last 10 years.
A case study on Tuchola Forest Biosphere Reserve

Summary: Numerous environmental decisions are predicated on the idea that certain
land cover combinations are preferable to others. Given that Corine Land Cover (CLC) da-
tabase encompasses a detailed three-level hierarchical nomenclature composed of 44 land
cover/use classes at its most detailed level, it has been used to analyze temporal changes
in the Tuchola Forest Biosphere Reserve as a whole and in three communes that have been
severely impacted by hurricanes in the last decade, namely Brusy, Osie, and Czersk. This
article compares spatial data from 1990, 2000, 2006, 2012, and 2018 in order to determine
the magnitude of land modification caused by hurricanes in 2012, 2017, and 2021. In July
2012, a very strong wind damaged forests covering an area of over 500 ha in the Trzebciny
Forest District (Osie Commune). In August 2017, a catastrophic storm swept through Po-
land, primarily in Pomorze and Kujawy, destroying forest stands across several thousand
hectares of Tuchola Forest, most notably in the Rytel, Lipusz, Czersk, Bytéw, and Runowo
Forest Districts. In July 2021, another hurricane destroyed over 1,000 hectares of forest,
primarily in the Osie Forest District. According to the CLC analysis, the entire biosphere
reserve lost 140.84 km? of forest cover, while the transitional woodland/shrub increased
by 726 percent due to forest regeneration. Landscape metrics such as number of patch-
es, mean patch size, edge density, and mean shape index indicate severe fragmentation,
whereas Shannon diversity demonstrates an increase in diversity over time. In addition,
the Czersk’s commune index was chosen to compare the fragmentation percentages with
those of the entire TFBR, and the results indicate uniformity.

Keywords: Tuchola Forest, Biosphere Reserve, CLC, land use/cover, spatial indices, land-
scape structure, hurricane
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Introduction

News about climate change is no longer as startling as it used to be, neither read-
ing about hurricanes or storms scare us anymore. However, the inevitable conse-
quences that lithosphere faces after any climatic disturbances alters a significant
fragment on the landscape, both on a small and a large scale. Studying the rela-
tionship between these natural processes on different scales are fundamental to
landscape ecology (Chamorro et al. 2015), and integrating it with the temporal
aspect to understand the coping mechanism of landscapes is extremely crucial in
the current environmental scenario.

Hurricanes leave a permanent impression on forest structure by causing dam-
age to standing inventory, significantly affecting the age class structure and spe-
cies distribution in an impacted region (Xi et al. 2008). After making landfall,
hurricanes can significantly alter the landscape through wind damage, torrential
rainfall, and storm surge. Hurricanes (wind speeds over 33 ms™) are one of the
major natural disturbance elements, impacting landscapes by causing property
damage, tree mortality, and vegetation degradation (Boose et al. 1994; Judrez et
al. 2008). Recent studies indicate that hurricane frequency has increased over the
past three decades (Emanuel 2005; Wu, Wang 2008; Walsh et al. 2016; Reed et
al. 2022). Recent years (2000-2014) have averaged close to seven hurricanes per
year in the North Atlantic which is associated with rising sea surface tempera-
tures (Hurricanes and climate-change 2020).

Although the increase in hurricane intensity has been well recorded, the im-
pact of hurricane forest damage on regional climate has yet to be investigated
(Judrez et al. 2008). Research on the coastal ecosystems by Lam et. al. (2011)
shows differential rates of land cover changes after repeated hurricane strikes can
be used to evaluate the ecosystems’ resilience.

In this research, the authors have tried to look into the spatio-temporal chang-
es of the landscape by considering the available Corine Land Cover data of the en-
tire Tuchola Forest in general and thereafter considered three communes, namely
Osie, Brusy and Czersk which were reported to have been highly affected after
the aforementioned disasters. Spatio-temnporal changes and fragmentation were
studied based on these areas. Considering the maximum changes in the Czersk
Commune, further analysis of metrics were employed on the entire Tuchola For-
est Biosphere Reserve (TFBR) and the Czersk Commune.

Review of approaches regarding land cover changes

“Land use” and “land cover” have different meanings relating to land surface,
with the former reflecting human activities and the latter biophysical condition,
yet both are dynamic through time (Assaf et al. 2021). Both land use (LU) and
land cover (LC) are usually monitored via field surveys, however, only land cover is
mostly estimated using remote sensing techniques (United States Department of
Agriculture). LULC change assessment is difficult because acquiring ground-based
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data at the right time and space resolution is expensive and time-consuming.
Remote sensing monitors, quantifies, and models landscape changes and pat-
terns (Joorabian Shooshtari et al. 2020; Gemitzi et al. 2021). Using remote sens-
ing data, several studies have determined local, regional, and global land-cover
changes (Wolter 2006; Popovici 2013; Kucsicsa 2019; Karra 2021).

During the past two decades, technological advances in remote sensing have
enabled the production of numerous global land cover datasets, facilitating their
extensive use in modelling research (Brice Mora et al. 2014). Global economic
crisis forces nations to reduce expenditure. However, better environmental data
and reporting obligations are growing due to increased awareness. As the value of
“free data” spanning large areas grows, it may become necessary to enhance the
usage of remote sensing to meet both needs (Manakos et al. 2014).

COoRdination of INformation on the Environment (CORINE) was an EU
initiative to standardize land data in the 39 participating countries and produce
a European-wide land cover inventory (Land Copernicus; Biittner 2014). CLC
maps have a scale of 1:100,000 and classifies land according to a 3-level hierar-
chical categorization scheme with 44 classes at the third and most specific level
(Gemitzi et al. 2021). As CLC is typically updated every six years, it was deemed
useful to investigate whether forest fragmentation may be reliably computed us-
ing remotely sensed imagery that is available over such temporal intervals. Mere-
ly observing the changes in the landscape is not enough, unless we analyze the
ecological significance of it, hence selected landscape metrics were applied to the
CLC dataset of 5 years.

Since the inception of landscape ecology, the relationship between spatial pat-
terns and ecological processes has been one of its central concerns (Wu, Hobbs
2002). To establish this correlation, the first step is to quantify landscape pat-
terns (Hulshoff 1995), which has received considerable attention from landscape
ecologists (Turner 2005).

Review of landscape metrics for forest landscape stability

Metrics are quantitative measurements and features generated from land cover
data, such as composition (kinds and area of specific land cover classes) and con-
figuration (spatial organization of land cover classes throughout the landscape,
including habitat fragmentation) (Turner 2005).

Landscape ecologists have proposed numerous landscape pattern indicators
since the 1970s (Wu 2006), including patch number, patch area, patch form in-
dex, fragmentation index, sub-dimension, landscape heterogeneity index, etc.
(Turner, Gardner 1991; Kunz 2006). These indicators analyze quantitative data,
the composition and spatial distribution of landscape structure, compare the
structural characteristics of various landscapes, and reveal the landscape’s spatial
configuration and changing patterns (Bailey et al. 2007).

Landscape metrics uses categorical data with spatial interruption, while spa-
tial statistics uses quantitative data with spatial continuity (Wu 2000). Landscape
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pattern studies usually use categorization maps like vegetation, soil, and land
use/land cover (Peng et al. 2010).

Due to the rapid development of GIS and RS technologies, as well as free and
upgraded software packages like FRAGSTATS (McGarigal, Marks 1995), APACK
and IAN (Mladenoff, DeZonia 2004), and ArcGIS plugins like Patch Analyst
(Rempel et al. 2012), landscape ecologists can easily obtain metrics for a par-
ticular landscape (Kunz, Nienartowicz 2004; Kunz 2006; Kjelland et al. 2007;
Gardner et al. 2008; Messerli et al. 2009; Riitters et al. 2009; Peng et al. 2010;
Kelly et al. 2011; Reif, Swannack 2014; Adamczyk, Tiede 2017). Metric selection
for a new study must be based on the study’s objectives, the system’s spatial
characteristics, and the ecological processes being studied (Gustafson 1998). In
addition, they should be computed on process-appropriate maps (Kunz 2006a;
Bailey et al. 2007).

Wang and Xu (2009) used landscape metrics of undisturbed and disturbed
forests after Hurricane Katrina such as number of patches (NP), patch density
(PD), patch area mean (AREA MN), patch area standard deviation, largest patch
index, total core area, total edge (TE), edge density (ED), and landscape shape
index (LSI) and found that forest types, forest coverage and stand density, and
soils groups contributed to 85% of accuracy in modeling the probability of tree
mortality.

Study area and methodology of research

Study area

Tuchola Forest Biosphere Reserve (TFBR), established on 2nd June 2010 under
Man and Biosphere Program (MaB), is the tenth and the biggest biosphere re-
serve in Poland. It is located in the northwest part of the country and it covers
an area of 319,525 ha (Fig. 1). Over 60% of the TFBR area is covered by for-
ests. There are 13 Forest Districts managed within that area: Czersk, Dabrowa,
Kaliska, Ko$cierzyna, Lipusz, Osie, Osusznica, Przymuszewo, Rytel, Tuchola,
Trzebciny, Woziwoda and Zamrzenica (Nienartowicz et al. 2010; Nienartowicz,
Kunz 2018).

Every year, over a dozen cases of anemological phenomena are recorded over
Poland. Most often these are strong blasts of wind. Selective monitoring of these
phenomena makes it difficult to conduct multi-faceted research related to this
subject. The current warning system against wind phenomena is not fully effec-
tive, as the messages concern too large an area of the country — usually selected
voivodeships. So far, the detection of tornadoes in Poland is difficult due to their
local nature. Although these phenomena appear rarely, unfortunately, they can
be devastating (Poplawska 2014; Taszarek, Gromadzki 2017). The occurrence of
extreme meteorologic events is influenced by many factors such as location of
the baric systems, direction of inflow and type of air mass or even direction and
velocity of the jet stream wind (Sulik 2021).
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Fig. 1. Location of Tuchola Forest Biosphere Reserve and the three Communes — Brusy,
Czersk and Osie

The north western province of Poland is most susceptible to windstorms that
created havoc in the last two decades. On 14 July 2012, an isolated cyclic supercell
thunderstorm occurred in north central Poland and produced a few tornadoes
near the Tuchola Forest which destructed around 500 ha of forests (Taszarek et
al. 2016). A derecho event that occurred in Poland on 11 August 2017, destroyed
and partially damaged 79,700 ha of forest. Wind gusts of extreme intensity de-
stroyed a significant part of the Tuchola Forest, including around 8,000 ha of for-
est in the Rytel Forest District and 6,000 ha of forest in the Lipusz Forest District.
According to the accounts of some witnesses, the entire forest sections in the area
of Tuchola, Chojnice, Bytéw, Koscierzyna, and Lebork were swept away within
a few minutes (Figurski et. al. 2017; Taszarek et. al. 2019). The meteorological
station in Elblag recorded a peak wind gust of 42 ms™!, while the station in Lebork
had 31 ms™). At the end of July 2021, another hurricane destroyed over 1,000
hectares of forest, primarily in the Osie Forest District (Osie Commune). The
greatest damage was inventoried in the vicinity of the villages of Tleni and Osie.

Thus the authors have selected the entire TFBR to analyse the overall ef-
fect of spatio temporal changes and validate the same in the most effected com-
munes, considering that not all communes can have an equal impact of a disaster.
The methodology has been depicted in Fig. 2 and elaborated in the following
paragraphs.

Corine Land Cover database

Corine Land Cover (CLC) was specified to standardize land data collection in
Europe to support the development of environmental policy. Images captured by
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Fig. 2. Methodological scheme of the research process

Earth Observation (EO) satellites serve as the primary data source for determin-
ing land cover and land use (EEA Task Force 1992). The standard Corine Land
Cover vector data for years 1990, 2000, 2006, 2012 and 2018 were downloaded
freely from http://clc.gios.gov.pl/index.php/9-gorne-menu/clc-informacje-ogol-
ne/59-produkty-2. Datasets were clipped to the extent of the Tuchola Forest Bio-
sphere Reserve boundary given by the official website in 2010 in ArcGIS 10.7.1
and mapped to visually interpret the changes throughout the years (see Fig. 3)
and 15 categories from third level were identified (see Table 1).

For temporal land cover change evaluation, the frequency of pixels in each
category for each year was determined and merged within the attribute table of
ArcGIS 10.7.1 to calculate the total area for each level three category and finally
producing a land use/cover map for the entire biosphere reserve (see Fig. 3). This
datasheet was then exported to excel for calculating the percentage change and
plotting bar diagrams of area in square kilometre (Fig. 4). The purpose of the
bar diagrams was to evaluate the extent of changes throughout the period and
to determine which year and which particular commune records the most sig-
nificant transition types. To calculate the percentage change in Microsoft Excel
2016, 1990 Corine Land Cover database was used as the base year, and 2000
was used for the later and then divided by the base year (1990) to be multiplied
by 100. This was repeated for all the years in each category but only the Czersk
Commune has been selected for representation because of its highest amount
of change (see Figs. 5 and 6). Codes described in level 3 of CLC legend (refer to
Table 1) are used for plotting the bar diagrams and line charts in Figures 4, 5
and 6.
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Table 1. Corine Land Cover categories present in Tuchola Forest Biosphere Reserve

Level 1 Level 2 Level 3

1. Artificial 1.1. Urban fabric 1.1.2. Discontinuous urban fabric

surfaces 1.2. Industrial, commercial ~ 1.2.1. Industrial or commercial units
and transport units 1.2.2. Road and rail networks and

associated land

1.4. Artificial non- 1.4.2. Sport and leisure facilities
agricultural vegetated areas

2. Agricultural 2.1. Arable land 2.1.1. Non-irrigated arable land

areas 2.3. Pastures 2.3.1. Pastures
2.4. Heterogeneous 2.4.2. Complex cultivation patterns
agricultural areas 2.4.3. Land principally occupied by

agriculture with significant areas of
natural vegetation

3. Forest and semi  3.1. Forests 3.1.1. Broad-leaved forest
natural areas 3.1.2. Coniferous forest
3.1.3. Mixed forest

3.2. Scrub and/or herbaceous 3.2.4. Transitional woodland-shrub
vegetation associations

4. Wetlands 4.1. Inland wetlands 4.1.1. Inland marshes
4.1.2. Peat bogs
5. Water bodies 5.1. Inland waters 5.1.2. Water bodies

Landscape metrices to study forest landscape fragmentation

Using the two land cover categorization datasets and the landscape pattern anal-
ysis extension Patch Analyst 3.1 for Esri Software, class-level and landscape-level
measures were calculated (Rempel et al. 2012). To assess landscape pattern, the
extension generated hundreds of patch-, class-, and landscape-level measure-
ments. Typically, a subset of metrics is chosen based on the analysis’s objectives.
For this study, a number of previous studies (Kunz 2006; Kjelland et al. 2007;
Gardner et al. 2008; Wang, Xu 2009; Kelly et al. 2011; Reif, Swannack 2014)
have been thoroughly reviewed and evaluated to select the metrics according to
their usability and importance in understanding ecological processes. The met-
rics considered for this investigation are summarized in Table 2. The vector data
derived from the CLC land use/cover third level classes were analysed to obtain
these metrics.
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Table 2. Summary of landscape metrics used in the study

Name Matric Desription Unit
Patches Number of patches NP>1, without limit, NP = 1 when a landscpae -
or class type contains one patch; number of
patches corresponding to class type at a land-
scape
Mean patch size the average area of patches corresponding to the  ha
forest cover type; greater MPS indicate slightly
fragmented forests
Edge Edge density edge density (ED) standardizes edge to a per m/
unit area basis that facilitates comparisons ha
among landscape of varying size
Shape Mean shape index ~ shape complexity

Diversity Shannon’s diversity measure of relative patch diversity -
index

Results

Spatial patterns of land cover change

The impact of severe storms on forests is evaluated on a regional scale through
a temporal series of maps from 1990 to 2018. After making landfall, hurricanes

Change in land use/cover in Tuchola Forest Biosphere Reserve (1990-2018)
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Fig. 3. Changes in land use/cover in Tuchola Forest Biosphere Reserve between 1990-2018

32



Land use/cover changes using Corine Land Cover

can significantly alter the landscape through wind damage, precipitation, and
storm surge. Following the three recorded windstorms, significant changes with-
in each CLC category has been shown spatially for the entire Tuchola Forest
Biosphere Reserve (Fig. 3).

To validate the land use/cover changes within each commune particularly, the
three selected communes (see Fig. 4) and the entire TFBR were compared using
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Fig. 4. Change in area for each category from 1990 to 2018 in: (a) Tuchola Forest Biosphe-
re Reserve, (b) Brusy Commune
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bar diagrams. The LULC produced by the CLC data from 1990-2018 shows sim-
ilarity of categorical changes within each commune as well as the entire TFBR.
The interpretation of landscape statistics (Fig. 4) and the resulting landscape map
(Fig. 3), along with prior information of the research area, allowed for a detailed
description of the landscape typologies that comprise the land use/cover. The pil-
lar landscapes include non-irrigated arable land (code 211), pastures (code 231),

160 c
140
120
100
= 1990
80 2000
©2006
60 2012
2018
40
20
0 Fii P
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
250 d
200
= 1990
150
= 2000
[ 2006
@ 2012
100
H 2018
50
OA.ﬂ, . . . . .
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Fig. 4. Change in area for each category from 1990 to 2018 in: (c) Osie Commune, (d)
Czersk Commune
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land principally occupied by agriculture (code 243), coniferous forest (code 312),
mixed forest (code 313), water bodies (code 512). The entire biosphere reserve
hosts a diverse and complex set of CLC categories than individual communes.
The adjacency bar graph illustrates the spatial links between the landscape types
of the individual communes (b, ¢, and d) and the entire forest region (a), never-
theless the individual communes has a lower number of land use/cover classes
compared to the entire landscape which comprises of 17 categories. Brusy and
Osie has 12 categories each while Czersk has 13 categories.

To analyse the percentage change among each categories, two line diagrams
are represented (Fig. 5 and 6). From Figure 4 it had been deduced that among
the three communes, Czersk showed the highest amount of changes in land cov-
er (Fig. 6), where coniferous forest (code 312) records 20.90% decrease while
broadleaved forest and mixed forest increased gradually. Non-irrigated arable
land (211) and complex cultivation patterns (code 242) shows approximately 5%
and 41.74% decrease respectively. Transitional woodland/shrub (code 324) re-
cords 5,468.53% increase from 1990-2018. Inland marshes and waterbodies re-
main more or less unaffected.
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Fig. 5. Trend showing percentage change in land use/cover in Tuchola Forest Biosphere
Reserve (1990-2018)
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Fig. 6. Trend showing percentage change in land use/cover in Czersk Commune (1990-
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Spatial analysis of forest structure

For quantifying the land cover changes in the Tuchola Forest Biosphere Reserve
after the three aforementioned hurricanes, the authors decided to use: number
of patches, mean patch size, total edge, edge density, mean shape index, area
weighted mean patch fractal dimension and Shannon’s diversity index.

Table 3. Landscape pattern indices for each year in Tuchola Forest Biosphere Reserve

Number of  Mean patch Mean shape  Shannon’s di-

Years patches size Edge density index versity index
1990 1,194 2,679,550.81 0.00351 1.981 1.879
2000 1,195 2,677,308.51 0.00348 1.978 1.878
2006 1,236 2,588,497.14 0.00352 1.964 1.902
2012 1,343 2,382,265.43 0.00357 1.912 1.952
2018 1,405 2,277,141.55 0.00376 1.929 2.019

Landscape metrics provided valuable data regarding forest changes, particu-
larly fragmentation, connectivity, and heterogeneity measured at the landscape
or class level. The total number of patches at the landscape scale increased
from 1,194 to 1,405 between 1990 and 2018, while the mean patch size (MPS)
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decreased by 15.02 percent. The MPS analysis indicates that the forest landscape
in 2018 was highly fragmented.

