
 

 

Summary of Professional Accomplishments 
 

1. Paweł Potasz 

 

2. Diplomas, degrees conferred in specific areas of science or arts, including the 

name of the institution which conferred the degree, year of degree conferment, 

title of the PhD dissertation 

 
2012  PhD in physical sciences (3.07.2012) 

 Institute of Physics, Wroclaw University of Science and Technology  

 Title of the thesis: Electronic and optical properties of graphene nanostructures 

 Supervisors:  prof. Arkadiusz Wójs (Wroclaw University of Science and Technology) 

  prof. Pawel Hawrylak (National Research Council Canada) 

 
2007 MSc in physics (6.07.2007) 

Faculty of Fundamental Problems of Technology, Wroclaw University of 

Science and Technology 

 Title: Thermodynamics of paired fermionic systems at BCS–BEC crossover  

 Supervisor: dr Mateusz Krzyżosiak (Wroclaw University of Science and Technology) 
 

3. Information on employment in research institutes or faculties/departments or 

school of arts  
 

03.2021 – professor at Department of Quantum Physics, Faculty of Physics, Astronomy 

and Informatics, Nicolaus Copernicus University in Torun 

 

02.2019 – 02.2021 postdoc, The University of Texas at Austin, Department of Physics, 

 Austin, Texas, USA 

 

10.2015 – 10.2020 assistant professor at Department of Theoretical Physics,  

Faculty of Fundamental Problems of Technology, Wroclaw University of 

Science and Technology 

 
10.2014 – 09.2015 research assistant at Department of Theoretical Physics, 

Faculty of Fundamental Problems of Technology, Wroclaw University of 

Science and Technology  

 
05.2014 – 11.2014 postdoc, Department of Quantum Materials,  

 International Iberian Nanotechnology Laboratory (INL), Braga, Portugal  

 

10.2012 – 09.2014 research assistant in Institute of Physics, Wroclaw University of Science and 

Technology  

 

 

 



 

 
4. Description of the achievements, set out in art. 219 para 1 point 2 of the Act 

 

Cycle of scientific articles related thematically, topic of the series: Theoretical research on 

stability of topological phases in selected two dimensional systems.  
 

The series consists of the following works (in a chronological order): 

 

H1 P. Potasz, M. Xie, A. H. MacDonald, Exact diagonalization for magic-angle twisted bilayer 

graphene, Phys. Rev. Lett. 127, 147203 (2021), 10.1103/PhysRevLett.127.147203 

 

H2 N. Nouri, M. Bieniek, M. Brzezińska, M. Modarresi, S. Zia Borujeni, Gh. Rashedi, A. Wójs, P. 

Potasz, Topological phases in Bi/Sb planar and buckled honeycomb monolayers, Phys. Lett. A 

382, 2952–2958 (2018), 10.1016/j.physleta.2018.06.037 

 

H3 B. Jaworowski, A.D Güçlü, P. Kaczmarkiewicz, M. Kupczyński, P. Potasz, A. Wójs, Wigner 

crystallization in topological flat bands, New J. Phys. 20, 063023 (2018), 10.1088/1367-

2630/aac690   

 

H4 M. Brzezińska, M. Bieniek, T. Woźniak, P. Potasz, A. Wójs, Entanglement entropy and 

entanglement spectrum of Bi1−xSbx (111) bilayers, J. Phys.: Condens. Matter 30, 125501 (2018), 

10.1088/1361-648X/aaaf54 

 

H5 M. Bieniek, T. Woźniak, P. Potasz, Stability of topological properties of bismuth (111) bilayer, 

J. Phys. Condens. Matter 29, 155501 (2017), 10.1088/1361-648X/aa5e79 

 

H6 B. Jaworowski, A. Manolescu, P. Potasz, Fractional Chern insulator phase at the transition 

between checkerboard and Lieb lattices, Phys. Rev. B 92, 245119 (2015), 

10.1103/PhysRevB.92.245119 

 

H7 P. Potasz, J. Fernandez-Rossier, Orbital magnetization of quantum spin Hall insulator 

nanoparticles, Nano Letters 15, 5799-5803 (2015), 10.1021/acs.nanolett.5b01805 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
The subject of topological effects is very broad, from the perspective of studied materials and 

their properties from topological point of view, and together with advanced mathematical tools 

standing behind them, it is not possible to describe here complete mathematical formulation of the 

problem, which force me to restrict to the most important issues strictly related to the presented 

achievement.  