Even though they are not spatially explicit, edge metrics are typically viewed
as the best representation of landscape configuration. It is observed that, as the
number of patches increases, so does the edge density, which once again confirms
high fragmentation. Mean Shape Index values are typically greater than or equal
to 1. When nearly all patch shapes are square-like, shape mn’s value is 1, and as
patch shapes become more irregular, shape mean’s value increases proportional-
ly. In this case, the mean shape index is relatively uniform, with a slight decrease.

Shannon’s diversity index (SDI) initially (years 1990-2000) exhibited no sig-
nificant change; however, from 2006 to 2018, SDI increased gradually, indicating
an increase in diversity or heterogeneity.

Table 4. Landscape pattern indices for each year in Czersk Commune

Number of ~ Mean patch Mean shape Shannon’s di-

Years patches size Edge density index versity index

1990 204 1,860,812.27 0.0037 1.989 1.875

2000 200 1,898,028.52 0.0036 1.988 1.853

2006 204 1,860,812.27 0.0037 1.949 1.907

2012 218 1,741,310.57 0.0037 1.928 1.933

2018 241 1,575,127.41 0.0041 1.937 2.034
Discussion

The Landscape Change Index (LCI) was defined by Woodward et al. (2001) as
the total change in vegetation and land use at the landscape level by integrating
the absolute average changes of all land-cover types into one value. In this way,
LCl is characterized by a single value that represents the consequence of all types
of changes occurring in the landscape’s background over a specific time period.
According to the applicability of Landscape Change Index, the authors identi-
fied that the highest amount of changes were analysed post 2006, owing to the
disasters that occurred after 2012. There is an evident decrease in non-irrigated
arable land (code 211) and broad-leaved forest (code 312) throughout the time
period (see Figs. 4 and 5). Another striking change is noticed with transition-
al woodland/shrub (code 324) which increased about 725% and can be a result
of woodland degradation after 2012 and 2017 windstorms, forest regeneration/
recolonization, or natural succession. Peat bogs (code 412) which used to have
a considerable amount of decomposed vegetation matter till 2006, suddenly dis-
appeared in 2012, which could also be a direct influence of disasters. Conifer-
ous forest (code 312) consisting of pine trees, the most dominating vegetation
in the biosphere reserve registers a gradual fall throughout the years since 1990
with —8% in 2018. This can also be seen in terms of Shannon’s diversity index
where after the disastrous events of 2012 and 2017, the diverse number of cate-
gories increased to 6.15% after 2006, owing to the high number of transitional
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woodland, discontinuous urban fabric, and water bodies which could be a direct
consequence of storm events and heavy precipitation. Another notable change
detected is the 157.29% increase in the Discontinuous urban fabric (code 112).
Project Copernicus distinguishes between continuous and discontinuous urban
fabric based on a distance of less than 300 m between the houses and associated
with green spaces and bare surfaces among them.

In terms of forest sustainability and management policies, quantitative as-
sessments of forest fragmentation and heterogeneity using spatial and temporal
patterns constitute a valuable tool. The authors anticipate the release of the next
series of Corine Land Cover data base in 2024, which will allow for better com-
parison. In addition, satellite imagery with a higher spatial resolution, such as
Sentinel, or active sensors such as LiDAR, provides the opportunity to work in
much greater detail.

This research also made us question whether administrative boundaries, such
as communes, should be taken into account when conducting comparative re-
search, given that nature knows no bounds.

Conclusion

In this study, multi-temporal data base from the Corine Land Cover datasets
were used to identify the spatio-temporal patterns of land use and land cover
changes after three catastrophic hurricanes. This study provided deforestation/
degradation and regeneration statistics for the Tuchola Forest Biosphere Reserve
over a 28-year period, with a focus on the communes in the path of windstorms
(1990-2018). According to the results, 140.84 km? of forest cover was lost within
the biosphere reserve.

Landscape indices for the entire Tuchola Forest and the Czersk Commune
confirm fragmentation and heterogeneity as a result of an increase in patch size
and edge density. The impact of the hurricane of 2021 on the landscape structure
in the vicinity of Osie and Tlen can be determined using the updated CLC spatial
database in 2024.

The diversity in both of these study regions has also increased significantly.
This study has only examined the spatial and temporal changes in forest cover,
without delving deeply into the underlying causes of hurricane-induced forest
degradation. However, as discussed, previous research confirms a direct propor-
tional relationship between forest land fragmentation and wind gusts. There-
fore, this demonstrates the need for conservation efforts to focus on better forest
management.

Overall, the change detection statistics and metrics exemplify how quanti-
tative measures can be applied to land cover data to analyze broad land cover
characteristics as well as the underlying structure, aggregation, and shape prop-
erties. This huge array of change measures was evaluated in the research area
spanning the northern portion of Poland, and displays change mostly linked with
the storms of 2012, 2017, and 2021 reviewed in the 2012 and 2018 imageries.
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Abstract. Monitoring the change in land cover in disaster-affected areas, such as forests, has become
a conventional forest management practice, particularly in protected areas. Most change detection
and fragmentation studies rely on single-dated satellite images even while investigating changes over
a long temporal span. This study aims to move a step further to compare fragmentation before and
after a derecho event that occurred in August 2017 using 23 Landsat-8 images of Brusy Commune
within the Tuchola Forest Biosphere Reserve. The supervised classification was carried out in the Google
Earth Engine using the machine learning algorithm of random forests within the summer months of
2017 and 2018. The high overall accuracy of 0.92 was obtained for the two images which were
then analysed with landscape metrics such as mean patch size, number of patches, total edge and
edge density using Patch Analyst. These landscape metrics facilitated the characterisation of landscape
fragmentation at both the class and landscape levels. Shannon's Diversity Index was employed to
assess heterogeneity across the landscape. The findings indicate significant fragmentation, particularly
in the forest and pasture classes, with overall low diversity. This study underscores the potential for
future research to employ advanced machine learning techniques and non-parametric classifiers, such
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as neural networks, to enhance the prediction of fragmentation across various spatial scales.

Introduction

The perception of forest landscapes varies
significantly across different scales and is
influenced by the observer’s experiences and the
methodological approach adopted in its study.
This variability is particularly evident in remote
sensing, where landscapes are interpreted through
various resolutions - spatial, radiometric, spectral
and temporal. These resolutions frame our
understanding of the landscape’s structure, dynamics
and function. Natural disasters and human impacts
have been consistently responsible for modifying
the landscape, and it has thus become increasingly

crucial to study the various changes occurring
within the landscape using various remote-sensing
and GIS tools on various scales (Haines-Young
and Chopping 1996; Gustafson 1998; Frohn 2018;
McGarigal and Cushman 2002; Vogt et al. 2007).
When monitoring natural or human-induced events,
change detection involves four steps: detecting the
change, determining its nature, measuring its area
and assessing its spatial pattern (Macleod and
Congalton 1998).

Based on many remotely sensed images at
various spatial resolutions and assessments of
landscape metrics, researchers have been able to
quantify the influence of spatial scale on landscape
patterns (Kunz and Nienartowicz 2002, 2004, 2007;
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Wu and Hobbs 2002; Saura 2004; Zhu et al. 2006;
Gan et al. 2009). Indicators or metrics that consider
the pattern, area and geometrical aspects of the
landscape are used for change detection analysis
(Kunz and Nienartowicz 2002). Turner et al. (2001)
proposed methods for analysing landscape and
forest patterns. In practice, the majority of forest
fragmentation indicators are driven by either the
ideas of adjacency or connectivity at the pixel level
(Musick and Grover 1991). To meet requirements for
the comparability of data and indicators across wide
geographic regions, the input data for assessments
are often derived from remote sensing and consist
of land cover maps (Vogt et al. 2007).

Feng and Liu (2015) analysed raster datasets
from 30 m to 330 m, at 30-m intervals, finding
that landscape metrics’ sensitivity to cell size varies,
with some metrics significantly affected and others
showing minimal sensitivity. This result is consistent
with previous literature highlighting the correlation
with metrics and scales (Kunz and Nienartowicz
2002; Millington et al. 2003; Uuemaa et al. 2005).
Recent methodologies to analyse scale impacts
have been utilised in case studies to examine scale
constraints in landscape ecology (Alhamad et al.
2011; Forzieri and Catani 2011; Feng et al. 2013;
Li et al. 2013).

Forest disturbance mapping at medium
resolution faced constraints until 2008, when
Landsat imagery was made freely available. From a
scientific perspective, the authors found it essential
to not rely solely on single images from satellite
sensors. Instead, they utilised a median composite
of all cloud-free data for classification on Google
Earth Engine (GEE). GEE is a free cloud-computing
platform for satellite-data processing (Landsat,
Sentinel-2, MODIS) and planetary-scale analysis
(Gorelick et al. 2017). Since the first major work
on the topic was published in 2013 (Hansen et al.
2013), the amount of research using GEE has risen
sharply, with more than 397,000 results in Google
Scholar as of April, 2024. The applications range
from vegetation monitoring to land cover mapping,
disaster management and agricultural applications
(Kennedy et al. 2018; Mutanga and Kumar 2019;
Amani et al. 2020; Orusa et al. 2023).

This research explores the suitability of
Landsat’s 30-m resolution for analysing landscape
fragmentation, focusing on the Brusy Commune
forest in northern Poland, which experienced a
derecho stemming from a mesocyclone on August

11, 2017. It critically examines the impact of scale
on landscape metrics and their sensitivity when
employing GEE for satellite-based forest monitoring.

Materials and methods

Study area

The Brusy Commune, serving as the focal area for
this study’s detailed land use/land cover (LULC)
changes analysis, is situated within the Chojnice
Poviat of the Pomeranian Voivodeship, northern
Poland (see Fig. 1). Spanning an area of 400.74 km?,
it is predominantly rural, with nearly 99% of its
expanse dedicated to rural landscapes and a minor
fraction (5.1 km?) constituting the urban area of
the town of Brusy. As of 2017, the commune had a
population of ~14,500, resulting in a density of 36
individuals per km? The commune is composed of
100 settlement units, encompassing major villages,
minor settlements and the urban centre of Brusy
(Kunz and Nienartowicz 2023).

Within the Brusy Commune, the Przymuszewo
Forest District is the predominant State Forest
economic unit, encompassing 80.53% of the area,
with the Czersk and Rytel Forest Districts following
in contribution. Land cover/usage analysis reveals
forests as the largest category, occupying 23,684
hectares or 59.1% of the commune’s terrain.
Agricultural spaces make up 30.4% of the land, with
arable fields accounting for 20.5% of this. Water
bodies, including six lakes each over 100 hectares,
constitute 6.2% of the area. Built-up and transport
infrastructures cover 2.1%, while areas with
scattered trees and shrubbery account for roughly
0.2%. The forest landscape is mainly characterised
by coniferous ecosystems, predominantly dry and
fresh pine stands, with deciduous forests making up
about 12% of the forestry. The average age of these
forest stands is 62 years (Kunz and Nienartowicz
2023).

The Brusy Communes forest regions are
distinguished by a variety of protected areas,
including the Zaborski Landscape Park located
in its western sector (see Fig. 1). Within the
commune boundaries, there exist eight nature
reserves encompassing forest, peat bog and
aquatic ecosystems, alongside 42 ecological sites.
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Additionally, Brusy is among 22 communes within
the Tuchola Forest Biosphere Reserve (TFBR),
which was inaugurated on June 2, 2010 as part of
the Man and Biosphere Programme (MaB), marking
it as Poland’s eleventh and largest biosphere reserve.
Occupying 319,525 hectares in the country’s
north-west, the TFBR is predominantly forested,
accounting for over 60% of its area. This significant
forest cover positions the Tuchola Forest natural
district as one of Poland’s most extensive forested
areas (Nienartowicz et al. 2010; Nienartowicz and
Kunz 2018).

The Tuchola Forest Biosphere Reserve is
segmented into three distinct zones: core, buffer
and transit, as illustrated in Figure 1. The core
zone, deemed the most critical, encompasses the
“Tuchola Forest” National Park and 25 nature
reserves. Following this is the buffer zone, primarily
composed of four landscape parks, including the
Zaborski Landscape Park, which predominantly falls
within the Brusy Commune. The transit zone, the
largest, extends over the territories of 22 communes

18°0°E

(13 from the Kuyavian-Pomeranian Voivodeship
and 9 from the Pomeranian Voivodeship) and the
city of Tuchola, covering an area exceeding 206,000
hectares — nearly double the size of the buffer zone.
This structure is a unique characteristic of the
Tuchola Forest Biosphere Reserve. Nevertheless,
in August 2017, the reserve, particularly within
the Brusy Commune’s administrative boundaries,
was struck by a devastating derecho, leading to
significant alterations in the landscape’s structure
(see figure 2)(Taszarek et al. 2019; Kunz et al. 2023).

Derecho event in Tuchola Forest Biosphere
Reserve

European Severe Weather Database records 600
severe convective wind gusts annually in Poland
(Dotzek et al. 2009). Such occurrences are most
prevalent from May through August, with a typical
peak in the late afternoon of July (Celiski-Mysaw and
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Palarz 2017; Taszarek et al. 2019; Sulik and Kejna
2020). These winds, capable of causing significant
damage, commonly result from thunderstorm
outflows and are frequently linked to supercells and
mesoscale convective systems (MCS) (Zipser 1982;
Doswell and Burgess 1993; Houze 1993).

Johns and Hirt (1987) were the inaugural
scientists to outline the criteria for derechos, a term
referring to intense downburst clusters associated
with forward-propagating mesoscale convective
systems (MCS) characterised by mesoscale vortices
and inflow jets. According to Corfidi et al. (2016),
for an event to be classified as a derecho, the damage
path must maintain a width of at least 100 km and
extend over a length of 650 km, predominantly
driven by a mature, cold-pool MCS following
the initial storm development. Annually, Poland
witnesses an average of ten bow echoes and one

derecho, indicative of the country’s susceptibility
to such severe weather phenomena. Notably, the
derecho on August 11, 2017 exemplified this
destructive capability, generating substantial wind
damage with gusts exceeding 42 m/s (Celiski-
Mysaw and Matuszko 2014; Celiski-Mysaw and
Palarz 2017; Taszarek et al. 2019; Sulik and Kejna
2020).

Materials and methods

The methodological scheme has been illustrated in
Figure 3 and described in detail in the following
section.
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Satellite data

This research employed multispectral satellite
imagery from the Landsat-8 Operational Land
Imager (OLI), focusing on orthorectified surface
reflectance data processed through Google Earth
Engine (GEE) to conduct land use and land cover
(LULC) classification in Brusy, North Poland,
specifically during the summer period of April,
May, June, and July. Landsat-8’s moderate spatial
resolution of 30 meters, coupled with its global
reach, has facilitated its widespread adoption for
various land cover delineation tasks, including the
identification of agricultural lands and wetland
areas, since its launch (Giri et al. 2013; Schultz et
al. 2015; Gilbertson et al. 2017). For the purpose
of classification, this study selected only the blue,
green, red, and near-infrared (NIR) bands, given
their similar Spectral Response Functions (SRF).
The criteria for image selection included a cloud
cover of less than 10%. The dataset comprised 10
Landsat-8 surface reflectance (SR) images collected

between March 30 and July 30, 2017, as pre-disaster
evidence, and 13 images from the corresponding
dates in 2018 as post-disaster evidence. For each set
of yearly images, a median composite was generated
to represent the summer season’s land cover state.

Classification method

Reference data, including both training and
validation samples, were collected from Landsat
imagery for the specified time frames. Reflecting
the objectives of this study and the real-world
conditions of the study area, six distinct land cover
types were identified for sampling: water bodies,
forest, damaged forest area, bare land, pastures and
built-up areas. To ensure a non-biased assessment
of classification accuracy, validation samples were
acquired at least one week subsequent to the
collection of training samples. For the purpose of
training, ~1500 samples for each land cover category
were compiled. Conversely, the number of validation
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Fig. 3. Methodological scheme of work
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samples was significantly lower, emphasising quality
over quantity in assessing the model’s performance.

Random forest classifier

In this research, the Random Forest (RF) algorithm
was selected for the task of classification, recognised
for its robustness in handling various satellite
imagery types (Jin et al. 2019; Xu et al. 2020).
Random Forest operates on the principle of
Ensemble Learning, amalgamating multiple decision
trees to improve the classification outcome. Each
decision tree, constructed from a randomly sampled
subset of the training data, contributes equally to
the final decision through a process of majority
voting on the classification of unlabelled samples.

Notably, the RF classifier is acclaimed for
its swift training process, exceptional accuracy,
resilience to outliers and resistance to overfitting, as
highlighted in previous studies (Rodriguez-Galiano
et al. 2012; Zhong et al. 2014). For the purposes
of this study, the classifier was configured with 50
trees, a decision aimed at optimising the trade-oft
between computational efficiency and classification
precision. All other parameters within the Google
Earth Engine (GEE) framework were maintained
at their default settings, ensuring a standardised
approach to the classification process.

Accuracy evaluation

The evaluation of precision stands as a pivotal
aspect of the classification workflow, with accuracy
assessment being integral to verifying the correct
categorisation of land cover types from sampled
pixels (Rwanga and Ndambuki 2017). This process
encompasses a variety of techniques designed
to measure the thematic accuracy of land cover
classifications. Among these, the confusion matrix
serves as a fundamental tool, facilitating the
calculation of Overall Accuracy (OA). OA is derived
by dividing the number of correctly classified pixels
by the total pixel count, offering a straightforward
metric of classification success (Foody 2010). This
measure provides a quantifiable means to assess
the effectiveness of the classification algorithm
in accurately identifying land cover from satellite
imagery.

Landscape pattern analysis

The LULC classes can be mapped and their
structural properties computed with the use of
landscape ecological concepts and metrics. The
authors used the term landscape metrics and
indices simultaneously. Quantifying LULC patch
distribution patterns and geographical analysis
is crucial to understanding the direction and
magnitude of landscape changes. Landscape pattern
analysis can provide valuable information regarding
LULC change (Zhang et al. 2011; Huang and Song
2016; Jaafari et al. 2016; Wang et al. 2018; Motlagh
et al. 2020; Tariq et al. 2023; Tran et al. 2023).
Forest fragmentation involves separating contiguous
ecosystems into smaller sections called “patches”
(Dutt and Kunz 2022). According to Forman (1995),
a patch is defined as a relatively homogeneous area.
The term “class” encompasses various categories of
patches, including those defined by land cover/land
use, habitat or vegetation types. Rutledge (2003)
notes that fragmentation typically results in an
increased number of patches, a reduction in the
average size of these patches and an augmentation
in the total length of their edges.

Fragmentation indices

Landscape indices are commonly categorised into
two types: non-spatial and spatial (Gustafson 1998).
Non-spatial indices quantify the composition of
the landscape by measuring the classes of patches
or the proportions of area they occupy. In contrast,
spatial indices assess fragmentation by detailing
the properties of these patches. Rutledge (2003)
suggests that spatial indices are indicative of
patch composition, shape and configuration. It
is important to note that, strictly speaking, only
patch composition is directly associated with
fragmentation. However, the conventional concept
of ecosystem fragmentation also encompasses
the reduction of area and the additional
indices previously discussed. The fundamental
fragmentation landscape indices encompass
composition, form and configuration. The selection
of specific indices depends on authors’ discretion and
the metrics” applicability derived from prior studies.
Composition indicators elucidate the foundational
properties of fragmentation. Metrics such as the
number of patches and mean patch area serve as
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primary measures of fragmentation (McCarigal et
al. 2002). However, these metrics are inadequate in
capturing fragmentation comprehensively, as it also
entails considerations of patch sizes.

Shape indices gauge patch complexity, with
shapes like circles or squares featuring fewer
edges and more core area (Forman 1995). Fractal
dimension serves as another prominent metric for
assessing shape and complexity (Krummel et al.
1987; O’Neill et al. 1988; Kunz and Nienartowicz
2007).

Patch configuration indices quantify the
connectivity within landscape patches (Tischendorf
and Fahrig 2000). The Shannon’s Diversity Index
(SHDI) offers a more robust measure of abundance,
while the number of patches is termed “richness”
(Turner 1990). A Shannon diversity index of zero
indicates uniform distribution of space among
patches across the entire landscape. Traditionally,
composition analysis has utilised the Shannon
metric (Effati et al. 2021).

The metrics for this landscape study are listed
in Table 1 and were calculated using Patch Analyst
3.1 for Esri Software based on criteria from the
literature. These metrics were determined by analysis

Table 1. Description and implication of metrics

of the vector data produced from the supervised
classification both at the landscape level and the
class level. For the landscape-level change metrics,
the authors calculated the percentage value to plot
all the matrices in the same graph for better visual
interpretation.

Results and discussion

LULC change analysis

Windstorms can significantly alter the landscape
through mechanisms such as wind damage,
precipitation and storm surge (Dutt et al. 2024).
Spatial variations resulting from a recorded
derecho event have been distinctly observed within
these categories (Dutt and Kunz 2022). Given the
capabilities of Google Earth Engine, which includes
a range of machine learning techniques, it was
considered advantageous to evaluate whether this
application programming interface could reliably
compute forest fragmentation. Accordingly, imagery

Name of metrics Definition

Implication

Total number of landscape patches, if

Number of Patches Analyse by Landscape is selected, or
(NP) the Number of Patches for each class,
if Analyse by Class is selected.
Mean Patch Size Mean of all patch areas belonging to
(MPS) class i.
Length of edges in the surface area;
Total Edge (TE) an edge is the boundary between two
distinct types of land cover.
Total edge density index is a ratio of
Edge Density (ED) total edges (number of cells at patch
boundary) to total area (total cells).
Area Weighted
Mean Patch Shape complexity adjusted for shape
Fractal Dimension size.
(AWMPED)

Number of land cover and land
use types in a landscape; when
normalised, this index value ranges
from 0 to 1.

Shannon's Diversity
Index (SHDI)

Describes the fragmentation of the landscape, the higher
the number, the more fragmentation.

Defines landscape composition. Diversity index and
mean patch size are inversely associated (Kumar et al.
2006). As the number of classes grows, the mean patch
size decreases at a landscape scale (Li et al. 2005).

Fragmentation produces a greater edge (Rutledge 2003).

Total edge density represents the level of fragmentation,
it begins to increase rapidly at the landscape scale, but
the rate slows as the number of classes increases (Li et al.
2005) species richness is sometimes positively correlated
with edge density (Kumar et al. 2006).

Rectangles, squares, and circles have fractal dimension
1, whereas irregular shapes approach 2. Human
perturbations reduce the landscape's fractal dimension.

A high score suggests a fairly equal proportion of land
cover types. Low values signify that a single land cover
category dominates.
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from pre- (2017) and post-disaster (2018) scenarios
was utilised. However, relying solely on a single
database to observe these changes is inadequate
for determining whether landscape metrics offer
additional insights beyond conventional satellite
imagery. Consequently, the authors employed
supervised classification schemes to categorise
Landsat images from 2017 and 2018, as illustrated
in Figure 4. Post-classification, it is essential to
assess and validate cartographic accuracy. Since the
creation of ideal classification maps is unfeasible,
a certain degree of error is anticipated. Thus, it
is crucial to acknowledge the limitations imposed
by user preferences, geographic regions or sensor
specifications.

Figure 4 depicts land cover change trajectories in
the Brusy Commune region. The trend analysis (Fig.
5A) shows a 177.52% increase in damaged forest,
followed by a 79.59% increase in bare land. The
forest cover decreased by 25.16%. Pastures, built-
up and water had negligible change. Considering
the two datasets, the predicted changes between
the pre-disaster and post-disaster scenarios depict
a satisfactory image of a disturbed landscape
affected by windstorms.

A detailed examination of the satellite image
classifications before and after the 2017 disaster,
depicted in Figure 3, reveals significant vegetation
loss in the north-west and south-east sections of
the study area consequent to the derecho event.
This data also facilitates the efficient determination
of the storm’s path. Notably, the region already
exhibited signs of forest damage before the 2017
event, traceable to a tornado in 2012, as evidenced
by the pre-disaster classified map (left) where short
straight lines inside the forest patches vividly depict
regions of secondary forest growth.

Errors in the classification process were noted,
with omission errors present in water, pastures
and bare land, while commission errors affected
settlements and forests. These misclassifications,
typically not expected in real-world scenarios, did
not influence the water or settlement classes despite
the storm events, and were thus deemed negligible
by the authors. Additionally, the apparent decline in
built-up areas is hypothesised to result from human
classification errors, where highways and smaller
settlements were likely misidentified as bare land
or damaged forest.

Given the Landsat dataset’s 30-m resolution,
it is possible that machine learning techniques

misclassified some open land as damaged forest or
bare land. This scenario prompts a re-evaluation of
the dataset’s reliability for forest change studies and
raises the question of whether higher-resolution
data should be utilised for more accurate forest
management analyses. These annual assessments
prove crucial for identifying the impacts of recurrent
events.

Fragmentation analysis at class level

According to Jiao et al. (2012), there is
a significant linkage between land use and land
cover (LULC) and landscape metrics. These
metrics are instrumental in defining the landscape
characteristics associated with LULC classes, as
highlighted by Gudmann et al. (2020). Generally,
the development of fragmentation indices mirrors
advances in landscape ecology. This connection
is succinctly captured in the title of Turner’s
seminal 1989 review, “Landscape Ecology: The
Effect of Pattern on Process”, which underscores
the critical interplay between landscape patterns
and ecological processes. The popularity and
effectiveness of landscape pattern analysis have
been enhanced by tools such as FRAGSTAT
(McGarigal and Marks 1995) and Patch Analyst
(Rempel et al. 1999). These tools have not
only facilitated detailed measures of individual
patches, classes and the entire landscape but their
continued utilisation underscores their enduring
relevance and utility. The analysis focuses on
class-level changes across six dominant element
types: damaged forest, forest, pastures, built-up
area, barren land and water. Landscape metrics
have yielded valuable insights into changes within
the forest, particularly in terms of fragmentation,
connectivity and heterogeneity. From 2017 to
2018, the total number of patches (NP) increased
from 21,375 to 29,579, marking a 38.38% rise.
This significant increase is partly attributable to
interventions in the damaged forest landscape,
where heavy equipment used for debris removal
and subsequent restoration activities created
numerous small, open spaces. These areas may be
mistakenly identified as built-up areas in satellite
imagery. Additionally, the presence of sandy
surfaces and remains of devastated vegetation can
further exacerbate these misclassifications.
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In addition, there was a notable decrease in the
mean patch size (MPS) by 30.05%, as shown in
Figure 5C. This reduction, along with the results
from other indicators, suggests that the landscape
became increasingly fragmented during the
study period. Figure 5A summarises the metrics
generated for the area per land cover class at the
class level, highlighting the substantial changes
within the landscape. Notably, the category of
damaged forest exhibited the most significant
alterations. Concurrently, the MPS for pastures and
forest land in Brusy also declined (Fig. 5C). This
reduction in MPS occurred alongside a decrease in
the total class areas (CA) (Fig. 5A) and an increase
in the number of patches (NP) and edge density
(ED) (Figs. 5B and 5D). These changes collectively
indicate that fragmentation was most pronounced
in the pastures and forest lands.

Fragmentation analysis at landscape level

Planners and policymakers often address the adverse
effects of landscape fragmentation, which can arise
through two primary mechanisms as identified
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by Burel and Baudry (2003): the reduction in the
overall size of a habitat and the division of a habitat
class into smaller patches. This process may also
coincide with an increase in the total amount of
edge, further complicating landscape integrity (Yu
and Ng 2006; Dutt et al. 2024).

In this study, fragmentation was assessed using
several indices, including Mean Patch Size (MPS),
Number of Patches (NP), Total Edge (TE) and Edge
Density (ED), as shown in Figure 6. The pre-disaster
scenario exhibited a landscape where MPS was at
its maximum, while TE, ED and NP were relatively
low, indicating minimal fragmentation. In contrast,
the post-disaster scenario showed a significant
reversal in these metrics, clearly signalling increased
landscape fragmentation.

Furthermore, measuring landscape heterogeneity,
which encompasses patch variety and spatial
complexity, is crucial for understanding landscape
evolution (Burel and Baudry 2003). Despite the
storm, Shannon’s Diversity Index (SHDI), calculated
to assess heterogeneity, showed no significant
changes between pre- (1.64) and post-disaster (1.62)
scenarios, as presented in Figure 6. This stability
suggests that no substantial shifts in land cover types
occurred within the short study period. The similar
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Fig. 5. Selected landscape indices: A. class area (CA), B. number of patches (NP), C. mean patch size (MPS), and D. edge density

(ED)
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values of this index imply that while the structural
dominance of land cover categories changed, it did
not significantly impact overall diversity.

In general, the areas that remained forested
despite the storm event are located at a considerable
distance from roads and settlements, as well as from
pastures (Fig. 4). This shows that there are many
complex and interconnected processes behind
recent land cover change.

Conclusion

The patterns found in the landscape as a result of
our research show a direct relationship between
land use and land cover. Within the research area,
forests are generally located at a distance from
human populations, roads, and pastures. This
configuration may indicate the vulnerability of
vegetation that remains closer to open lands and
built-up structures, a finding consistent with what
Dutt et al. (2024) identified in their study on forest
fragmentation susceptibility. The methods employed
within the study combine satellite images with
landscape metrics, allowing us to assess and analyse
changes in land use patterns in the study region. The
utilisation of machine learning ensemble methods of
stacked images covering the entire summer season

of 2017 and 2018 with relevant metrics enables
a deep investigation of dynamic landscapes that
would have otherwise appeared static using single-
date land cover analysis approaches. Although
remote sensing is increasingly used to research land
cover change (Feng et al. 2013; Gilbertson et al.
2017; Gin et al. 2019), few studies relate land cover
change trajectories using multiple-dated imageries
with landscape patterns.

The alleged lack of interpretability of numerous
landscape metrics has always been a key issue
(Haines-Young and Chopping 1996) in estimating
which metrics are the most appropriate to which
type of landscape and spatial resolution. Although
this technique has also been applied to imagery with
a medium resolution, the objective has remained the
same: to investigate an area of interest and gather
information about the texture of an image. The
methodologies utilised here provide information on
forest disturbance in the study area; spatial analysis
of forest fragmentation at the class and landscape
levels; land cover-change analysis through the
incorporation of data from multiple images; and
comparison of spatial patterns before and after the
storm event. It is also worth noting that medium-
resolution Landsat data are sufficient to determine
forest fragmentation in this region.

This research blends environmental sciences and
landscape ecology with remote sensing, GIS and
machine learning techniques bringing us a step
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Fig. 6. Fragmentation and diversity analysis at landscape level
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forward from the past forest disturbance studies.
Further integration of methodologies and interpre-
tations across disciplines is required if we are to
fully comprehend and consequently mitigate the ef-
fects of global and local change on the environment.

Future studies should: (1) look into non-para-
metric classifiers like neural networks and decision
trees that might improve LULC classification accu-
racy; (2) analyse specified landscape metrics using
more scales, such as 4 m, 10 m, 90 m, 250 m, 500 m
and 1000 m; (3) establish the scale influence on sur-
face processes and LULC changes; (4) assess LULC
changes at different spatial and temporal scales us-
ing efficient feature algorithms from various types
of sensors; and (5) further integrate GIS and remote
sensing and expert systems in detecting, visualising
and monitoring LULC changes in disturbed forest
environments.
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Forest ecosystems, vital for maintaining global biodiversity and ecological balance, are increasingly threatened
by fragmentation. This study addresses the critical issue in the Tuchola Forest of Poland, examining the effects of
natural and human factors on forest fragmentation. Our objective was to identify the most suitable dataset for
monitoring forest fragmentation from 2015 to 2020, ascertain the primary drivers of fragmentation, and map the
areas at high risk. Utilizing the PALSAR (25 m resolution) and Dynamic World (10 m resolution) datasets, we
discovered PALSAR’s enhanced ability to detect changes in forest structure, particularly evident after a signifi-
cant windstorm in 2017. This dataset proved crucial in highlighting the escalating trend of forest fragmentation,
reinforcing its importance for environmental monitoring and policy formulation. Our analysis identified key
factors influencing fragmentation, such as proximity to croplands, tree height and age, wind speed, and vege-
tation water content, with areas near croplands and having younger, shorter trees being most susceptible.
Employing a Weight-of-Evidence (WOE) Bayesian modeling technique, we mapped forest fragmentation sus-
ceptibility, demonstrating our methodology’s effectiveness through high accuracy validation (AUC of 0.82 and
Kappa Index of 0.68). Our innovative approach in mapping susceptibility to fragmentation, especially after
extreme weather events, marks a pioneering contribution in Poland. This research advances the understanding of
forest fragmentation dynamics and offers a scalable model for global application, emphasizing the urgent need
for targeted conservation strategies to preserve the integrity of forest ecosystems amidst climatic risk and
anthropogenic pressures.

1. Introduction

Forest fragmentation is a major concern in landscape ecology,
significantly impacting the structure and functionality of forest ecosys-
tems. This phenomenon not only threatens biodiversity, including
wildlife habitats, water and nutrient cycles, and ecosystem resilience,
but also fosters the creation of edge zones (Forman, 1996; Fischer et al.,
2021). These zones escalate carbon emissions through increased tree
mortality, with studies indicating that 70 % of remaining forests are
within 1 km of an edge, thus highly susceptible to fragmentation’s
detrimental effects. These effects include a reduction in biodiversity by
13 to 75 % and impairment of ecosystem functions, notably biomass and
nutrient cycles (Haddad et al., 2015; Brinck et al., 2017).

The complexity of fragmentation’s impact extends to species in-
teractions, disproportionately affecting mutualisms like pollination and
seed dispersal more than antagonistic interactions. Such differential
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impacts necessitate a nuanced understanding of fragmentation’s multi-
faceted effects on species persistence, distribution, and ecological in-
teractions (Magrach et al.,, 2014). The scale-dependent nature of
fragmentation patterns further demands a multi-scaled analytical
approach, highlighting the urgency for conservation and restoration
efforts to enhance landscape connectivity and mitigate extinction rates
(Forman, 1996; Taubert et al., 2018; Haddad et al., 2015).
Technological advancements have revolutionized our ability to
analyze forest fragmentation. Tools like FRAGSTATS, Patch Analyst for
ArcGIS, and the GUIDOS Toolbox, with its Morphological Spatial Pattern
Analysis (MSPA), provide sophisticated methodologies for assessing
landscape connectivity and quantifying spatial heterogeneity (McGar-
igal, Cushman, & Ene, 2012; Rempel et al., 2012; Soille, 2003; Vogt
etal., 2007; Vogt & Riitters, 2017). Yet, the effectiveness of these tools is
contingent upon selecting an appropriate spatial resolution. This deci-
sion critically influences the detection and characterization of forest
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versus non-forest elements, potentially altering perceived spatial pat-
terns significantly when comparing high (0.5 m) and low (30 m) reso-
lution data (Wickham & Riitters, 2019). As highlighted by Fynn and
Campbell (2019), the choice between coarse and fine-resolution imag-
ery not only affects the availability and cost but also the accuracy of
fragmentation metrics. Such discernment in resolution selection is
essential to ensure the ecological validity of fragmentation studies,
particularly in complex landscapes where the distinction between
vegetation and non-vegetation can be subtle yet significant.

The study contrasts the use of PALSAR-2 Global forest/non-forest
maps, utilizing SAR radar with a 25 m resolution, against Dynamic
World’s forest class, which employs 10 m optical Sentinel-2 imagery.
This comparison aims to evaluate their respective efficacies in moni-
toring and analyzing forest ecosystems. PALSAR-2's SAR radar is
instrumental in providing robust measurements of forest structure and
detecting disturbances under challenging climatic conditions (Atkins
etal., 2023; Balling et al., 2023), while Dynamic World’s use of Sentinel-
2 imagery offers detailed insights into environmental changes, sup-
porting effective management and conservation efforts (Brown et al.,
2022). This comparative analysis sheds light on the strengths and limi-
tations of SAR and optical imagery in capturing forest fragmentation
dynamics, aiming to enhance our understanding of these complex
processes.

Despite a considerable volume of research on forest fragmentation
within Poland—encompassing historical evaluations of habitat distri-
bution (Mazgajski et al., 2010), implications for timber resources and
carbon sequestration (Budniak & Zieba, 2022), and the socio-economic
drivers of forest structural changes (Zmihorski et al., 2009; Szramka &
Adamowicz, 2020)—focused investigations into the Tuchola Forest
Biosphere Reserve’s (TFBR) vulnerability to fragmentation are notably
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lacking. Specifically, there have been no studies investigating the size
and dynamics of edge boundaries within the TFBR, a gap this study aims
to address. The devastating windstorm of 2017 accentuates the TFBR’s
vulnerability, emphasizing the need for focused research on its frag-
mentation dynamics. This study hypothesizes that storm disturbances,
coupled with escalating demands for land conversion to agriculture,
predominantly drive fragmentation in the TFBR.

In this research, we aim to rigorously evaluate the effectiveness of
two distinct datasets—the microwave PALSAR-2 Global forest/non-
forest imagery, and the optical imagery from sentinel’s collection of
Dynamic World, in monitoring forest fragmentation within Tuchola
Forest from 2015 to 2020. Our primary objective is to ascertain which
dataset provides the most accurate and detailed representation of frag-
mented patches during this period. Furthermore, we intend to determine
the principal factors contributing to forest fragmentation, particularly
focusing on the roles of wind disturbances and proximity to cropland
and bareland, as identified in significant prior studies (Forzieri et al.,
2020; Jung et al., 2016). Through this analysis, we aim not only to
enhance our understanding of fragmentation dynamics but also to map
the region’s susceptibility to ongoing and future fragmentation. This
research is anticipated to offer valuable insights for more effective
monitoring and management of forest ecosystems, thereby contributing
significantly to the discourse on forest ecology and conservation.

1.1. Study Area: Tuchola Forest, Poland

The Tuchola Forest Biosphere Reserve (TFBR), nestled within the
greater Tuchola Forest in northern Poland, stands out for its exceptional
biodiversity and a mix of broadleaf and coniferous forests (Nienartowicz
et al.,, 2010). Covering an expanse of 3,195 square kilometers, (see
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Fig. 1) this largely forested biosphere reserve plays a pivotal role in the
UNESCO Man and Biosphere Programme, aiming at ecosystem conser-
vation while promoting sustainable development (Nienartowicz & Kunz,
2020; Nienartowicz et al., 2010). Home to over 1,337 species of vascular
plants and 1,250 phanerogams, the TFBR’s ecological importance is
highlighted by its rich biodiversity (Nienartowicz et al., 2010).