Introduction 

 

Research on materials with topologically nontrivial properties is currently one of the main field 

in condensed matter physics [1, 2]. It is related to crucial importance for understanding of 

fundamentals laws of physics and huge potential for applications [3-6]. The beginnings start in 80’ 

and discovery of integer quantum Hall effect [7]. Integer quantum Hall effect can be observed in two-

dimensional systems under high-magnetic fields. From quantum mechanical point of view, electrons 

populate so called Landau levels – highly degenerate energy levels. Experimentally measured Hall 

resistivity forms characteristic plateaus as a function of a magnetic field and conductance as its 

inverse is precisely defined as an integer number of fundamental constants, despite of defects and 

other factors affecting idealized predictions of the theory.  

Explanation of ideal conductance quantization is possible on the basis of topological 

interpretation of the phenomena. Topological phases, or in general topologically distinguished 

objects, are the ones that cannot be transformed one in to the other using continuous transformations. 

A typical example outside of condensed matter physics, but clearly described the problem, is a sphere 

and a torus. These are two topologically distinguished objects due to a different number of holes, no 

holes in case of a sphere and one hole in a torus. Transformation of a sphere into a torus is not possible 

using continuous transformations because at the end creating a hole in a sphere requires its breaking 

– noncontinuous transformation. Following this path, objects (or precisely using mathematical 

terminology, manifolds) without a hole are topologically equivalent between themselves (can be 

obtain one from the other using continuous transformations like squeezing or stretching), and 

similarly all objects with a given number of holes are topologically equivalent to each other. Because 

of that, one can introduce a topological invariant, which distinguishes topologically inequivalent 

objects. In this case it is a number of holes.  

Phases in integer quantum Hall effect are classified by topological invariant called Chern 

number, which is well defined for energy bands separated by energy gaps from the rest of the 

spectrum. A value of Chern number reflects on conditions imposed on gauge choice of wave function 

on a given manifold; in the case of periodic structures our manifold is a reciprocal space (a torus). In 

the case of nonzero Chern number, one cannot choose one gauge that is continuous on an entire 

manifold, and also satisfies periodic boundary conditions. Conductance in integer quantum Hall effect 

is proportional exactly to Chern number, and as a discrete quantity, cannot be changed by tiny 

deformations or defects in the system. Hence, this is the reason of its peculiar stability observed in 

the experiment. Nonzero value of Chern number in this case distinguishes topological insulators from 

trivial insulators (like widely used SiO2). It is worth to emphasize importance of discovery of integer 

quantum Hall effect. Hitherto known phases of matter and transitions between them, have been 

described by Landau theory [9] – phases of matter can be classified by their symmetries and 

transitions between them requires breaking of that symmetry. Integer quantum Hall effect required a 

new description, beyond Landau theory, because none of the symmetry is broken in this case. New 

theory classifies insulators using their topological properties.  