Historical research by Kunz (2012) indicates a significant increase in
forest area within Western Pomerania, which includes the Tuchola
Forest, from 16 % in 1618 to 37 % in the early 21st century. This reflects
a transition from extensive deforestation due to logging and agriculture
to systematic reforestation efforts since the 19th century. However, a
2017 storm notably impacted the forest’s spatial structure, illustrating
the dynamic nature of its landscape (Kunz, 2006; Dutt & Kunz, 2024).

The TFBR, encompassing 22 communes within two voivodeships, is
recognized as Poland’s most extensive UNESCO-designated biosphere
reserve, predominantly covered by woodland, accounting for over 86 %
of its area. It’s strategically segmented into core, buffer, and transition
zones, each dedicated to distinct conservation objectives and sustainable
development initiatives. This zoning not only conserves a variety of
ecosystems but also promotes ecological education, aligning with prin-
ciples of sustainable development (Krawiec et al., 2022; Nienartowicz &
Kunz, 2020).

The TFBR’s landscape, shaped by its history and geological features,
reflects the remnants of the ancient Tuchola Primeval Forest, with a
composition that has evolved due to post-glacial climatic changes and
human activities. Despite these changes, the reserve remains a sanctuary
for rare and protected species, with its predominant forest types and
diverse flora including a rich lichen community (Boiniski, 1993; Boinski
& Boinska, 2020).

Recent climatological research within the TFBR has revealed an
increasing vulnerability to extreme weather events, including severe
convective windstorms (Pacey et al., 2021) and whirlwinds that have
caused significant forest destruction (Chojnacka-Ozga & Ozga, 2018).
The 2017 windstorm, documented by Taszarek et al. (2019) and
Chmielewski et al. (2020), highlights the severe impact of such climatic
extremes, causing unprecedented forest damage and emphasizing the
need for integrated climatic challenges into conservation strategies.

Acknowledging the historical context of deforestation and the
ongoing challenges posed by climatic extremes, this study emphasizes
the complex interplay between climate change and forest conservation
efforts in the TFBR. The inclusion of recent climatic data and extreme
weather event analyses offers a comprehensive overview, enhancing the
understanding of the Tuchola Forest Biosphere Reserve’s ecological
dynamics and conservation priorities.

2. Data sources and processing
2.1. Rationale for time frame selection (2015-2020)

In selecting the analysis period of 2015-2020 for our study, we
aimed to capture the dynamics of forest fragmentation both before and
after a significant meteorological event: a derecho. A derecho is a
widespread, long-lived windstorm that is associated with a band of
rapidly moving showers or thunderstorms. Characterized by its intense
straight-line winds, a derecho can cause substantial damage to land-
scapes, particularly forests, over a wide area (Chmielewski et al., 2020).

The rationale for focusing on this period is underpinned by the
occurrence of one of Poland’s most destructive storms on August 11,
2017. This derecho, as detailed by Chmielewski et al. (2020) and Tas-
zarek et al. (2019), represents a catastrophic meteorological event in
Poland’s history. Originating as a mesoscale convective system on the
border between the Czech Republic and Poland, it ravaged several
provinces, causing unprecedented forest damage. Wind speeds during
this event reached up to 130 km/h, and in some areas, they exceeded
150 km/h (Taszarek et al., 2019). The storm resulted in the loss of
approximately 79,700 ha of forest, blocked and damaged over 1100 km
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of local and municipal roads, and left over 500,000 consumers without
electricity (Chmielewski et al., 2020).

The period of 2015-2020 is crucial for understanding the scale of
forest fragmentation attributable to such an extreme event. Prior to the
derecho, the forests in Poland were already experiencing fragmentation;
however, this six-year span provides a unique opportunity to quantify
the magnitude of change that followed. Analyzing forest fragmentation
in this timeframe not only allows for a pioneering investigation into the
effects of the derecho but also offers a historic record of the fragmen-
tation process. Such a record is invaluable in creating susceptibility
maps, aiding in the prediction and management of future forest frag-
mentation under similar extreme events.

2.2. Remote sensing data

This study utilized a combination of synthetic aperture radar (SAR)
and near-real-time (NRT) Land Use/Land Cover (LULC) datasets to
assess forest/non-forest dynamics over six years, from 2015 to 2020.
Two primary datasets, representing microwave and optical remote
sensing technologies, were incorporated: the Advanced Land Observing
Satellite (ALOS) Phased Array type L-band Synthetic Aperture Radar
(PALSAR-2) for microwave remote sensing, and the Sentinel-2 L1C
collection from the Dynamic World dataset for optical remote sensing.
Comprehensive forest survey data, managed by the Bureau of Geodesy
and Forest Management, were obtained from the Bank Danych Lasach
(Forest Data Bank, BDL). This dataset encompasses detailed information
on forests administered by the State Forests National Forests Holding,
acquired through the BDL portal for specific forest inspectorates within
the Regional Directorates of the State Forests in Gdansk and Torun.

The analysis of wind speed data sourced from the European Severe
Storms Laboratory (ESSL) and the European Severe Weather Database
(ESWD) (Dotzek et al., 2009) involved examining reports from 2015 to
2020 on severe wind gust events. The absence of specific wind speed
measurements in some ESWD reports necessitated supplementary data
from ERAS reanalyses by the European Centre for Medium-Range
Weather Forecasts (ECMWF) (Hersbach et al., 2020). This supplemen-
tary data was downscaled and integrated with the ESWD reports to es-
timate wind speeds at relevant locations within the study area (Sulik &
Kejna, 2020). The approach facilitated a detailed examination of the
climatic factors influencing forest dynamics, emphasizing the impact of
severe wind gusts (Taszarek et al., 2019).

2.2.1. PALSAR-2 Forest/Non-Forest map

The PALSAR-2 datasets, utilizing Synthetic Aperture Radar (SAR)
technology aboard the ALOS-2 satellite, provide critical data for envi-
ronmental monitoring through microwave emissions and reflections.
This SAR technology captures high-quality images under all weather
conditions, day and night, by leveraging L-band microwaves capable of
penetrating vegetation to some extent. The global forest/non-forest map
is derived from SAR imagery at a 25 m resolution, the finest resolution
available for these datasets, which classifies pixels based on backscatter
intensity. Pixels with strong backscatter are labeled as *forest,” and those
with low backscatter as 'non-forest,” in line with the Food and Agri-
culture Organization’s (FAO) definition of forest. This definition in-
cludes natural forest areas larger than 0.5 ha with a canopy cover of over
10 %.

To accommodate the study period from 2015 to 2020, data from two
subsets were utilized. Initially, the Global 3-class PALSAR dataset
(JAXA/ALOS/PALSAR/YEARLY/FNF) covered 2015 to 2017, providing
classifications of forest, non-forest, and water. Subsequently, for 2018 to
2020, the more advanced Global 4-class PALSAR-2 dataset (JAXA/
ALOS/PALSAR/YEARLY/FNF4) offered detailed classifications
including dense forest, non-dense forest, non-forest, and water (Shimada
et al., 2014). This approach aligns with the advancements in SAR ca-
pabilities, as highlighted by Awange & Kiema (2013), to overcome
typical remote sensing limitations like cloud cover and limited daylight,



S. Dutt et al.
ensuring consistent and reliable environmental monitoring.

2.2.2. Dynamic World dataset forest cover map

In tandem with the SAR-based PALSAR-2 analysis, this study utilized
the Dynamic World V1 dataset from Google Earth Engine (GOOGLE/
DYNAMICWORLD/V1). Spanning from 2015 to the present, this dataset
offers a near-real-time Land Use/Land Cover (LULC) classification at an
unprecedented 10 m resolution (Brown et al., 2022), the highest avail-
able for such global monitoring applications. The study by Louzada et al.
(2023) illustrates the effectiveness of integrating SAR with optical
remote sensing data in environmental monitoring. For this study, the
’trees’ band within the Dynamic World dataset was selected to identify
forested areas, applying a threshold on the ’trees’ probability band
(greater than 0.6) to delineate forested regions from non-forest areas.
This threshold was chosen based on the dataset’s guidance to select
pixels with high confidence in class prediction, aligning with the
observed overall agreement of 73.8 % between Dynamic World model
outputs and expert labels for high-confidence classes such as trees,
indicating a robust delineation of forested versus non-forested areas
(Brown et al., 2022). This approach enabled the examination of forest
dynamics within the specified region of interest (ROI), leveraging the
Dynamic World’s capability to provide current and detailed LULC data,
and complementing the SAR-based observations.

2.3. Analysis of forest fragmentation

Morphological Spatial Pattern Analysis (MSPA), a breakthrough in
landscape ecology, offers a comprehensive approach to assessing land-
scape connectivity by studying the pixel arrangements (Soille, 2003;
Vogt et al., 2007). The emergence of the GUIDOS Toolbox, with its user-
friendly interface and broad applicability in environmental analyses,
represents a further advancement in this field (Vogt & Riitters, 2017).
Unlike traditional tools, GUIDOS is uniquely equipped to quantify
spatial heterogeneity, a critical aspect in forest fragmentation studies,
through sophisticated algorithms that provide a more nuanced under-
standing of fragmentation impacts.

In this study, we employed the GUIDOS Toolbox to assess forest
fragmentation. This choice was motivated by the Toolbox’s exceptional
capability in spatial data analysis and land cover classification. Tradi-
tional methods, such as those proposed by Musick and Grover (1991)
and Forman (1996), often relied on landscape-level concepts like patch-
corridor-matrix or adjacency at the pixel level, which, while informa-
tive, lacked the ability to provide quantitative measures of fragmenta-
tion’s degree or variation (Vogt, 2023). Moreover, these methods
struggled in large-area assessments due to challenges in handling a vast
number of patches and accurately representing patch sizes and shapes
(Riitters et al., 2002; Heilman et al., 2002). In contrast, GUIDOS offers a
robust methodology, proven in diverse research areas ranging from
biodiversity impact studies to climate change effects on habitats (Rincon
et al., 2022). Within this framework, fragmentation classes are defined
based on the connectivity and adjacency of forest pixels, with special
emphasis on categories like 'rare’ and ’patchy’, which indicate intense
fragmentation and have significant implications for biodiversity and
ecosystem health (Heilman et al., 2002). This approach not only reso-
nates with Chavan et al. (2018) in tracking core area reduction but also
aligns with Batar et al. (2021) in emphasizing the importance of un-
derstanding fragmentation drivers. Furthermore, our study leverages
multi-temporal land cover data to analyze forest fragmentation, show-
casing the GUIDOS Toolbox’s versatility in a wide array of environ-
mental assessments, including landslide risks and urban planning
(Arrogante-Funes et al., 2021; Lin et al., 2021).

3. Predictive variables for forest fragmentation

To develop effective strategies for mitigating forest fragmentation
risks, it’s crucial to understand their predictive variables. Given the
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predominantly rural nature of the study area, this research focuses on
the natural causes of fragmentation, acknowledging the limited yet not
negligible human influence. The spatial representation of the ecological
and geographical variables depicted in Fig. 2 serves as the basis for
analyzing the factors contributing to forest fragmentation within the
Tuchola Forest Biosphere Reserve (TFBR), Poland. The variables include
wind speed, vegetation water content, tree age distribution, tree height,
slope gradient, and distances from cropland, bare land, and roads
(Fig. 2). The specific datasets from which these variables were derived
are detailed in Table 1, which follows this figure. This table provides a
comprehensive overview of the sources utilized for each factor.

3.1. Physical factors

Forest ecosystems’ resilience and stability are significantly influ-
enced by their physical environment. Factors such as slope angle play a
crucial role in determining sunlight exposure and wind dynamics
(Doane et al., 2023), which can heighten vulnerability to windthrow.
The concept of forest structural diversity, which encompasses the spatial
distribution of trees, species diversity, and variations in tree dimensions
(size and height), is essential for understanding the impacts of wind on
forest ecosystems. Forests with a higher degree of structural diversity,
characterized by a mix of tree heights and species, can disrupt wind flow
and potentially reduce the severity of wind damage, thereby influencing
fragmentation patterns (Li et al., 2023). Furthermore, forest age and
composition significantly affect fragmentation. Young and old-growth
forests exhibit distinct fragmentation characteristics based on their
composition and age structure, with older and taller trees, especially in
conifer forests, being more susceptible to wind damage (Wulder et al.,
2009). Severe wind events initiate a two-stage process of damage
propagation in forests, starting with critical downward gusts and esca-
lating as damaged areas expand (Dupont et al., 2015). Additionally, the
study by Konings et al. (2021) on vegetation water content provides
insights into how moisture levels impact forest resilience to environ-
mental stressors. This comprehensive view highlights the importance of
considering structural diversity and the physical factors contributing to
fragmentation to enhance our understanding of forest ecosystem
dynamics.

3.2. Human factors

Human activities significantly influence forest fragmentation, even
in predominantly natural study areas (Haddad et al., 2015). The
expansion of roads (Newman et al., 2014) and the introduction of
croplands lead to land conversion and degradation, thereby disrupting
forest continuity and intensifying fragmentation. Edge effects, where
forests border non-forest areas, result in ecological consequences such as
increased carbon emissions, as noted by Scanes (2018) and supported by
findings from Haddad et al. (2015) and Mengist et al. (2022). Further-
more, Mitchell et al. (2014) explore how agricultural expansion and
forest fragmentation impact ecosystem services, revealing the critical
role of forest fragments in sustaining these services across agricultural
landscapes. These studies collectively highlight the growing importance
of addressing human factors in forest fragmentation and stress the need
for managing habitat fragmentation and landscape structure to ensure
the provision of multiple ecosystem services.

4. Methodology

The methodological schematic diagram depicted in Fig. 3, shows the
workflow that had been carried out, it is further explained in the sub-
sections below.

4.1. Image reclassification for fragmentation analysis

The initial step of our research entailed deriving vegetation cover
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Fig. 2. Spatial representation of various ecological and geographical variables within the Tuchola Forest Biosphere Reserve (TFBR), Poland. Panels display (a) wind
speed, (b) vegetation water content, (c) tree age distribution, (d) tree height, (e) slope gradient, (f) distance from cropland, (g) distance from bare land, and (h)
distance from roads, derived from the different data source as mentioned in table 1.

Table 1
Data sources of predictive variables.
Factors Source
Wind speed ESSL, ESWD, ERA5 (ECMWF)
Vegetation water SMAP Enhanced L3 Radiometer Global and Polar Grid Daily
content 9 km EASE-Grid Soil Moisture, Version 5
Tree age Bank Danych o Lasach (BDL) 2017
Tree height Global Land Cover Facility, University of Maryland

USGS SRTM DEM
Dynamic World image collection (2015-2020 average)

Slope gradient

Distance from
cropland

Distance from bare
land

Distance from roads

Dynamic World image collection (2015-2020 average)

Global Roads Inventory Project - GRIP - version 4

maps from 2015 to 2020, as elaborated in Section 2.1. This phase uti-
lized the PALSAR-2 Forest/Non-Forest Map in conjunction with the
Dynamic World dataset, integrating Synthetic Aperture Radar (SAR)
imagery analysis with near-real-time Land Use/Land Cover (LULC) data.
This integration not only enhanced the accuracy of our vegetation
mapping but also provided a comprehensive understanding of vegeta-
tive dynamics over the years, laying a solid foundation for our research.

Subsequently, the data from both datasets underwent a detailed
reclassification into binary raster maps, a pivotal step for differentiating
forest from non-forest areas. This reclassification was facilitated using
Google Earth Engine (GEE), where the PALSAR-2 dataset, for the years
2015 to 2017, was reclassified with 1’ representing non-forest areas
(including water bodies) and *2’ for forest areas. For data post-2017, the
PALSAR data, now enriched with four bands, underwent a similar
reclassification, merging Dense Forest and Non-dense Forest into a sin-
gle Forest category ('2), and Non-Forest and Water categories into a
Non-Forest category ('1). The Dynamic World dataset was also

reclassified, applying a forest mask to the "trees’ band to designate forest
areas as 2’ and non-forest areas as *1’, covering various land covers such
as ’water’, ’grass’, ’flooded_vegetation’, ’crops’, ’shrub_and scrub’,
*built’, *bare’, and “snow_and_ice’. This methodological approach, using
GEE for both datasets, enabled a nuanced analysis of different land
covers, vital for accurately delineating forested from non-forested
regions.

To standardize the projections and resolution, the PALSAR dataset
was downloaded with a spatial resolution of 25 m and reprojected to the
ETRS 1989 Transverse Mercator (EPSG:2180) coordinate system. Simi-
larly, the Dynamic World data, with a finer scale of 10 m, was processed.
Both datasets were then reclassified in GIS tools to uniform dimensions
of 2550 by 2693 pixels and a cell size of 30x30 meters, ensuring con-
sistency in spatial analysis across all images.

4.2. Forest area Density (FAD) analysis

The GUIDOS Toolbox (GTB) was pivotal in our study for analyzing
forest fragmentation over six years using comprehensive datasets.
Employing the Forest Area Density (FAD) function within GTB, which
utilizes a per-pixel moving window technique, allowed for an assess-
ment across variable observational scales: 7x7, 13x13, 27x27, 81x81,
and 243x243 pixels. This multi-scalar analysis provided a nuanced view
of forest structure and dynamics, integral to decoding ecosystem com-
plexities (Vogt, 2023; Riitters et al., 2002, 2012a, b).

Our analysis specifically concentrated on the 'Rare’ and 'Patchy’
categories within the six-class categorization of Forest Area Density
(FAD). These classes were chosen due to their representation of the most
fragmented and disconnected forest zones. The ’Rare’ class denotes
areas with less than 10 % forest cover, while "Patchy’ refers to regions
having 10 % to less than 40 % forest cover. The selection of these two
classes was instrumental in providing evidence of forest fragmentation
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Fig. 3. Comprehensive methodological workflow. This figure presents the detailed methodological workflow employed in the study, starting from the derivation of
vegetation cover maps using PALSAR-2 and Dynamic World datasets for the period 2015 to 2020. It illustrates the step-by-step process of image reclassification for
forest/non-forest differentiation, forest area density (FAD) analysis focusing on 'Rare’ and 'Patchy’ fragmentation classes, multicollinearity analysis to refine pre-
dictive variables, and the application of the weight of evidence (WOE) method for mapping forest fragmentation susceptibility. Validation using the relative
operating characteristic (ROC) curve method and Cohen’s Kappa Index is included to confirm the robustness of the model.

in our model, highlighting areas significantly distanced from the core
forest regions. This focus allowed for a detailed examination of the
extent and impact of forest fragmentation, a key aspect of our study.

4.3. Predictive variables through multicollinearity analysis

In our study on forest fragmentation, we initially considered a
diverse set of fifteen variables: tree species, aspect, tree age, forest type,
elevation, slope, vegetation water content, soil type, tree height in 2015
and 2020, distance from road, cropland, bareland, forest, and wind
speed. However, upon a detailed examination using both a Correlation
Coefficient Matrix and the Variance Inflation Factor (VIF), we identified
multicollinearity issues that could lead to unreliable statistical in-
ferences, as they contravene the assumption of independent regressors
(O’Brien, 2007). Notably, variables such as tree species, aspect, and
forest type displayed linear relationships with other factors, indicating
redundancy, and were thus excluded.

To enhance the precision of our model, we embarked on a rigorous
exclusion process, following the guidelines recommended by Garcia-
Orozco et al. (2023) and incorporating fuzzy logic principles akin to
those proposed by Omar et al. (2022). This refinement process resulted
in the selection of eight independent factors deemed crucial for our
model, as illustrated in Fig. 4: wind speed, vegetation water content, tree
age, tree height in 2020, slope, distance from cropland, distance from
bareland, and distance from roads. These variables were chosen due to
their low correlation matrix scores and significant relevance to the
fragmentation patterns observed from 2015 to 2020. During this period,
numerous areas previously classified as patchy forest transitioned to
bareland or cropland, pinpointing the importance of these selected
factors in reflecting the current landscape conditions.

This methodical selection process bolsters the robustness of our

model by mitigating multicollinearity, a crucial aspect for ensuring the
validity of regression-based predictions. Our approach aligns with the
best practices in ecological modeling, aimed at providing reliable data to
support informed forest management and conservation strategies. The
final selection of variables represents a deliberate balance between
comprehensive data inclusion and statistical integrity, recognizing that
each factor independently contributes to our understanding of forest
fragmentation dynamics. By refining the variables, our model’s predic-
tive accuracy for areas at risk is significantly enhanced, which is vital for
developing targeted conservation interventions. Our methodology
showcases the adaptability required in ecological studies, ensuring that
our conclusions are grounded in statistically sound practices and lay a
solid foundation for ongoing and future forest management efforts.

4.4. Construction of the forest fragmentation susceptibility map

The methodical extraction of patchy areas, as discussed in section
4.2, was crucial for the construction of the Forest Fragmentation Sus-
ceptibility Map. This process involved correlating the eight variables
detailed in Fig. 2—wind speed, vegetation water content, tree age, tree
height in 2020, slope, distance from cropland, distance from bareland,
and distance from roads—with these patchy zones (Fig. 7). This step was
fundamental in providing an incisive investigation into the association
between environmental factors and fragmentation susceptibility. By
employing the weight-of-evidence approach, detailed in the subsequent
section, our study precisely evaluated the susceptibility of these forested
areas to fragmentation. This process enhanced our understanding of
forest fragmentation dynamics, laying the groundwork for future dis-
cussions on the implications of our findings.
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Fig. 4. Correlation matrix displaying Pearson correlation coefficients for eight predictive variables. The variables are ordered as follows: distance from bareland,
distance from cropland, distance from roads, tree height of 2020, slope, vegetation water content, tree age, and wind speed. High values represent higher correlation

in red and vice versa.

4.5. Weight of evidence (WOE) method

In our study, we utilize the Weight-of-Evidence (WOE) method, a
Bayesian modeling technique, to map forest fragmentation susceptibil-
ity. This quantitative approach, initially developed in the field of min-
eral exploration (Bonham-Carter, 1990), has been widely applied in
ecological studies due to its effectiveness in evaluating spatial associa-
tions between variables and observed phenomena.

We calculate the positive (W + ) and negative weights (W — ) for
each variable class related to patch forests, using the method refined by
Sterlacchini et al. (2011). These weights are determined using the
following formulas:

v = (e

W —toe. ()

P(B|D)

Here, P denotes probability, B the presence of a class of patch forest
predictive variable, B its absence, D the presence of a patch forest, and
"D the absence of a patch forest (Fan et al., 2011).

The contrast between these weights, known as the weight contrast
(Q), is defined as:

C=W"-w"

This measure reflects the spatial association strength between the vari-
ables and patch forests. To refine our analysis, we calculate the stan-
dardized weight contrast (Wstd) as the ratio of C to its standard
deviation, S(C):

For the standard deviation of the weight contrast S(C):
S(C) = /S*(W+H) + §2(W)

For the variances S 2 (WM and S 2w

1
S (W) = +

NBﬁD Ngmﬁ

. 1 1
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The standardized weight contrast (Wstd) is then calculated:

Wstd = c

S(€)

A positive Wstd value indicates a factor’s favourable influence on forest
fragmentation, while a negative value suggests an unfavourable influ-
ence. A value close to zero indicates a minimal relation to forest frag-
mentation. Finally, the Forest Fragmentation Susceptibility Index (FFSI)
is derived by summing the standardized weight contrasts (Wstd) for each
variable:

FFSI = Z Wstd

This detailed formulation of the WOE method, incorporating rigorous
statistical analysis, ensures a robust approach for understanding and
predicting patterns of forest fragmentation. This calculation methodol-
ogy is consistent with the approach described by Batar et al. (2021). Our
application aligns with the principles of objective and transparent sci-
entific inquiry, as advocated in broader ecological studies (Dekant &
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Bridges, 2016).
4.6. Validation of the forest fragmentation susceptibility map

The validation of predictive models is a fundamental step in
ecological research, particularly when addressing critical issues such as
forest fragmentation. Given the complexity of forest ecosystems and the
multifaceted influences leading to fragmentation, our approach in-
tegrates both the Relative Operating Characteristic (ROC) curve method
and Cohen’s Kappa Index to offer a comprehensive evaluation of the
Forest Fragmentation Susceptibility Map.

4.6.1. Validation by ROC method

To validate our forest fragmentation susceptibility map, we
employed the relative operating characteristic (ROC) curve method.
This standard approach evaluates model performance by analyzing the
area under the curve (AUC), which assesses a classifier’s overall ranking
capability across all possible classification thresholds. Such a measure is
crucial for comparing learning algorithms and optimizing model con-
struction (Fawcett, 2006; Mingote et al., 2020). The ROC-AUC’s utility
stems from its ability to provide a single, comprehensive value repre-
senting model accuracy, with values closer to 1 indicating higher ac-
curacy and values near 0.5 suggesting limited predictive capability
(Fawcett, 2006; Batar et al., 2021).

The AUC formula for a two-class problem is:
np(np+1)
2

AUC = >~ rankings of positive samples —

nyny,

Here, n, and n, represent the counts of positive and negative samples,
respectively. The AUC of the ROC reflects the quality of the probabilistic
model in predicting the occurrence or non-occurrence of an event
(Fawcett, 2006).

4.6.2. Validation by Cohen’s Kappa Index

The AUC-ROC method, while widely used, is not without its limita-
tions, particularly in its potential to obscure model performance in
specific operational contexts (Lobo et al., 2007; Vakhshoori and Zare,
2018). As such, to complement our ROC curve analysis, we conducted a
confused matrix and Cohen’s kappa index for validation. This statistical
tool is essential for measuring the concordance between observed and
predicted classifications within the forest fragmentation susceptibility
map, while correcting for chance agreement (Cohen, 1960; Vakhshoori
and Zare, 2018).

Cohen’s Kappa (k) is calculated to measure the agreement between
two raters, adjusting for chance agreement. The formula is:

_ Pobs - Pexp
I — Peyp

where (Pps) is the observed agreement among raters, and (Pexp) is the
expected agreement by chance. Our dataset, (Pobs) and (Pexp) are derived
as follows:

TP + T
Py — PTIN
N
p (TP FN) x (TP 4 FP) + (FP + TN) x (FN + TN)
exp —

N2

Here, TP, TN, FP, and FN represent true positives, true negatives, false
positives, and false negatives, respectively, with N being the total
number of observations.
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5. Results
5.1. Comparison of remote sensing datasets

The comparative analysis of PALSAR (25 m resolution) and Dynamic
World (10 m resolution) datasets in mapping forest fragmentation in
Tuchola Forest, Poland, from 2015 to 2020, demonstrates a clear pref-
erence for the PALSAR dataset. This is particularly evident in Fig. 5,
which presents the trends in the 'Dominant’ and ’Interior’ classes
(representing low and very low fragmentation, respectively) in both
datasets. The line graphs for these classes in datasets (a) PALSAR and (b)
Dynamic World reveal significant shifts post the 2017 derecho event,
with the PALSAR dataset more markedly capturing the changes in forest
structure. These shifts identify PALSAR’s enhanced capability to detect
subtle and significant alterations in the forest landscape, especially in
response to sudden environmental disturbances.

Building upon these insights, Fig. 6 delves deeper into the 'Rare’
(very high fragmentation) and "Patchy’ (high fragmentation) classes.
Prior to 2017, the levels of fragmentation in these classes were almost
negligible. However, post-2017, there was a significant rise, with the
"Rare’ class in PALSAR data increasing from virtually 0 % in the years
preceding 2017 to 38.68 % by 2020. Similarly, the *Patchy’ class also
showed a substantial increase, rising from 7.7 % in 2017 to 30.7 % by
2020. In contrast, the Dynamic World dataset depicted these changes to
a lesser extent, with the "Rare’ class peaking at 23.47 % and the "Patchy’
class at 20.32 % in 2020.

These findings, illustrated through Figs. 5 and 6 are not mere sta-
tistical variances but reflect the intrinsic capacity of the PALSAR dataset
to accurately depict environmental dynamics, even during acute natural
events. The implications of these results are substantial for forest con-
servation efforts and policy-making, highlighting the critical need for
selecting appropriate remote sensing tools that can faithfully represent
environmental changes.

5.2. Results of the multicollinearity analysis

Our correlation coefficient matrix, refer to Fig. 4, indicates a pre-
dominantly low to moderate interdependence among the environmental
factors related to forest fragmentation. Most predictive variables show
low correlation coefficients (mostly blue shades), suggesting their
independence.

Particularly, “Vegetation Water Content” is the most independent
variable, displaying minimal correlation with others, while “Tree age”
and “Wind speed” also show low intercorrelations. Despite some mod-
erate correlations between “Distance from cropland” and “Distance from
roads” with “Tree height of 2020” and "Slope,* these are not substantial
enough to indicate problematic multicollinearity. These findings affirm
that the chosen variables in our model maintain their integrity for an
unbiased analysis.

5.3. Rare and patchy forest fragmentation assessment

Utilizing the Forest Area Density (FAD) function within GTB using
PALSAR, our analysis identified Rare’ and ’Patchy’ fragmentation
classes as areas with FAD below 40 %. These classifications denote non-
continuous and extensively fragmented forest sections. Subsequent
spatial analysis for the period 2015-2020 quantified these patchy forests
at 175.6 km2, equating to 5.49 % of the study’s total area. Over time,
some of these regions have undergone further fragmentation, tran-
sitioning into bareland or cropland, thus being excluded from further
analysis.

Incorporating the 2023 forest layer with a 10 m resolution allowed us
to identify persistent rare and patchy forest fragments within the current
forest boundaries. These areas, totaling 30.10 kmz, constitute 0.94 % of
the total study region and are integral to the subsequent susceptibility
analysis. The forest cover has decreased by approximately 33.23 square



S. Dutt et al.

Ecological Indicators 161 (2024) 111980

70 4 70 A
a) b)
60 60
5 50 1 # 50 1
2 E
£ 40 4 Z an
§ 30 4 § 3o
5 5
& 20 ) & 20
10 A 10 A .
I = —_— g
0 5_.‘—-——_ — . 0 - . : . ;
2015 2016 2017 2018 2019 2020 2015 2016 2m7 2018 2019 2020
—Rare: —=Patchy: —=Transitional: Dominant: —s=Interior: —=Intact:
ig. 5. values throu e years — in datasets a) Palsar amic World.
Fig. 5. FAD values through the years 2015-2020 in datasets a) Palsar b) Dynamic World
40 - 40
35 1 a) 35 | b)
10 4
g 25
= 25
?;nzu 4 :Sﬁ 20
ERER 915
2 3
10 A 10
5 4 * 574 m
0 —_—— 4, ; . 0 . —_— . : )
2015 2016 2007 2018 2019 2020 2015 2016 27 2018 209 2020
——Palsar —=Dynamic World

Fig. 6. FAD values in the two datasets through the years 2015-2020 for a) rare class b) patchy class.

B Rare and Paichy fragments

Currrent forest area

Fig. 7. Rare and patchy fragments in a) entire study region (2015-2020) and b) current forest areas of 2023.

kilometers from the year 2020 to 2023. This represents a percentage
change of approximately —1.89 %, indicating a continued trend of forest
fragmentation and loss within the study area. The utilization of the 2023
forest layer was pivotal in our study to understand susceptible zones in
the future, focusing on the rare and patchy fragments that were present
in the 2023 forest cover layer for a comprehensive analysis of the
landscape’s vulnerability. Fig. 7a and 7b illustrate the geographical
distribution of these forests within the Tuchola Forest, showcasing the

contrasts before and after the extraction process, and highlighting the
changes in forest fragmentation susceptibility from the final year of the
study period up until the current time.

5.4. Forest fragmentation susceptibility analysis

The forest fragmentation susceptibility map (Fig. 8) presents a
detailed visualization of the areas within the Tuchola Forest that are
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particularly vulnerable to fragmentation, integrating an exhaustive
analysis that takes into account a variety of predictive variables. The
importance of these factors has been quantitatively assessed using the
Weight of Evidence (WoE) method (Table 2), with the results indicating
significant influencers on forest fragmentation susceptibility. The anal-
ysis revealed that the nearest distance from cropland, specifically within
200 m, has the most substantial positive influence on forest fragmen-
tation susceptibility, evidenced by a WoE value of 0.54. This finding
illustrates that forest areas in closer proximity to croplands are at a
higher risk of fragmentation. Other significant factors contributing to
increased susceptibility include the closest distances from bareland (50
m), tree height within the < 9 m range, and tree ages between 5 and 15
years, highlighting the nuanced interplay of various environmental and
anthropogenic elements in forest fragmentation. Additionally, external
environmental conditions such as high wind speeds (25-27 km/h) and
moderate vegetation water content further exacerbate the susceptibility
to fragmentation.

On the contrary, factors such as steeper slopes and greater distances
from cropland and bareland correlated with reduced forest fragmenta-
tion risk. The gentlest slopes were associated with the lowest suscepti-
bility (WoE value: —0.63), suggesting these areas are less likely to
undergo fragmentation (see table 2).

Overall, the results reveal the intricate interplay between various
environmental factors and their impact on forest fragmentation sus-
ceptibility. The findings from Table 1, coupled with the ROC analysis,
provide a robust foundation for targeted conservation efforts aimed at
mitigating the risks of further fragmentation within the Tuchola Forest
landscape.

5.5. Validation of forest fragmentation susceptibility map

The validation of the Forest Fragmentation Susceptibility Map is
further reinforced through comprehensive analyses, incorporating both
the ROC curve and Cohen’s Kappa Index to evaluate model performance.
The ROC curve analysis, illustrated in Fig. 9, demonstrates the model’s

10
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reliability in predicting susceptibility, achieving an AUC value of 0.82.
This high discriminative capacity signifies the model’s adeptness at
distinguishing between areas susceptible and not susceptible to
fragmentation.

The Cohen’s Kappa calculation yielded an index of 0.68, indicating
substantial agreement beyond chance. These metrics offer compelling
evidence of the model’s accuracy in classifying areas according to their
fragmentation susceptibility, affirming the effectiveness of our meth-
odological approach in forest conservation planning (see Table 3).

6. Discussion
6.1. Implication of fragmentation (FAD) in different datasets

Our comparative analysis between the PALSAR and Dynamic World
datasets reveals PALSAR’s superior sensitivity in detecting 'Rare’ and
"Patchy’ forest fragmentation post-2017, an observation echoed by
Atkins et al. (2023) and Balling et al. (2023). These studies highlight the
advanced radar technologies, like PALSAR, for their nuanced detection
of environmental changes and shifts in forest structure, especially
following significant disturbances such as the 2017 windstorm. Micro-
wave remote sensing, as employed by PALSAR, offers distinct advan-
tages across various environmental settings. Awange & Kiema (2013)
elucidate the critical role of microwave sensing in overcoming the lim-
itations posed by persistent cloud cover and dense vegetation, notably in
tropical regions where optical remote sensing faces significant chal-
lenges. This technology’s ability to penetrate vegetation canopies and
function effectively under conditions of high cloud cover, such as during
wet seasons, is indispensable for comprehensive fragmentation studies,
particularly after severe weather events.

Furthermore, the integration of SAR and optical remote sensing
methods, as demonstrated by Louzada et al. (2023), supports our find-
ings and emphasizes the necessity of selecting the appropriate remote
sensing technology tailored to specific environmental conditions and
research objectives. Similarly, Meraner et al. (2020) highlight the po-
tential of SAR-optical data fusion in removing clouds from optical im-
agery, using deep learning approaches to preserve the integrity of
surface observations beneath cloud cover.

The effectiveness of PALSAR’s microwave remote sensing in accu-
rately capturing changes in forest structure, despite its lower resolution
compared to high-resolution optical sensing from Dynamic World,
demonstrates its utility in forest fragmentation analysis. This is espe-
cially relevant in post-disturbance scenarios, emphasizing the impor-
tance of choosing SAR technologies like PALSAR for forest cover and
fragmentation studies. Our research not only reinforces the significance
of PALSAR in forest conservation and decision-making processes but
also aligns with the broader scientific consensus on the adaptability and
effectiveness of SAR technology in addressing the challenges of optical
remote sensing limitations.

6.2. Influence of environmental factors on forest fragmentation
susceptibility

6.2.1. Integrated analysis of forest fragmentation factors

Challenging the conventional wisdom, Morreale et al. (2021) suggest
that temperate forest edges may demonstrate increased growth and
biomass compared to their tropical counterparts, casting new light on
edge-induced vulnerability. This revelation underpins our investigation
into the Tuchola Forest, where we dissect the influence of both envi-
ronmental and anthropogenic factors on forest fragmentation.

Our findings highlight proximity to cropland as a significant
anthropogenic influence. Forest fragments within 200 m of cropland
demonstrate the highest susceptibility to fragmentation, supporting
global patterns observed by Haddad et al. (2015). The role of agricul-
tural expansion and its impact on the floristic composition at the forest-
cropland interface (Ribeiro et al., 2019) calls for a nuanced approach to
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Table 2
Weight of Evidence (WoE) values for forest fragmentation susceptibility factors.
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Variable Subdivision|WoE values
Distance from Cropland 200

Distance from Bareland 50 37
Tree height 9-18 0036
Tree age 5-15 @
Wind Speed 25-27 0.19
Distance from Bareland 100 i 0.18
Vegetation Water Content Moderate 0.16
Wind Speed 27 - 31 0.16
Slope Steep 0.13
Tree age 0-5 0.12
Tree age 15-30 0 o1l
Vegetation Water Content Low 0.09
Slope Moderate 0.09
Vegetation Water Content Lowest 0.08
Tree age 30-60 0.04
Wind Speed 21-23 0.03
Slope Very Steep 0.03
Distance from Road 500 0.01
Tree height 0-9 0.01
Wind Speed 23-25 0.00
Tree age 200-538 0.00
Distance from Road 1000 -0.01
Tree age 120-200 -0.04
Vegetation Water Content Highest -0.07
Distance from Cropland 400 -0.10
Distance from Bareland 200 -0.18
Tree age 90-120 -0.19
Slope Gentle -0.19
Vegetation Water Content  |High -0.19
Tree age 60-90 -0.23
Distance from Cropland 600 -0.24
Wind Speed 20-21 -0.24
Distance from Cropland 1000 -0.26
Distance from Cropland 800 -0.26
Tree height 18-26 -0.33
Distance from Bareland 500 -0.41

land-use planning that considers ecological impacts. Our results from
the Tuchola Forest corroborate these observations and echo similar
fragmentation patterns noted by Mengist et al. (2022) across Poland,
emphasizing the enduring legacy of historical land-use on present-day
forest structure and biodiversity (Mazgajski et al., 2010).

Tree characteristics, notably height and age, emerged as pivotal
natural factors. Our data indicates that younger forests (5-15 years) and
shorter trees (less than 9 m) are more vulnerable to fragmentation. This
is in line with the findings of Rodrigues et al. (2016), who observed long-
term structural changes in forest canopies and the impact of anthropo-
genic disturbances on tree height and spatial structure. Moreover,
Waulder et al. (2009) provide insight into how forest age and fragmen-
tation are interrelated, further suggesting the influence of these factors
on the ecological dynamics of forest landscapes.