 The issue related to origin of topologically nontrivial properties in integer quantum Hall effect 

was considered by Haldane. In this phenomena there are two characteristic factors: existence of 

Landau levels and breaking of time-reversal symmetry due to a presence of a magnetic field. In 1988 



 

 
Haldane proposed theoretical model of integer quantum Hall effect without Landau levels [10], 

proving that crucial for conductance quantization is breaking of time-reversal symmetry. The model, 

currently known as Haldane model is an example of so called Chern insulator, a system with 

topologically nontrivial properties without an external magnetic field. Haldane model was crucial in 

discovery of new systems with topologically nontrivial properties with conserved time-reversal 

symmetry, called now Z2 topological insulators. In 2005, C. Kane and E. Mele proposed a model with 

spin consisting of two copies of Haldane model for each spin [11,12]. Kane-Mele model is a tight-

binding model describing crystal structure of graphene with spin-orbit coupling. It is not a good 

example for realistic realization due to small value of spin-orbit coupling constant, characteristic of 

light elements, but pioneered the research in a new direction of various crystals with nontrivial 

topology of energy bands. More realistic model of Z2 topological insulators, widely known also as 

quantum spin Hall insulator [12], was proposed by A. Bernevig and collaborators [13], and in 2007 

quantized conductance was confirmed experimentally [14]. Currently insulators with nontrivial 

topology of energy bands are called topological insulators, with integer quantum Hall effect as the 

first example studied theoretically and experimentally.   

Characteristic feature of topological insulators is existence of energy gap between the ground 

state and excited states in infinite system, and a presence of edge states1 (or surface states in case of 

three dimensional materials) crossing the energy gap, if a material is finite in at least one dimension 

[3, 4]. While the presence of edge states is nothing special and their occurrence is frequent in many 

materials, in the case of topological insulators, their origin comes from bulk materials properties 

(topological properties). Additionally, edge states in topological insulators reveal many unique 

properties related to their topological character. Current flowing through edge states channels is 

extremely stable against disorder, i.e. energetic dissipation is suppressed - backscattering is forbidden. 

In integer quantum Hall effect there are so called chiral edge states – current flow through edges has 

an opposite direction on opposite edges, thus backscattering requires a hop of a scattered carrier to a 

channel that is macroscopically far. In quantum spin Hall effect, there are so called helical edge states 

– a direction of current flow is strictly related to spin, and backscattering within a given edge requires 

a spin flip, which is possible only when time-reversal symmetry is broken, e. g. by a magnetic dopant. 

Because of this, despite a presence of dopants (nonmagnetic in general) and disorder, current flow 

like in an ideal, clean, material. 

Transport properties of Z2 topological insulators can be observed in low temperatures because of 

small energy scale in the systems – an origin of topologically nontrivial effects is most often due to 

spin-orbit interaction2, which has relatively small spin-orbit coupling constant – the energy gap in 

these materials is of the order of few meV. Quantized conductance in topological insulators has been 

experimentally confirmed in 30 mK temperature [14]. A class of materials with topological properties 

in two dimensions has been extended to three dimensional materials [3, 4]. Currently, an intensive 

search of new materials with topologically nontrivial properties is continued, which effects could be 

observed in higher temperatures, thanks to control of magnitude of the energy gap. Very promising 

is potential application of such materials to build new, efficient electronic devices.  

Integer quantum Hall effect can be explained at the single particles level, without inclusion of 

electronic correlations. In 1982 plateaus at noninteger values of quantized conductance for partially 

filled Landau level has been discovered [17], called now fractional quantum Hall effect. Theoretical 

explanation for 1/3 filling of the lowest Landau level was proposed by Laughlin. Observed plateaus 

                                                 
1 Within this set of articles I focused on two dimensional materials and topological phases, in which edge states are 

present, but there are topological phases without edge states [15]. 
2 Currently a class of materials with topologically nontrivial properties has been extended to models without spin-orbit 

coupling, and example is ref. [16].  



 

 
at other partial fillings can be explained using Haldane-Halperin hierarchical theory [19, 20] and 

using composite fermions theory proposed by Jain [21, 22].  