Wind speed and vegetation water content are additional natural
determinants of fragmentation risk. High wind speeds (25-27 km/h)
and moderate water content conditions were associated with increased
fragmentation risks, implying the necessity of incorporating meteoro-
logical and hydrological considerations into forest management (Kon-
ings et al., 2021; Doane et al., 2023; Li et al., 2023).

Additionally, the influence of topography on fragmentation suscep-
tibility is accentuated by our findings. Guo et al. (2024) found that
extensively burned forest patches are often located at higher elevations,
while more fragmented patches tend to occur in areas with gentle slopes.

Our results corroborate this pattern, suggesting that less steep slopes
may facilitate the spread of fragmentation.

The interplay between forests and their topographic context is
further elaborated by Doane et al. (2023), who delve into the concept of
topographic roughness as a natural archive of wind events. Their work
suggests that forests coevolve with their environment, with topography
influencing the resilience of forests to windthrow events.

In summary, our integrated analysis of forest fragmentation factors
in the Tuchola Forest emphasizes the multifaceted nature of suscepti-
bility. It highlights the urgency of incorporating a diverse range of
ecological and physical variables into forest management and conser-
vation strategies to ensure resilience against ongoing and future envi-
ronmental challenges.

6.2.2. Tree specie characteristics

In the Tuchola Forest, the composition of tree species, including the
predominance of Scots pine (Pinus sylvestris) (82.78 %), followed by
Silver birch (Betula pendula) (7.39 %) and English oak (Quercus robur)
(1.29 %), suggests a landscape largely shaped by the resilience and
susceptibility of these species to fragmentation (see Figure S1). Despite
not being the primary factors in our correlation analysis, the species
characteristics significantly contribute to the nuanced ecological dy-
namics of the forest. Scots pine (Pinus sylvestris), with its notable resil-
ience, contrasts with the heightened vulnerability of Silver birch (Betula
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Fig. 9. The accuracy of the forest fragmentation susceptibility map.

Table 3

Summary of classification metrics for Cohen’s Kappa Index.
Metric Value
True Negative (TN) 1,494,224
False Positive (FP) 2013
False Negative (FN) 426
True Positive (TP) 2551
Cohen’s Kappa Index 0.68

pendula) and English oak (Quercus robur) near forest edges. This
distinction is crucial for understanding the intricate effects of frag-
mentation and is supported by the findings of Konopka et al. (2020) and
Budniak & Zigba (2022), which emphasize variable impacts on different
species within Polish forests. Their findings resonate with our investi-
gation into species-specific susceptibility and highlight importance of
informed management practices tailored to the unique ecological roles
and physiological needs of each species.

Pimentel et al. (2013) and Roche and Campagne (2017) advocate for
an ecosystem integrity framework that incorporates both species di-
versity and environmental factors into forest management decisions.
This approach is vital for addressing the specific needs of Scots pine
(Pinus sylvestris), Silver birch (Betula pendula), and English oak (Quercus
robur). The genetic robustness of Scots pine (Pinus sylvestris), as dis-
cussed by Gonzalez-Diaz et al. (2017), may underpin its resilience, of-
fering insights into adaptive strategies for forest conservation.
Conversely, the pioneering nature of Silver birch (Betula pendula),
highlighted by Oksanen (2021) suggests a vulnerability to edge effects
that necessitates careful consideration in forest management practices.
Similarly, the decline of English oak (Quercus robur) in altered distur-
bance regimes, as noted by Knoot et al. (2010), calls for a nuanced un-
derstanding of its ecological and physiological sensitivities.

Coates et al. (2018) contribute to this discourse by differentiating the
effects of partial harvesting on species-specific windthrow susceptibility,
particularly near forest edges. This aspect is crucial for managing frag-
mented landscapes, where selective interventions and the recognition of
tree-level heterogeneity can influence the overall resilience of forest
ecosystems to storm events.

By integrating these varied perspectives, our discussion offers a
comprehensive examination of the physiological, ecological, and genetic
dimensions that define the responses of Scots pine (Pinus sylvestris),
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Silver birch (Betula pendula), and English oak (Quercus robur) to frag-
mentation. Such a multifaceted approach is essential for developing
forest management practices that are sensitive to the distinct charac-
teristics of each species, ensuring their continued health and viability in
changing environmental conditions. Through this lens, we aim to
enhance the resilience of forest ecosystems, mitigating the impacts of
fragmentation and promoting sustainable forest landscapes.

6.2.3. Holistic approach to forest management

Incorporating diverse factors into our model not only enhances
predictive accuracy but also aligns with the ecosystem integrity frame-
work crucial for the resilience of forests like the Tuchola Forest. This
holistic approach, informed by our findings and echoed by the
comprehensive analyses of forest fragmentation in Poland by Refer-
owska-Chodak & Kornatowska (2021), stresses the importance of
considering both species diversity and environmental factors in forest
management strategies. The integration of development and conserva-
tion policies, as discussed by Szramka & Adamowicz (2020), becomes
paramount, offering insights for anticipating high-risk fragmentation
areas and emphasizing sustainable management practices that prioritize
long-term ecosystem integrity and resilience.

6.3. Methodological adaptation and predictive model refinement

The refinement of variables in our study marked a pivotal transition
towards an enhanced model for predicting forest fragmentation sus-
ceptibility. Initial analyses using 15 variables were fine-tuned to focus
on the current vegetation state, leading to the exclusion of non-
vegetated areas formerly identified as susceptible. Ground-truthing
revealed that the earlier model overestimated susceptibility in areas
no longer forested. Subsequent multicollinearity analysis informed the
removal of highly interdependent variables such as soil type, and less
impactful ones like forest type and species, as well as aspect and
elevation in this relatively flat region.

A discernible shift in the susceptibility patterns was evident when
comparing the previous and current maps. Where the initial model
indicated heightened susceptibility at the forest edges, the refined model
demonstrated more dispersed susceptibility zones, particularly in cen-
tral areas with the highest wind speeds recorded between 2015 and
2020 (Fig. 2). This adaptation not only corroborated the significant role
of wind in forest fragmentation but also resulted in a notable increase in
model accuracy, with the ROC curve’s accuracy improving from 0.64 to
0.82 which suggests an accurate and reliable model along with the
Cohen’s Kappa Index calculation.

The adjustment of our analytical framework, informed by empirical
evidence and expert field knowledge, illustrates the dynamic nature of
ecological modeling. It highlights the importance of iterative analysis
and underlines the value of precise variable selection in developing
models with high predictive accuracy, crucial for the formulation of
effective forest management and conservation strategies.

7. Conclusion

Our study in the Tuchola Forest region not only highlights the spe-
cific challenges faced by this area but also serves as a microcosm for the
broader, global imperative for adaptive forest management in the face of
climate change. The heightened susceptibility of forests to windthrow
events, particularly near croplands and barelands, coupled with the
pivotal role of species diversity in bolstering ecosystem resilience, em-
phasizes the universal relevance of our findings. This global perspective
reinforces the necessity of implementing adaptive management strate-
gies worldwide to safeguard forest ecosystems against the escalating
threats posed by wind disturbances and other climate change-related
stressors.

Drawing on insights from Forzieri et al. (2020) regarding the
increasing intensity of wind disturbances and Sanginés de Carcer et al.
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(2021) on effective post-windstorm management, our work highlights
the necessity of integrating empirical data with best forestry practices.
Customized strategies that consider specific forest types and site con-
ditions are essential.

Future research should explore the balance between ecological im-
pacts and salvage logging, incorporating climate change considerations
more explicitly into forest management plans. The findings from the
Joint Research Centre (JRC) on forest landscape patterns and fragmen-
tation in Europe highlight the need for comprehensive plans addressing
spatial patterns and connectivity (European Commission, Joint Research
Centre (JRC), 2023; Sanginés de Carcer et al., 2021).

In summary, our study advocates for dynamic forest management
approaches that meld in-depth research, existing literature, and prac-
tical insights. Such strategies are critical to maintain the ecological
integrity of forests like the Tuchola Forest, enhancing ecosystem services
and ensuring resilience amidst evolving environmental challenges
(Pimentel et al., 2013).
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Abstract

Forest fragmentation reshapes ecological dynamics, yet its zone-specific impacts remain poorly
guantified. We assess degradation, moisture stress, habitat quality, and structural maturity in the Tuchola
Forest Biosphere Reserve (Poland) across three Foreground Area Density (FAD) classes—Core (>90%),
Transitional (40-60%), and Rare (<10%). Leveraging open Sentinel-2 data and field-based ecological
attributes from the Polish Forest Data Bank, we integrate FAD zoning with interpretable ensembles (ET,
LGBM) to model vegetation condition for 2016, 2020, and 2024. Partial dependence analyses reveal
consistent ecological contrasts across zones: Rare areas show pronounced early-stage degradation tied
to edge exposure and reduced connectivity, whereas Core areas maintain stable moisture regimes and
structural maturity. Site-type responses and stand-age signals further indicate that spectral confusion in
fragmented edges can mimic maturity, emphasizing the value of structural information in future
applications. Validated against field observations, the workflow provides a spatially explicit,
reproducible approach to diagnose fragmentation effects from open data. Results translate directly to
management: strict protection for Core interiors, adaptive buffer and corridor strategies in Transitional
zones, and targeted restoration/rewilding in Rare zones to enhance connectivity and drought resilience.
The framework advances geospatial science by operationalizing FAD-aware, interpretable remote
sensing for zone-specific conservation in temperate forests.

Keywords: forest fragmentation; ecological processes; Sentinel-2; Foreground Area Density (FAD);
machine learning; temperate forests

1. Introduction

Forest fragmentation—the division of continuous forest into smaller, more isolated patches—disrupts
ecological processes governing biodiversity, hydrological regulation, and biomass productivity (Haddad
et al., 2015; Wang et al., 2025). Fragmentation per se (independent of habitat loss) alters patch
configuration and increases edge exposure, intensifying microclimatic stress through higher insolation,
wind, and desiccation, and elevating fire susceptibility (Arroyo-Rodriguez et al., 2017; Fletcher et al.,
2018). These pressures are especially acute in the Tuchola Forest Biosphere Reserve (TFBR), a pine-
dominated landscape where even-aged Scots pine (Pinus sylvestris) stands (>90% of area) exhibit
uniform canopy structure and shallow rooting, heightening vulnerability to edge-driven moisture stress,
bark beetle outbreaks, and fire relative to mixed or deciduous systems (Wulder et al., 2009; Britton et
al., 2024). Resulting changes—canopy thinning, moisture stress, and reduced connectivity—constrain
dispersal of forest-interior specialists that depend on large, contiguous patches (Blake & Karr, 1984;
Fahrig et al., 2019). While small patches can function as stepping stones for some taxa, large patches
remain critical for sustaining interior specialists and population stability (Blake & Karr, 1984; Fahrig et
al., 2019; Wang et al., 2025).
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Sentinel-2’s 10 m multispectral record enables repeated monitoring of vegetation condition via indices
(VIs) that capture gradients in greenness/biomass, canopy water content, and pigment dynamics (Lausch
et al., 2016). Indices such as NDVI and EVI (greenness/biomass), NDMI (moisture), and Clred-
edge/NDRE (pigment dynamics) are sensitive to structural and disturbance regimes that co-vary with
fragmentation (Wang et al., 2010; Xue & Su, 2017). However, few studies jointly integrate multi-
temporal Sentinel-2 data, Foreground Area Density (FAD)—based fragmentation zoning, and field-based
ecological attributes (FEAs) to model zone-specific processes, limiting our understanding of how
fragmentation effects differ across dense, mixed, and sparse forest contexts (Wang et al., 2010; Lausch
et al., 2017). Stratifying by local forest density using FAD—into Core (>90%), Transitional (40-60%),
and Rare (<10%) zones—helps disentangle ecological signal from spectral noise by conditioning
analysis on neighborhood context (Vogt & Riitters, 2017; Wang et al., 2025).

Here, we develop a framework for assessing fragmentation effects in TFBR, a system shaped by
windstorms, silviculture, and historical land use (Lucéw et al., 2021; Dutt et al., 2024). TFBR’s
homogeneity—dominated by even-aged pine—reduces beta-diversity and may dampen species-level
variability in spectral responses, yet increased edge density can magnify stress exposure (Wulder et al.,
2009; Kozak et al., 2018; Fahrig et al., 2019). We integrate multi-temporal Sentinel-2 (2016, 2020,
2024) with FEAs from the Polish Forest Data Bank (degradation, soil moisture, site type, stand age) to
model forest condition across FAD-defined zones spanning stable interiors to highly fragmented edges
(Kozak et al., 2018). Our contribution is a spatially explicit, reproducible GIS workflow that combines
FAD zoning, Sentinel-2 Vs, and interpretable ensembles to diagnose fragmentation-linked ecological
processes from open data.

Our objectives are to:

1. identify sensitive indicators—determine which VIs best capture biomass productivity, moisture
stress, pigment dynamics, and understory conditions in a fragmented landscape;

2. map zone-specific patterns—quantify how VI-FEA relationships vary across Core,
Transitional, and Rare zones under differing configuration pressures; and

3. assess predictive power—evaluate how accurately Vs predict field-observed attributes using
interpretable ensemble learning across zones and years.

By combining Sentinel-2 with FAD-based zoning and interpretable models, we provide a scalable tool
for monitoring fragmentation-linked ecological dynamics and for informing zone-specific conservation
and restoration strategies under increasing climate pressures (Gonzalez-Avila et al., 2023; Wang et al.,
2025).

2. Materials and Methods

2.1. Study Area
The Tuchola Forest Biosphere Reserve (TFBR; 53°30'N, 17°50’E; ~3,195 km?) occupies nutrient-poor
fluvioglacial sands on the Pomeranian outwash plain of northern Poland and contains >900 kettle lakes
and Sphagnhum peatlands that generate sharp hydrological and edaphic gradients (Lucow et al., 2021).
TFBR is dominated by even-aged Pinus sylvestris plantations (>90%), with minor Betula spp., Quercus
robur, and Alnus glutinosa. Fragmentation arises primarily from silvicultural clear-cuts and salvage
logging, compounded by biotic outbreaks (e.g., Panolis flammea) and extreme events—the 2012 F3
tornado and the 2017 derecho are notable examples (Budniak & Zigba, 2022; Dutt et al., 2024).

As Dutt et al. (2024) show using Bayesian mapping, edge expansion in TFBR is strongly associated
with cropland proximity, younger stands, and high wind exposure. This configuration-driven change
has progressed even where total forest area remains relatively stable, a pattern consistent with
fragmentation-per-se effects emphasized by Fahrig (2017) and observed in other Polish landscapes by
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Kozak et al. (2018). These characteristics make TFBR an apt natural laboratory for examining how local
forest density and neighborhood context modulate ecological processes under fragmentation.

Figure 1. Location of the Tuchola Forest Biosphere Reserve (TFBR) in northern Poland, overlaid with
CORINE land cover types (2018), major roads, and commune boundaries.

2.2. Data Collection
2.2.1. Sentinel-2 Imagery

We used Sentinel-2 Level-2A surface reflectance for the growing season (May 1-August 31) in 2016,
2020, and 2024. Where Level-2A was unavailable in 2016, the corresponding Level-1C scenes were
converted to L2A using ESA’s Sen2Cor (atmospheric correction from top-of-atmosphere to surface
reflectance; also produces the Scene Classification Layer, SCL). We removed cloud-affected pixels
using the SCL by excluding class 3 (cloud shadow), 8 (cloud—medium probability), 9 (cloud—high
probability), and 10 (thin cirrus). For consistency, we also excluded class 11 (snow/ice), although snow
is rare in May—August in Poland. We retained bands B2, B3, B4, B5, B8, B11 due to their sensitivity to
vegetation biochemistry and structure (Lausch et al., 2016; Xue & Su, 2017). The overall workflow—
preprocessing, vegetation-index (V1) calculation, FAD-based zoning, model fitting, and interpretation—
is outlined in Figure 2.
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Figure 2: Forest Fragmentation Analysis Workflow. Overview of the methodology combining Sentinel-
2 imagery and forest inventory data, preprocessing steps, vegetation index calculation, FAD-based
fragmentation zoning, ensemble modeling (Extra Trees, LightGBM), and visualization through PDPs
and boxplots.

2.2.2. Field Data

Forest inventory data from the Polish Forest Data Bank (BDL) provided polygon-level attributes—
degradation, moisture content, forest site type, and stand age—hereafter field-based ecological attributes
(FEASs). Polygons correspond to operational management units (e.g., stands/compartments) delineated
by the State Forests National Forest Holding for planning and monitoring. These attributes, recorded by
professional foresters using standardized protocols, serve as the reference for evaluating how well
Sentinel-2 VIs represent on-the-ground ecological conditions (cf. Peters et al., 2007; Nguyen et al.,
2020). The semantics and numeric encodings for categorical FEAs are summarized in Supplementary
Tables S2-S4. Procedures for spatial alignment with the Sentinel-2 composites (CRS, grid, and
rasterization choices) and preparation for modeling are detailed in Section 2.5.1.

2.3. Data Processing
2.3.1. Image Preprocessing

All inputs are Sentinel-2 Level-2A surface reflectance (0-1). We produced annual median composites
in Google Earth Engine to reduce cloud/phenology noise and reprojected them to PUWG 1992
(EPSG:2180) at 10 m. 20 m bands (B5, B11) were upsampled to 10 m with bilinear interpolation to
preserve radiometric continuity; nearest-neighbor was used only for categorical layers (e.g., masks,
classes). To restrict analyses to forested pixels, we applied a binary mask from Dynamic World “trees”
probability with a primary threshold of 0.60 (Brown et al., 2022; Dutt et al., 2024). We note that simple
threshold sensitivity checks (e.g., 0.50/0.60/0.70) can further assess robustness and are recommended
for future extensions.

2.3.2. Vegetation Indices and Field Data Integration

We computed 17 VI’s (Table 1) in Python (rasterio 1.3; NumPy 1.26) spanning greenness/biomass
(e.g., NDVI, EVI, EVI2, GNDVI, GRNDVI, GSAVI, LAI, DVI), moisture (NDMI, GVMI),
pigment/chlorophyll (GARI, MCARI, MTVI2, NDRE, GBNDVI), and indices addressing soil/shadow
effects (CVI, MSAVI). Formal definitions and Sentinel-2 band mappings are provided in Supplementary
Table S1 (see Xue & Su, 2017; Wang et al., 2010; Lausch et al., 2016).
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Polygon-level FEAs (degradation, moisture content, site type, stand age) from BDL were rasterized to
10 m with nearest-neighbor to preserve categorical labels and aligned to the Level-2A composite grid.
This ensured congruence between FEAs and VI rasters while avoiding interpolation artefacts in class
data. Where polygon boundaries did not coincide exactly with pixel edges, attributes were assigned to
the pixel containing the polygon centroid, and simple overlay checks were used to flag potential
misalignments for QA/QC (Budniak & Zieba, 2022; Brown et al., 2022).