Haldane model is a single particle model of integer quantum Hall effect on a periodic two-

dimensional lattice without external magnetic field and consequently without Landau levels. An 

interesting issue was if here incompressible liquids for partial filling of energy bands can occur too, 

i.e. existence of fractional quantum Hall effect with conserved a translational symmetry. In 2011 

several theoretical models have been proposed of systems on two dimensional lattices with 

topologically nontrivial energy bands (with nonzero Chern number), appropriately flatten in order to 

enhance many-body effects [23-28]. Numerical calculations confirmed existence of incompressible 

liquids for 1/3 filling of flat topological energy bands, similar to Laughlin state for partially filled 

lowest Landau level. In consecutive works, appearance of entire family of incompressible strongly 

correlated liquids for another fillings has been shown [27-32]. 

In last years twisted atomic layers forming so called moire superlattices have attracted attention 

of fair number of research groups, experimental and theoretical ones. It is related to experimental 

confirmation of superconductivity for partial filling of flat bands formed at particular twist angles of 

bilayer graphene, for angle around 1.1°, named now magic angle [33-35]. In band structure of twisted 

bilayer graphene, when a twist angle is close to magic angle, a pair of flat bands appear in a vicinity 

of Fermi energy. These bands can be populated by maximal eight particles per moire unit cell (due to 

two bands, two valleys characteristic of graphene band structures and two possible spin directions). 

In the case of integer filling fraction  (an integer number of electrons per moire unit cell), measured 

usually in a range  −4 ≤  ≤ 4 ( = −4 corresponds to empty flat bands,  = 0 to charge neutrality, 

and  = +4 fully filled two flat bands), insulating states have been observed, which origin cannot be 

explained at the level of single particle theory [34-38]. These, so called, Mott states appear because 

of electronic interactions, which play a major role in the system. By changing a filling fraction of flat 

bands to noninteger values, one can observe superconducting states, with the highest transition 

temperature to superconductivity for fillings around −3 <  < −2. The nature of superconducting 

states in this material remains to be explained. Essential feature of flat energy bands in twisted bilayer 

graphene is their nontrivial topology [39-42]. For fillings  = |3| (in general also for  = |1|), 
appearance of Chern insulators has been theoretically predicted, as a spontaneously broken time-

reversal symmetry and occupation of one of two valleys. Anomalous quantum Hall effect has been 

observed in twisted bilayer graphene aligned with hBN [43,44]. A spontaneously broken time-

reversal symmetry together with flat energy bands gives hope to investigate competing effects related 

to nontrivial topology in the system and electronic interactions.  

 

Band structure and topological phase transition in group IV materials 

(articles [H2], [H4], [H5])  

  

Electronic and transport properties of materials with a honeycomb lattice (a triangular lattice with 

two atomic basis) crystal structure were subject of research in publication [H2], [H4] and [H5]. Band 

structures and electronic properties have been studied by me using tight-binding model, and later by 

M. Bieniek (that time a PhD student, I was his auxiliary supervisor, he obtained PhD in 2021), who 

was also responsible for transport calculations, in publication [H5], by N. Nouri (that time a PhD 

student, she obtained PhD in 2019) in collaboration with S. Zia Borujenie and Gh. Rashedi in 

publication [H2], and by M. Brzezińska (that time a PhD student, I was her auxiliary supervisor, she 

obtained PhD in 2021) in publication [H4]. Calculations within density functional theory (DFT) in 

publication [H5] were done by T. Woźniak (that time a PhD student, he obtained PhD in 2021) and 

in publication [H2] by M. Modarresi. In order to analyze electronic properties of group IV materials, 



 

 
I implemented a following multi-orbital tight-binding model, using Slater-Koster approach [45], 

given by Hamiltonian [46, 47] 

 

𝐻 = ∑ 𝐸𝛼𝜎𝑐𝑖𝛼𝜎
+ 𝑐𝑖𝛼𝜎 +

𝑖𝛼𝜎

∑ 𝑉𝑖𝛼𝑗𝛼′𝜎𝑐𝑖𝛼𝜎
+ 𝑐𝑗𝛼′𝜎 +

<𝑖𝑗>𝛼𝛼′𝜎

∑ 𝑉′
𝑖𝛼𝑗𝛼′𝜎𝑐𝑖𝛼𝜎

+ 𝑐𝑗𝛼′𝜎 +

≪𝑖𝑗≫𝛼𝛼′𝜎

 