Table 1: Sentinel-2 Vegetation Indices Used in the Study

Functional Domain Indices Ecological Focus References

Greenness/Biomass NDVI, EVI, EVI2, GNDVI, Leaf area, Xue & Su, 2017;
GRNDVI, GSAVI, LAI, productivity, Wang et al., 2010
DVI biomass

Moisture Stress NDMI, GVMI Canopy water Wang et al., 2010

content, drought

Pigment/Chlorophyll  GARI, MCARI, MTVI2, Chlorophyll, Lausch etal., 2016
NDRE, GBNDVI nutrient status

Soil/Shadow CVI, MSAVI Soil  background, Xue & Su, 2017;

Correction shadow Lausch et al., 2016

2.4. Landscape Stratification

Foreground Area Density (FAD) was computed in GuidosToolbox (Vogt & Riitters, 2017) using a
moving square window on the 10 m grid. The primary window was 243 x 243 pixels (i.e., 2.43 km per
side; 5.90 km?), which emphasizes neighborhood forest amount/configuration and highlights areas with
sparse cover (low FAD) (Figure 3). We selected the 243 x 243 window to better resolve sparsely forested
neighborhoods (the Rare class) while preserving local context at ~2.4 km, a scale relevant to edge-driven
processes and operational planning. We applied the binary forest mask from Section 2.3.1 (Dynamic
World “trees” probability, threshold 0.60) prior to FAD calculation. From the six native FAD classes,
we retained Core (FAD > 90%), Transitional (40-60%), and Rare (< 10%) given their ecological
relevance in TFBR (Dutt et al., 2024; Brown et al., 2022). While FAD provides a compact, spatially
explicit descriptor of neighborhood forest density, it does not fully disentangle habitat amount from
configuration; complementary metrics—such as edge density (boundary complexity) and patch
cohesion (connectedness)—can refine fragmentation assessment (Fahrig, 2017; Riitters & Wickham,
2012; cf. Gonzalez-Avila et al., 2023). Sensitivity to alternative window sizes (e.g., 121 x 121 and 365
x 365) is recommended for future robustness checks. See Supplementary Figure S1 for temporal
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Figure 3. Foreground Area Density (FAD)-derived fragmentation zones—Core (green, >90% forest
cover), Transitional (orange, 40-60%,), and Rare (red, <10%)—mapped across TFBR in 2016, 2020,
and 2024, showing spatial patterns of forest density.

2.5.1 Data Preprocessing and Feature Engineering

FEAs (degradation, moisture content, site type, stand age) were linked to FAD classes (Core,
Transitional, Rare) for 2016, 2020, 2024, then rasterized to the 10 m grid of the Sentinel-2 L2A
composites for pixel-wise modelling. Rasterization of categorical labels used nearest-neighbor to
preserve class integrity.

Degradation: eight ordered classes from Degraded to Transformed (Table S2).
Moisture content: thirteen ordered classes from very wet bogs to fresh soils (Table S3).
Site type: fifteen nominal categories spanning soil-moisture gradients (Table S4).
Stand age: continuous years of growth, also summarized into developmental stages.

The combined L2A-based dataset was >99% complete; pixels with missing spectral or ancillary values
(<1%) were removed. No outliers were discarded, to avoid biasing models away from ecologically
meaningful extremes.

For modelling, ordinal FEAs (degradation, moisture) were integer-encoded to retain rank; site type was
one-hot encoded; stand age remained numeric. VI sensitive to pigment loss (e.g., NDRE, GARI),
moisture stress (e.g., NDMI), and canopy structure/pigment contrast (e.g., Clred-edge) were derived
from Sentinel-2, composited to midsummer for each year (Section 2.3.2; Table S1). Tree-based models
required no additional feature scaling (Pedregosa et al., 2011).

2.5.2. Variable Importance and Effect Interpretation

Our geocomputational focus was on interpretable ensemble learning. Following Breiman’s seminal
perspective on variable importance in tree ensembles, we combined impurity-based importance (from
Extra Trees) with Permutation Importance (PI) to diagnose drivers across FAD zones and years
(Breiman, 2001; cf. Gromping, 2009; Nicodemus et al., 2010). Impurity scores summarize split-level
reductions (e.g., variance) but may favor high-cardinality features; Pl provides a model-agnostic
estimate by shuffling a feature and recording the error increase (MSE), which better reflects out-of-
sample impact.
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To assess stability, we repeated Pl with multiple random permutations per feature and summarized the
resulting spread; this emphasizes robust patterns rather than single-run artefacts. Interpretation
leveraged partial dependence plots (PDPs)—including 2D PDPs for key VI pairs—to visualize nonlinear
and zone-specific responses, aiding ecological interpretation and transfer to management (Molnar,
2019). We report importance rankings for each FEA x year x FAD class (Supplementary Figs. S3, S5,
S7, S9), highlighting indices recurrently associated with degradation, moisture, site type, and stand age
in temperate forests (e.g., NDRE, NDMI, NDVI; see Lausch et al., 2016; Xue & Su, 2017; Yu et al.,
2021; Britton et al., 2024).

2.5.3. Model Comparison and Selection

We compared two ensemble regressors widely used in spatial data mining—Extra Trees (ET) and
LightGBM (LGBM)—to predict FEAs within Core, Transitional, and Rare zones across 2016, 2020,
2024 (Geurts et al., 2006; Ke et al., 2017). Regression was preferred over multinomial classification
because several ordered levels (e.g., degradation, moisture) are uneven or absent in certain zones;
treating them as quasi-continuous preserves rank information and avoids extrapolating to unseen
categories (cf. Pedregosa et al., 2011).

To mitigate spatial autocorrelation, hyperparameters were tuned under spatial k-fold cross-validation
with non-overlapping geographic partitions, and evaluated on held-out folds. This scheme reduces
leakage between train/test and better reflects mapping use-cases in GIS. Key ET hyperparameters
(number of trees, features per split, min samples to split/leaf) were optimized per FEA x zone x year
(Supplementary Table S5). Model performance (MSE/MAE) is summarized in Supplementary Table
S6, and ET was selected for downstream interpretation due to its stability and transparency (see also
Los etal., 2021). For completeness, predictions were subsequently mapped back to management classes
for interpretation in Results; agreement metrics beyond MSE/MAE (e.g., RMSE, R?, Spearman’s p,
Weighted Kappa) are noted as complementary perspectives.

2.5.4. Partial Dependence Plots (PDPs)

We used partial dependence plots (PDPs) to visualize how VIs influence model predictions after
averaging over the distribution of all other features (Molnar, 2019). Let f(-) denote the trained model
and split the features into a set of interest xg and its complement x.The partial dependence of f with
respect to xg is

Fsin = [ fzx)p(x)dxe = Exyirzx)

where p(x) is the marginal distribution of the complementary features. In practice, we approximate
this expectation using the brute-force empirical average over the observed dataset:

Fo(z) = (Un) Ipoy f (2 x0y)

where x(;; are the observed values of the complementary features for sample i, and n is the number
of samples used in the average.

Because fragmentation effects are context-dependent, we emphasized 2D PDPs (i.e., | S |= 2|) to
capture nonlinear responses and interactions between key VI pairs for each FEA: e.g., NDRE-GARI
(degradation), NDRE-NDM I (moisture content), NDVI-NDRE (site type), and CVI-NDRE (stand
age). To support direct comparison across conditions, PDPs were organized in 3x3 grids—rows: FAD
classes (Rare, Transitional, Core); columns: years (2016, 2020, 2024). We implemented PDPs using
scikit-learn’s brute method, evaluating grids within observed feature ranges to avoid extrapolation.
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2.5.6: Model Accuracy Assessment

The predictive performance of ET and LGBM models was assessed using Mean Squared Error (MSE)
and Mean Absolute Error (MAE), computed separately for training and test datasets to evaluate model
fit and generalization. For each FEA predicted values §; were compared against ground-truth values y;
derived from the Polish Forest Data Bank, rasterized at 10 m resolution to align with Sentinel-2 L2A
imagery (Section 2.3.1). MSE was calculated as the average squared difference between predicted and
actual values, emphasizing larger errors:

1
MSE = (E)Z(i =1ton)(y; — )2

MAE was computed as the average absolute difference, providing an interpretable metric in the original
units of the GI:

1
MAE = (;)z(i — 1ton)ly; — §il

Here, n represents the number of sampled pixels per fragmentation zone (10% stratified random
sample). Metrics were computed per FEA, per zone (Rare, Transitional, Core), and per year (2016, 2020,
2024) to preserve ecological context. We also summarized error distributions with boxplots of
predictions versus ground truth to assess stability across zones. All values are reported in Supplementary
Table S6.

3. Results
3.1. Model Performance Across Fragmentation Zones

The ET model, tuned via hyperparameters such as number of trees and split thresholds (Supplementary
Table S5; Section 2.5.3), predicted FEAs across Core, Transitional, and Rare zones for 2016, 2020, and
2024. Its performance was compared with LGBM on held-out test data (Supplementary Table S6;
Section 2.5.6). As shown in Figure 4, ET produced lower or more stable errors for most FEAS
particularly degradation, site type, and stand age—while LGBM was occasionally lower for moisture in
specific zones but more variable overall. Boxplots of prediction errors (Supplementary Figure S2)
confirm ET’s narrower error spread and fewer extremes across zones and years, supporting its selection
for interpretability in Section 3.2. Full training and test metrics for both models are reported in
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Figure 4. Test-set error distributions (raw units) for ET (orange) and LGBM (blue) across FAD classes
(Rare, Transitional, Core) and years (2016, 2020, 2024), shown per FEA (Degradation, Moisture, Site
Type, Stand Age).

3.2. FEA Prediction Performance

For each FEA, we selected a representative VI pair based on Pl rankings (Section 2.5.2; Supplementary
Figures S3, S5, S7, S9). This approach ensures interpretability and consistency across fragmentation
classes and years while retaining ecological relevance. Selected pairs were: NDRE + GARI
(Degradation), NDRE + NDMI (Moisture Content), NDVI + NDRE (Site Type), and CVI + NDRE
(Stand Age). Additional VI pairs and detailed PDP layouts are provided in Supplementary Figures S4,
S6, S8, and S10.

3.2.1. Degradation
Pl analysis (Supplementary Figure S3) identifies NDRE as the most influential VI for degradation
prediction, particularly significant in Rare zones, while GARI and GRNDVI also consistently rank high
in fragmented contexts.
PDPs for NDRE + GARI (Figure 5) illustrate:

o Core zones consistently represent natural or semi-natural forest conditions, exhibiting minimal

degradation signals throughout the studied period.

10
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e Transitional zones progressively shift towards distorted or strongly degraded forest states by
2024, evidenced by brighter regions indicating intensified canopy stress and pigment
deterioration.

e Rare zones prominently feature transformed or devastated conditions, as indicated by
pronounced bright regions, clearly reflecting increased fragmentation-induced ecological stress
and significant canopy loss.

Alternative influential indices, such as GRNDVI and NDWI, demonstrate similar ecological trends,
particularly in Rare zones, as shown in Supplementary Figure S4.
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Figure 5. PDPsiillustrating degradation using NDRE + GARI across Core, Transitional, and Rare zones
(2016, 2020, 2024). Brighter areas indicate more severe degradation (see Supplementary Table S2 for
degradation classes).

3.2.2. Moisture Content

PI rankings (Supplementary Figure S5) highlight NDMI and NDRE as key predictors, notably during
drier conditions (2020), when moisture stress intensified in Rare zones.

PDPs for NDRE + NDMI (Figure 6) show:

e Core zones predominantly characterized by fresh or moist soil conditions, maintaining
consistent moisture levels across years.

11
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e Transitional zones display increasing variability and heterogeneity, transitioning between
moist and fresh soils by 2024, indicative of altered hydrological patterns due to fragmentation.

o Rare zones exhibit clear transitions towards drier or partially drained soil conditions, signaling
intensified moisture stress associated with exposure and fragmentation.

Alternative indices sensitive to moisture variations, including NDWI and Clred-edge, are presented in
Supplementary Figure S6.
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Figure 6. PDPs depicting moisture content using NDRE + NDMI across Core, Transitional, and Rare
zones (2016, 2020, 2024). Brighter regions represent drier conditions (refer to Supplementary Table S3
for detailed moisture classes).

3.2.3. Site Type

Pl analysis (Supplementary Figure S7) emphasizes NDVI and NDRE as the primary predictors for site
type classification, with Clred-edge becoming significant particularly in fragmented forest zones.

PDPs for NDVI + NDRE (Figure 7) reveal:
o Core zones consistently associated with fresh or moist broadleaf and coniferous forest habitats,
reflecting stable ecological conditions.

e Transitional zones exhibit intermediate habitat heterogeneity, progressively shifting towards
mixed moist broadleaf or swamp forest types by 2024.

12
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o Rare zones present pronounced contrasts, notably transitioning towards bog forests and riparian
floodplain habitats, indicative of significant ecological disruptions linked to fragmentation.

Supplementary Figure S8 provides additional vegetation index pairs used for site type prediction.
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Figure 7. PDPs illustrating site type conditions using NDVI + NDRE across Core, Transitional, and
Rare zones (2016, 2020, 2024). Brighter regions indicate habitats with more fertile and fresh conditions,
whereas darker regions represent bog or swamp habitats (see Supplementary Table S4 for detailed site
type categories).

3.2.4. Stand Age

PI analysis (Supplementary Figure S9) identifies CVI as the leading predictor of stand age in Core and
Transitional zones, while NDRE emerges as essential in Rare zones, capturing younger regrowth
dynamics.

PDPs for CVI + NDRE (Figure 8) illustrate:

e Core zones prominently represent older, mature stands, indicated by stable bright regions
reflecting relatively undisturbed forest conditions.

e Transitional zones highlight varied age structures, showing mixed-age stands reflective of
selective disturbances and ongoing regrowth.

e Rare zones clearly show younger stands interspersed with isolated older remnants, consistent
with fragmented forest landscapes and repeated disturbances.

13
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Supplementary Figure S10 provides additional vegetation index pairings utilized for stand age
prediction.
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Figure 8. PDPs illustrating stand age patterns using CVI + NDRE across Core, Transitional, and Rare
zones (2016, 2020, 2024). Brighter regions indicate older forest stands.

4. Discussion
4.1. Ecological Drivers and Degradation Trends Across FAD Zones

Across fragmentation zones, NDRE, GARI, and GRNDVI consistently captured canopy stress,
reflecting their sensitivity to pigment decline and early warning signals (Lausch et al., 2016; Rossini et
al., 2006). Treating degradation as a continuous gradient helped reveal subtle shifts before major
structural change, in line with trait-based remote sensing calls for anticipatory indicators (Trumbore et
al., 2015; Wang et al., 2010).

In Core areas, PDPs were notably stable—consistent with buffered microclimates and structural
continuity that reduce edge stress and aid dispersal of wide-ranging species (Hanski, 2015). By contrast,
Transitional and Rare zones showed steeper, more variable PDP gradients, symptomatic of heightened
microclimatic variability, nutrient depletion, and wind exposure near edges (Briant et al., 2010; Arroyo-
Rodriguez et al., 2017). These patterns echo global evidence that edge effects accelerate pigment
degradation and moisture stress, especially where habitat falls below critical thresholds of ~20-30%
(Haddad et al., 2015; Fahrig, 2017).

14
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The strong performance of NDRE and GARI in Rare zones supports their use as operational early-
warning indicators of functional decline, enabling interventions before biomass losses accrue. By
linking pigment-sensitive indices to fragmentation gradients, this study shows how open-access
Sentinel-2 data can form a reproducible early-warning system for canopy decline, directly addressing
the challenge of detecting subtle degradation before structural loss becomes visible.

4.2. Moisture Dynamics and Spectral Predictability

Moisture responses diverged by zone: NDMI and NDRE consistently ranked as the most informative
indices for soil-canopy interactions under disturbance (Peters et al., 2007; He et al., 2013). Core zones
retained stable, fresh—moist conditions—consistent with closed canopies and mature root systems that
buffer drought (Schwartz et al., 2019). Rare zones, in contrast, displayed sharp moisture contrasts and
higher variability, pointing to localized drying under reduced canopy cover and altered
evapotranspiration—nhallmarks of fragmentation-driven desiccation risk (Briant et al., 2010; Wei et al.,
2022).

A brightening of PDP signals in Rare areas by 2024 may indicate secondary hydrological recovery after
thinning or disturbance, a dynamic noted elsewhere (He et al., 2013; Schwartz et al., 2019). These results
emphasize the importance of rewilding Rare zones with deeper-rooted, mixed plantings to enhance soil-
water retention, and adaptive thinning in Transitional zones to dampen extremes. The clear separation
of hydrological dynamics across zones also underscores the value of FAD-based stratification, which
disentangles fragmentation signals otherwise obscured in whole-forest averages, offering a scalable
approach for climate resilience assessments.

4.3. Site Type as a Landscape Filter

Fragmentation reshaped habitat quality gradients, with NDVI and NDRE emerging as primary
predictors and Clred-edge distinguishing pigment-related fertility differences. Core zones exhibited
homogeneous PDP responses—consistent with fertile, moist broadleaf—conifer conditions and the value
of intact interiors (Lausch et al., 2017). Transitional and Rare zones, however, showed marked
heterogeneity, reflecting shifts in soils and successional stages driven by disturbance histories (Nguyen
et al., 2020; Budniak & Zigba, 2022).

Modeling site type on a continuous scale aided comparative reading across zones but may blur fine-
scale heterogeneity—particularly in Rare fragments mixing pioneer regrowth with remnant mature
patches. A pragmatic extension is to combine vegetation indices with LiDAR-derived structure or
detailed soils to sharpen habitat delineation (Alonzo et al., 2016). In extensive forests lacking detailed
inventories, NDVI and NDRE still offer an efficient proxy for fertility mapping, while targeted ground
checks in high-risk or disturbed areas remain necessary. The framework therefore advances forest
ecology by operationalizing fragmentation-sensitive indices into zone-specific habitat filters, bridging
spatial modeling with practical monitoring.

4.4. Stand Age and Structural Maturity

Stand age patterns linked CVI and NDRE closely with canopy developmental stages, reflecting pigment
dynamics during forest succession. Core and Transitional zones showed stable PDPs indicative of
mature and uniform stand ages, confirming that optical indices remain reliable age predictors in low-
disturbance contexts (Wulder et al., 2009). Rare zones, however, posed greater predictive challenges:
regenerating edges often spectrally resembled older stands, risking misinterpretation of maturity—a
difficulty previously noted in fragmented forests (Dobor et al., 2018).

Incorporating structural metrics from LiDAR or GEDI alongside vegetation indices could significantly
enhance accuracy in fragmented, heterogeneous landscapes (Bauer et al., 2024; Burns, Hakkenberg, &
Goetz, 2024). In practice, prioritizing Rare zones for integrated structural-spectral assessment can help
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avoid misallocation of restoration resources to stands that appear mature optically but remain
ecologically young.

4.5. From Process Detection to Management Application

The fragmentation processes identified in this study translate directly into zone-specific management
strategies. Core zones, with their stable conditions, require strict protection to sustain carbon
sequestration potential and safeguard interior specialists dependent on large, contiguous habitats (Blake
and Karr, 1984; Fahrig et al., 2019). Transitional zones, which exhibited intermediate and variable
ecological responses, call for adaptive approaches such as selective thinning and corridor creation to
stabilize pigment and moisture dynamics, echoing recommendations from Fletcher et al. (2018). Rare
zones, by contrast, showed pronounced ecological stress, emphasizing the need for targeted restoration
and passive rewilding to restore connectivity, reduce desiccation risk, and support the persistence of
edge-sensitive species.

This framework is consistent with global findings that even small, well-managed patches can
significantly strengthen connectivity and biodiversity outcomes across fragmented landscapes (Fahrig,
2017; Gonzalez-Avila et al., 2023). Remote sensing adds a practical dimension to these strategies:
indices such as NDRE, NDMI, and NDVI provide cost-effective monitoring tools, enabling managers
to detect stress early and act before irreversible declines occur. Because the data used are open-access
and globally available, the same playbook—protect Core, adapt in Transitional, restore Rare—can be
readily applied to other temperate forest systems.