∑
𝜆

3
(𝑐𝑗𝑧↓

+ 𝑐𝑗𝑥↑ − 𝑐𝑗𝑧↑
+ 𝑐𝑗𝑥↓ + 𝑖𝑐𝑗𝑧↑

+ 𝑐𝑗𝑦↓ + 𝑖𝑐𝑗𝑧↓
+ 𝑐𝑗𝑦↑ + 𝑖𝑐𝑗𝑥↓

+ 𝑐𝑗𝑦↑ − 𝑖𝑐𝑗𝑥↑
+ 𝑐𝑗𝑦↓) + 𝐻. 𝐶.,𝑗   (1) 

 

where 𝑐+ , 𝑐  are creation and annihilation operators of a particle, 𝜎 indicates spin, i,j are sites indices 

of a honeycomb lattice, E is energy of a given orbital 𝛼=(s, x, y, z), where s is s-orbital and x, y, z are 

three p-orbitals, V is a parametrized hopping integral to nearest neighbors <i,j>, to next nearest 

neighbors <<i,j>>, and the last term is spin-orbit coupling with spin-orbit coupling constant 𝜆 

between orbitals at a given lattice site.       

  Bismuth monolayer with realistic parameters has the energy gap between the valence and 

conduction bands. According to ref. [47], it is Z2 topological insulator. The goal of [H5] was analysis 

of stability of topologically nontrivial phase against different perturbations, in particular with respect 

to changes of spin-orbit coupling strength, which can be controlled e.g. using curvature of a 

monolayer [48]. For small values of spin-orbit coupling, a monolayer is a trivial insulator with 

topological invariant Z2=0. Increase of spin-orbit coupling strength leads to an inversion of energy 

bands and a transition to a topologically nontrivial phase with an invariant Z2=1. Inversion of bands,  

closing and reopening of the energy gap one can observe in changes of orbital composition of 

appropriate energy bands. Before a transition, both valence and conduction bands consist mainly of 

pz orbitals, and after reopening there is a significant increase of px and py contribution to the valence 

band. Changes in energy spectrum one can see also for calculations in a ribbon geometry, a structure 

with periodic boundary conditions in one direction, and open boundary conditions in the other. 

Thanks to that one can observe an evolution of edge states characteristic of a topologically nontrivial 

phase. 

 

Edge states in Z2 topological insulator 

(articles [H2], [H5])  

 

Presence of edge states crossing the energy gap is a characteristic feature of topologically 

nontrivial properties of a material in a ribbon geometry. Their character can differ when comparing 

idealized Kane-Mele model [11] with a more realistic multi-orbital models. In articles [H2, H5], I 

analyzed edge states in bismuth and antimony monolayers, and in their flatten counterparts, 

bismuthene and antimonene. In both, topologically trivial and nontrivial phases,  edge states are 

present in energy spectrum, but only within a nontrivial phase, these edge states connects valence and 

conduction bands, which allows conductance through these states – edge states are responsible for 

quantized conductance, as was shown by analysis of transport properties, electrons moving by them 

are extremely immune to disorder. It turned out that topological edge states in bismuth, strongly 

penetrate an interion of the sample. The strongest localization on edges was observed around gamma 

point of Brillouin zone and increase of delocalization when moving toward edges of one dimensional 

Brillouin zone. Interestingly, as was shown in transport properties studies, delocalization of edge 

states do not affect strongly conductance quantization. It is worth to emphasize that the number of 

edge states is related to the topological character of the material. In systems protected by time-reversal 

symmetry, Z2 topological insulator, there is a pair of edge states, while in topological crystalline 



 

 
insulators protected by reflection symmetry, which correspond to perfectly flat form of bismuth or 

antimony, bismuthene and antimonene [49], there are two pairs of edge states [H2]. 

 

Induced magnetic moment from Edge states 

(article [H7])  

 

Practical application of topological edge states in nanodevice was proposed in article [7]. In that 

work, I performed all numerical calculations, and together with J. Fernandez-Rossier, I analyzed the 

results and edited the manuscript. In quantum dot carved from a material being a topological insulator, 

edge states form a ladder of, approximately equidistant, energy levels inside the energy gap (this 

comes from a linear dispersion of edge states as a function of momentum in a ribbon geometry). Each 

edge state is double degenerate due to Kramers degeneracy. Applied magnetic field causes splitting 

of energy levels. In tight-binding model, given by Hamiltonian (1), the effect of a magnetic field can 

be introduced using Peierls substitution [50] 

𝜑𝑖𝑗 = 2𝜋
𝑒

ℎ𝑐
∫ 𝑨𝒅𝒍

𝒓𝑖

𝒓𝑗
, 

where A is a vector potential, a 𝜑0 =
𝑒

ℎ𝑐
 magnetic flux quantum. Changes of a magnetic flux threading 

a quantum dot surface, induced a current flow through states encircling a structure. In each state of a 

Kramers pair from edge states, one state carries current flowing clockwise, and the second 

counterclockwise. Appropriately adjusting Fermi energy, such that only one of these two states was 

occupied, one generate a magnetic moment proportional to a quantum dot radius. Magnetic moment 

𝑀𝑛 related to each energy state 𝐸𝑛 is defined as     

𝑀𝑛 =
𝜕𝐸𝑛

𝜕𝐵
, 

where B is magnetic field. Analyzing a behavior of energy levels as a function of magnetic field, one 

can determines an induced magnetic moment. In typical systems described by Schrödinger equation, 

current I coming from electron rotating around a closed circular surface is inversely proportional to 

square of a radius. Area S is also proportional to square of a radius and as a consequence it gives a 

constant magnetic moment, M=IS. Scaling of a magnetic moment with a radius is a characteristic 

feature of topological insulators. Low energy properties (edge states) can be described using Dirac 

equation. In systems described by Dirac equation, current is inversely proportional to radius of a 

circular area and this causes a linear scaling of a magnetic moment with system size. Indeed, in work 

[H7] I considered two models of topological insulators, Kane-Mele model and bismuth monolayer, 

and in each case we observed a linear dependence of induced magnetic moment as a function of a 

quantum dot radius. Additionally, I have shown that due to topological character of edge states, 

current going along a perimeter are extremely robust against perturbation. Generated magnetic 

moment was stable with respect to Anderson disorder (random potential on lattice sites), with a 

disorder strength much exceeding the energy gap, and still present in finite temperatures, at the order 

of few Kelvins for a quantum dot with 18 nm radius. Presence of edge states, and in consequence 

induced magnetic moment is a universal features of topological quantum dots, regardless of their 

shape and defects on edges.         

 

Characterization of topological properties of a material using entanglement spectrum 

(articles [H2], [H4]) 

 

A useful tool for identification of topologically nontrivial phases is entanglement spectrum [51-

56]. Z2 topological insulators, Chern insulators, or topological crystalline insulators are systems of 

noninteracting fermions belonging to so called topological phases with short-range entanglement 



 

 
[57]. Entanglement properties of states with nontrivial topology can be studied dividing a system into 

two parts, two subsystems, and analyzing an effect of one of the part on the second one, in analogy 

to quantum mechanical open systems, the systems interacting with the environment. In the case of 

noninteracting fermions, so called entanglement Hamiltonian can be obtained from correlation 

matrix, which corresponds to reduced density matrix of one of subsystems [51]. Diagonalization of 

entanglement Hamiltonian matrix gives so called entanglement spectrum, which corresponds to a 

realistic spectrum of a system in one dimensional geometry, with edge states along a cut, but with 

flattened energy bands, where states from the conduction band are projected to 1 and states from the 

valence band to 0. Nontrivial topology is revealed by spectral flow, a set of eigenvalues continuously 

connecting eigenvalues 0 and 1, indexed by momentum along the cut. Additionally, to identify 

topological phases, one can use trace index, which can be related to topological invariant [55]. Trace 

index can be calculated by taking a trace of entanglement Hamiltonian matrix for each momentum 

and counting a number of  discontinuities in one dimensional Brillouin zone.   