4.6. Limitations and Methodological Considerations

Several methodological considerations temper the interpretation of these results. Treating categorical
FEAs (degradation, moisture, site type) as continuous variables facilitated the detection of ecological
gradients, yet risks obscuring sharp thresholds—especially in edge-dominated Rare zones where
variability in species composition, soil conditions, wind exposure, and microclimatic dynamics may
play disproportionate roles. This limitation has practical implications, as restoration often depends on
identifying precise thresholds beyond which ecological collapse is likely.

Resolution presents another challenge. Sentinel-2’s 10 m pixel size may fail to capture microhabitat
heterogeneity, particularly in species-rich stands or highly fragmented mosaics. As Alonzo et al. (2016)
and Burns et al. (2024) note, integrating UAV- or LiDAR-derived data could complement spectral
indices by providing finer structural detail. Managers may therefore require such information before
committing restoration resources in heterogeneous forests.

Finally, transferability beyond temperate pine-dominated systems may be constrained. In more diverse
tropical or broadleaf systems, spectral confusion between canopy species can reduce predictive
accuracy, necessitating careful local calibration (Fahrig, 2003; Lausch et al., 2017).

Despite these caveats, the integration of Extra Trees with permutation importance and PDPs proved
effective in linking fragmentation to ecological processes. The workflow itself—Dbuilt on open-access
data and reproducible tools—offers a scalable template for forest monitoring. Future developments
could involve hybrid approaches combining climate, soil, and structural covariates, or radiative transfer
model-machine learning hybrids, to refine predictions and improve resilience forecasting under diverse
disturbance regimes.

5. Conclusion
This study demonstrates how fragmentation reshapes key ecological processes—degradation, moisture
dynamics, habitat quality, and structural maturity—across Core, Transitional, and Rare zones in the

Tuchola Forest Biosphere Reserve, using Sentinel-2 vegetation indices. Pigment-sensitive indices such
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as NDRE and GARI emerged as early-warning signals of degradation in Rare zones, where edge stress
and connectivity loss precede structural decline, particularly affecting forest interior specialists reliant
on stable habitats (Blake and Karr, 1984). Moisture-sensitive indices like NDMI captured hydrological
stability in Core zones and sharp variability in Rare areas, reflecting cumulative disturbance and rooting-
depth limitations tied to the monodominant Scots pine structure, which reduces beta-diversity and
stabilizes responses but heightens edge vulnerability (Fahrig et al., 2019; Wulder et al., 2009). Site type
predictions distinguished fertile core habitats from fragmented mosaics, while stand age modeling
revealed a critical risk of misinterpreting edge regrowth as maturity—highlighting the need to integrate
structural metrics for accurate assessment.

By combining FAD-based zoning with interpretable machine learning (Extra Trees and PDPs), this study
establishes an operational framework for linking spectral traits to ecological processes under
fragmentation. Beyond diagnosis, the results translate into clear, zone-specific strategies: (1) strict
protection of Core zones to sustain carbon storage and interior biodiversity; (2) adaptive management
in Transitional areas through corridor planting and selective thinning; and (3) intensive restoration of
Rare zones via passive rewilding and stepping-stone creation to reduce edge stress and reconnect
habitats.

Future research should validate this framework across diverse ecological contexts and explore
integration with structural and climatic datasets to enhance predictive accuracy and applicability.
Because it is grounded in open-access Sentinel-2 data and reproducible workflows, the approach is
readily transferable to other temperate and boreal landscapes. In doing so, it aligns with global
biodiversity and climate targets by enabling cost-effective, scalable monitoring of fragmentation
impacts. Ultimately, integrating vegetation indices with zone-based planning transforms remote sensing
into a practical tool for anticipating ecological decline and guiding resilience-oriented forest
management under accelerating climate and land-use pressures (Gonzélez-Avila et al., 2023; Wang et
al., 2025).
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Supplementary Material for How Does Fragmentation Reshape Forests? Tracking Dominant
Ecological Processes Across Core, Transitional, and Rare Zones
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Supplementary Figure S1. Spatial persistence and transitions of Core, Rare, and Transitional zones in
TFBR across 2016, 2020, and 2024. Color hues indicate temporal overlap and shifts of zone types,

offering insight into fragmentation trajectory over time.

Supplementary Table S1. Vegetation Indices Used in This Study with Corresponding Formulas

and Ecological Relevance

The table summarizes the vegetation indices computed from Sentinel-2 bands (B2-B11), grouped by
their functional ecological domains. Each formula reflects the actual implementation used in this study,
and the indices are categorized based on their relevance to greenness/biomass, moisture stress, pigment

content, and soil or shadow correction.

© Greenness / Biomass Indices

Index Formula Notes

NDVI (B8 —B4)/ (B8 + B4) Normalized Difference Vegetation Index

EVI 2.5x(B8—B4)/(B8+ 6 xB4—7.5x Enhanced Vegetation Index using Blue for
B2 +1) atmospheric correction

EVI2 2.5%x(B8—B4)/(B8+2.4xB4+1) Two-band EVI, avoids blue band

GNDVI | (B8 —B3)/(B8+B3)
GRNDVI | (BS—B3)/(B5 + B3)

GSAVI (B8 —B4) x (1+0.5))/(B8+B4+0.5)

LAI 3.618 x (B8 — B4) /(B8 +6 x B4 7.5
x B2+ 1)) —0.118
DVI BS — B4

@ Moisture Stress Indices

Green NDVI, more sensitive to chlorophyll
content

Red Edge NDVI, useful for early stress
detection

Green Soil-Adjusted Vegetation Index, L =
0.5

Proxy for Leaf Area Index, derived from
EVI

Difference  Vegetation Index, simple
reflectance gap

Index Formula Notes
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710

711

712

713

714

715

716
717
718
719
720
721

722
723

NDMI | (B8 —Bl11)/(B8 +Bl1)

GVMI

Normalized Difference Moisture Index using
NIR and SWIR

(B8 +0.1 —(B11+0.02)) /(B8 +0.1 + Global Vegetation Moisture Index, atmospheric-

(B11 + 0.02))

@ Pigment / Chlorophyll Indices

corrected variant

Index Formula Notes
GARI (B8 — (B3 —(B2—B4)))/ (B8 + (B3 — (B2 — Green Atmospherically Resistant
B4))) Index, sensitive to chlorophyll
MCARI ((B5—-B4)-0.2 x (B5 —B3)) x (B5/B4) Modified Chlorophyll  Absorption
Ratio Index
MTVI2 1.5 x [1.2 x (B5S — B3) — 2.5 x (B4 — B3)] / Modified Triangular Vegetation Index
V2 xB5+ 12— (6 xB5—5xVB4)—0.5] 2
NDRE (B8 —B5)/ (B8 +B5) Normalized Difference Red Edge
Index
GBNDVI | (B8 — (B3 +B2)) /(B8 + (B3 + B2)) Green-Blue NDVI, sensitive to
nutrient/pigment shifts

B Soil / Shadow Correction Indices

Index

Formula

Notes

CVI

(B8 x B4) / (B3?)

MSAVI] | 2 xB8+1—-[(2 xB8+1)>— 8 x

(B8 — B4)]) /2

Band Mapping (Sentinel-2)

Chlorophyll  Vegetation Index, proxy for
vegetation cover density

Modified Soil-Adjusted Vegetation Index, soil
background minimized

B2 — Blue (490 nm)

B3 — Green (560 nm)

B4 — Red (665 nm)

B5 — Red Edge 1 (705 nm)
B8 — Near Infrared (842 nm)

Supplementary Table S2. Degradation Codebook

B11 — Shortwave Infrared (1610 nm)

Code English Assigned
Description ~ Number

D1 Degraded 1

D2 Strongly 2
degraded

D3 Devastated 3

N1 Natural 4
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N2 Semi-natural 5
Z1 Distorted 6
Z2 Strongly 7
distorted
Z3 Transformed 8
724
725
726  Supplementary Table S3. Moisture Content Codebook
Code Description Assigned
Number
BBM | Very wet bog 1
BM | Wetbog 2
BO Drained bog 3
BSO | Strongly drained 4
bog
SU Dry soils 5
SS Very fresh soils 6
WO Drained  moist 7
soils
WSW | Very moist soils 8
WW | Moist soils 9
P Floodplain forest 10
(flooded/drained)
P VA Floodplain forest 11
(flooded)
S Fresh soils 12
727  Supplementary Table S4. Site Type Codebook
Code  Description Assigned
Number
BB Bog 1
coniferous
forest
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BMB

BMW

BMSW

BS

BW

BSW

LMB

LMW

LMSW

LW

LE

LSW

oL

OLJ

Mixed  bog
forest

Mixed moist
coniferous
forest
Mixed fresh
coniferous
forest

Dry
coniferous
forest

Moist
coniferous
forest

Fresh
coniferous
forest
Mixed swamp
forest
Mixed moist
broadleaf
forest
Mixed fresh
broadleaf
forest

Moist
broadleaf
forest
Riparian
floodplain
forest

Fresh
broadleaf
forest

Alder swamp
forest
Ash-alder

swamp forest

10

12

15
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729
730
731
732
733

734

735

736

737

Supplementary Table S5: Extra Trees Settings for Predicting Field-Based Ecological Attributes

Below are the tuned settings for Extra Trees models, organized by field-based ecological attribute
(FEA), fragmentation zone (Core, Transitional, Rare), and year (2016, 2020, 2024). Settings include:
Number of Trees (trees in the model), Features for Decisions (number of input features considered), Min
Samples to Split (minimum samples to split a decision point), and Min Samples per Node (minimum

samples in a final node).

a) Degradation

Zone Year Number of Features for Min Samples Min Samples
Trees Decisions to Split per Node

Rare 2016 1000 16 2 1

Rare 2020 1000 9 2 1

Rare 2024 1000 9 2 1

Transitional | 2016 1000 17 18 1

Transitional | 2020 1000 17 20 4

Transitional | 2024 1000 17 20 4

Core 2016 1000 15 20 1

Core 2020 878 17 6 10

Core 2024 474 16 18 7

b) Stand Age

Zone Year Number of Features for Min Samples Min Samples
Trees Decisions to Split per Node

Rare 2016 1000 13 2 1

Rare 2020 1000 11 10 1

Rare 2024 1000 13 10 1

Transitional | 2016 978 10 20 1

Transitional | 2020 1000 8 20 2

Transitional | 2024 1000 10 20 1

Core 2016 1000 12 20 1

Core 2020 1000 9 20 5

Core 2024 1000 12 20 1

¢) Moisture Content

Zone Year Number of Features for Min Samples Min Samples
Trees Decisions to Split per Node

Transitional | 2016 822 14 13 3

Transitional | 2020 1000 15 20 4

Transitional | 2024 822 14 13 3

Core 2016 822 14 13 3

Core 2020 1000 17 20 4

Core 2024 1000 17 20 5

d) Site Type
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738
739
740
741
742
743
744
745

Zone Year Number of Features for Min Samples Min Samples
Trees Decisions to Split per Node
Rare 2016 1000 17 2 1
Rare 2020 1000 9 6 1
Rare 2024 1000 17 2 )
Transitional | 2016 1000 17 20 1
Transitional | 2020 1000 17 20 5
Transitional | 2024 1000 17 20 5
Core 2016 1000 17 20 1
Core 2020 1000 17 20 4
Core 2024 1000 12 18 1

Supplementary Table S6: Mean Squared Error (MSE) and Mean Absolute Error (MAE) values from
Extra Trees and LightGBM models trained to predict four ecological ground indices (Degradation,
Moisture Content, Site Type, and Stand Age) across FAD fragmentation classes (Rare, Transitional,
Core) and years (2016, 2020, 2024). Values are presented separately for training and test sets. These

results guided model selection for subsequent feature importance and interpretability analyses.

Ground yea | metr rare transitional core
validation r ic set | Extra LGBM Extra LGBM Extra LGBM
Trees Trees Trees
tral 190000 |03167 (03800 |0.8457 |0.2979 |05777
MSE |n
201 test |04911 | 05279 |0.9247 |0.9420 |0.6316 |0.6417
® |va :]ra' 0.0000 |0.4306 |0.5276 |0.7977 |0.4263 |0.5985
B [test (05245 |05625 |0.8286 | 08423 |0.6257 |0.6311
tral 150000 04801 |0.4824 |0.8213 |05137 |0.7235
MSE |n
. 202 test |0.6481 | 0.6825 |0.8907 |0.8954 |0.7463 |0.7521
Degradation 0 trai
MA | 7' |0.0000 [05846 |0.6215 |0.8175 (06061 |0.7226
B [test (06711 |07014 |08478 |08534 |0.7316 |0.7365
tral 190000 |04850 (05011 |0.8782 |0.4142  |0.6342
MSE |n
202 test |0.7421 | 0.7705 |0.9254 |0.9338 |0.6733 |0.6781
4 lva :]ra' 00000 |0.5970 |0.6422 |0.8568 |0.5240 |0.6501
B [test (07335 |0.7557 |0.8760 |0.8838 |0.6701 |0.6724
tral 190000 |1.0585 [1.7015 |3.2823 |05173 |0.8878
MSE |n
201 test |3.3411  |3.7551 |3.5456 |3.6115 |1.0064 | 1.0239
Moisture 6 Iva :]ra' 00000 |0.4931 |0.6683 |0.9437 |0.1860 |0.2468
Content B [test (08570 |09317 |0.9812 |0.9886 |0.2665 |0.2654
202 | \rep :]ra' 03579 [2.1324 |2.4190 |35762 |0.8985 |1.3300
0 test |3.2964  |3.4204 |3.8757 |3.9129 |1.3901 |1.3988
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746

trai

MA |7 |02535 |06679 |0.7522 09225 (02729  |0.3350
B [test (08222 08384 |0.9649 |0.9644 |0.3444 |0.3428
tral 193028 |3.1530 [2.0689 |3.8898 |0.7678 |1.0182
MSE | n
202 test | 4.0947  |4.1929 |4.1683  |4.1982 |1.1778 | 1.1846
4 lva ;ra' 02793 |0.8529 |0.7280 |1.0086 |0.2345 |0.2711
B [test (09463 |0.9663 |1.0519 |1.0451 |0.2950 |0.2925
tral 150000 |1.9109 |2.2577 |4.7335 |0.9002 |1.8913
MSE | n
201 test |5.2886  |5.6835 |5.2355 |5.3250 |2.0667 |2.1100
5 Ima ;ra' 00000 |1.0254 |1.2079 |1.7744 |0.6082  |0.9005
B [test [1.7347 |1.8018 |1.8396  |1.8715 |0.9208 |0.9399
tral 105164  |3.0805 [3.0707 |4.9907 [0.9378 |15775
MSE | n
. 202 test |4.8349  |5.0059 |5.3062 |5.3329 |1.6627 |1.6764
Site Type 0 trai
MA |7 |05562 [14202 |14073 18230 (05783 |0.7604
B [test [1.7519 |1.7903 |1.8583 |1.8765 |0.7718 |0.7782
tral | n3550 |3.2002 |3.1324 |5.1645 |0.8189 |1.7311
MSE |n
202 test |5.3478  |5.4392 |55047 |55089 |1.8546 |1.8734
4 lva ;ra' 04502 |1.4702 |1.4347 |1.8707 |05519 |0.8120
B [test [1.8459  |1.8957 |1.9095 |1.9253 |0.8335 |0.8381
"ai (00000 125595 | 4052102 | 76939 | 261 4540 | 56226
MsE [P 10 7 17
793.07 856.314 618.27
201 test | 747.3080 |1 8456752 |, 608.6250 |
6 trai 11.954 18.136
MA | [00000 | 160089 |22.1318 (127420 |,
B ltest | 19.4408 30'288 23.0373 | 23.2354 | 18.6947 28'915
tral | 169 4794 46274 | 6150930 103030 | 431 g59g | 69139
MsE [P 94 12 72
west | 652.0835 | 67269 |1094.188 |1098.02 | 1 1-or |678.05
Stand Age (2)02 i 22 473 : . ig 911
trail . .
MA |no 90716 |7 19.6523 |25.5795 160512 |;
B ltest | 18.1192 %8'519 26.2680 |26.3333 | 20.1023 50'230
tral |1 11 7045 |41231 | 5eg 7954 (109718 | 507 6opy 65417
MsE [P 92 61 38
600.78 | 1183.474 |1189.85 713.35
200 test |586.8752 | - o 7003864 | >
4 trai 14.458 19.635
VA |no |84 |) 189441 |26.3012 138434 |,
B ltest | 17.0806 %7'196 272026 | 27.2870 | 20.2769 50'362
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764  Supplementary Figure S5. Partial Importance (PI) grid for moisture content, summarizing vegetation
765 index relevance for moisture predictions across zones and years. NDWI and NDRE emerged as the most
766  important indices, particularly in less fragmented areas.

2016 2020 2024

WAl Gny o
e

ms o oan
[P

AL dz o3
SR

transitional

o s e

267 , : . . - . - .
768  Supplementary Figure S6. Additional PDPs for moisture content, displaying alternative vegetation
769  index pairings used to model moisture variation across FAD zones and time.

31



770

771
772

773
774
775
776

777
778

779
780
781

Year = 2016 Year = 2020 Year = 2024

FAD Class = Core
e = = = 8 = =
8 2 8 % B § 8
s & B8 B 2 8
= & 2 ® & §
B EEBEEEEE &

i
woap
nowi

|
"*’*gsgéas HE TEfREEfES

wam Lk e
sim 0134
anes
o s
i 2l ank
a0
oG-
anis
Lk
aim
any
s I
s a0p
5 ! ! | : E £
4 E £ _ 27 g -

PRERIERERECRRIELE

Supplementary Flgure S7. Partial Importance (PI) grid showing the relative contribution of vegetation
indices to Site Type predictions across fragmentation classes (Core, Transitional, Rare) and years (2016,
2020, 2024), based on Extra Trees regressors. NDVI, Clre, and NDWI emerged as consistent top
predictors.

i
)

FAD Class = Transitional
s w o B S
g @ g g g iy
s
Py
Lo
Bt
pui
=
w
e
e
i
s
DR
=
§ = & -] E
-] 2 2 g
P
—
N
-
 p—r
—
—
—
-
J—
P
p—
_—
7
|
£ [
H 2 g H E
: 5 % ¢ ¢
j—
-
=
ol
v
ity |
DR —
o ———

FAD Class = Rare
2
i

-
ey [
s _

()
bl

transitional

)

b 3 02 o1 p3 o3 B
sau

i

Supplementary Flgure 88 PDP layouts for alternate VI pairs used for Site Type prediction across
different FAD zones and years.

32



782
783

784
785
786

787
788

789

790

Year = 2016 Yaar = 2020 Yaar = 2024

FAD Class = Core
§ E % EEE G %
E B & & %
8 E E E B E &

FAD Class = Transitional
'‘BEESE IR L
o | —

8 B B R EEGOEE
o j—
EEIBEEEEE

BN
G
AN
TN
M
i
MCAR
M
NV
am
none

FAD Class = Rare

£ H i H
EEEESEEEZE SR
E 0 E R E § E S B
S EE E £ 2 E E B
g 5§ 85 8 E E 8 ¥

nan

EEEzIIizs

£ CEEIZESEESETIEEELE I EEFEEIRESE
g *~§Eg§§ jEckh

= (=3 5 F * 2 o3 N
: PEEESIRpiETiRiaEE

e
=Y
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with Clre particularly influential in fragmented areas.
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