Entanglement spectrum and trace index I used to study bismuth and antimony monolayer [H2, 

H4]. In both articles, analysis of topological properties using these tools is based on my initial 

numerical calculations and next on calculations performed by M. Brzezińska (that time a PhD student, 

I was her auxiliary supervisor, she obtained PhD in 2021). Bismuth monolayer is Z2 topological 

insulator but antimony monolayer is a trivial insulator. Entanglement spectrum of bismuth monolayer 

has features of ribbon geometry spectrum, which means, has a pair of edge states crossing the energy 

gap – a spectral flow. In entanglement spectrum of antimony monolayer spectral flow does not occur, 

but a flat band around 0.5 appears. It has been connected with a presence of so called dangling bonds, 

which form a flat band of localized edge states inside the energy gap. Topologically nontrivial 

character of the system has been confirmed by calculating trace index. One has to calculate a number 

of discontinuities in half of one dimensional Brillouin zone, which is an odd number in the case of Z2 

topological insulators (bismuth), and even in the case of a trivial insulator (antimony).  

Using entanglement entropy, as a sum over all eigenvalues of entanglement spectrum, a transition 

from a topologically nontrivial phase to a trivial phase was analyzed, which can be induced using 

external electric field, changes of concentration x of bismuth in relation to antimony in Bi1-xSbx 

compound and by applying strain. A topologically nontrivial phase is stable for a compound with 

above 75% bismuth concentration and in pure antimony for strain above 14%. Determining 

entanglement entropy in a vicinity of a topological phase transition, one can analyze its character. We 

have noticed that in the case of a transition induced by a concentration change x, and by applying 

strain, there is a finite discontinuity in the entanglement entropy. In the case of a transition induced 

by an external electric field, a phase transition seems to have a different character as entanglement 

entropy remains a continuous function of the electric field strength, while its first derivative, 
𝜕𝑆𝐴

𝜕𝑉𝑓𝑖𝑒𝑙𝑑
, 

where 𝑆𝐴 is entanglement entropy and 𝑉𝑓𝑖𝑒𝑙𝑑 is a potential from external electric field,  is 

discontinuous, which suggests first order phase transition (in the first case) and second order phase 

transition (in the second case) but more careful analysis is still required.  

 

Many-body effects 

(articles [H1], [H3], [H6]) 

 

A part of Hamiltonian with two-body interaction term to study many-body effects has a general 

form  

𝐻𝑀𝐵 = ∑ 𝐸𝑖𝑐𝑖𝜎
+ 𝑐𝑖𝜎 +𝑖𝜎

1

2
∑ ⟨𝑖𝑗|𝑣|𝑘𝑙⟩𝑐𝑖𝜎

+ 𝑐𝑗𝜎′
+ 𝑐𝑘𝜎′𝑐𝑙𝜎,𝑖,𝑗,𝑘,𝑙

𝜎,𝜎′
  (2) 



 

 
where ⟨𝑖𝑗|𝑣|𝑘𝑙⟩ are Coulomb matrix elements, and 𝑖, 𝑗, 𝑘, 𝑙 are indices of occupied states with energy 

𝐸𝑖. In exact diagonalization method, Hamiltonian matrix is written and diagonalized in a basis of 

configurations of particles populating energy states. A total number of possible configurations is 

determined by binomial coefficient, (
𝑛
𝑘

), where 𝑛 is a number of energetic states to populate and 𝑘 

is a number of particles. Because of exponential growth of Hilbert space with a system size and a 

number of possible states to populate, calculations within exact diagonalization method are restricted 

in systems with periodic boundary conditions to discretized Brillouin zone with a finite number of 

states with a given momentum. Two-body scattering given by Hamiltonian (2) conserves total 

momentum, thus Hamiltonian matrix has a block diagonal form and each block can be diagonalized 

independently. Additionally, Coulomb scattering conserves a number of particles with a given spin, 

thus a spin projection on a given axis is a good quantum number (Hamiltonian (2) also commutes 

with square of total spin operator S2, but due to an additional cost related to a basis rotation, it was 

not implemented). In our calculations, we considered systems sizes with up to several millions per 

subspace of full Hilbert space. It corresponds to systems with 12 particles maximally for half-filling 

of single particle energy states. 

 

Fractional Chern Insulators 

(article [H6])  

 

In [H6] we analyzed stability of fractional Chern insulators using Laughlin type of state (filling 

1/3) realized in topologically nontrivial band on a checkerboard lattice. In that work, I proposed to 

consider this problem together with A. Manolescu, and performed initial analysis of single particle 

spectrum as a function of model parameters and performed calculations of many-body effects using 

self-implemented exact diagonalization method. Numerical calculations were continued by B. 

Jaworowski (that time a PhD student, I was her auxiliary supervisor, he obtained PhD in 2019).   

In work [H6] we restricted analysis to spinless particles and interaction of a density-density type 

between neighbors on a given lattice, ⟨𝑖𝑗|𝑣|𝑗𝑖⟩ = 𝑉𝑖𝑗, with a parametrized interaction between nearest 

neighbors 𝑉𝑖𝑗 = 𝑉𝑛𝑛 for < 𝑖, 𝑗 >, and second nearest neighbors 𝑉𝑖𝑗 = 𝑉𝑛𝑛𝑛 for ≪ 𝑖, 𝑗 ≫. Stability of 

topologically nontrivial phases was studied with respect to a transition between checkerboard lattice 

and Lieb lattice. Checkerboard lattice can be treated as one sublattice, and a transition to Lieb lattice 

is done by adding a second sublattice, with a coupling between the two sublattices controlled by a 

value of a potential on each sublattices so called staggered potential. In this work, we analyzed 

evolution of three energy bands forming a band structure of Lieb lattice (due to three lattice sites in a 

unit cell) and changes of their topological properties. For Lieb lattice with zero value of staggered 

potential, Chern insulator model gives two topologically nontrivial bands with opposite Chern 

numbers, C=-1 and C=1, separated by the energy gap, and the third trivial flat energy band lying 

between them with energy E=0. Changes of values of staggered potential induces a topological phase 

transition and the middle band, now quasi-flat, exchanges Chern number with a lower band, getting 

C=-1. A small dispersion of the band and its nontrivial topology allows to realize fractional Chern 

insulator. There are several conditions, needed to be satisfied, in order to quantum incompressible 

liquid analogical to Laughlin state could appear. One of them is uniform Berry curvature [32]. 

Because of that we analyzed Berry curvature of the middle flat band in a wide range of model 

parameters. Area on a phase diagram with a small standard deviation of Berry curvature should 

coincide with the region of the most stable fractional Chern insulator phase. Existence of Laughlin 

state for filling 1/3 has been confirmed by analyzing degeneracy of the many-body ground state in a 

wide range of parameter space, analyzing spectral flow between three states forming the ground state 

and using counting rule of quasiholes. Indeed we were able to observe strong correlation between an 



 

 
area of uniform Berry curvature and a value of the many-body energy gap between three-fold 

degenerate ground state and excited states. Because of that, we concluded that a main mechanism of 

Laughlin state stabilization due to a presence of extra lattice sites is by modification of Berry 

curvature. 

 

Wigner crystallizaion in topological bands 

(article [H3]) 

 

For small filling fractions of electrons populating flat energy bands, overlap between 

wavefunctions of different electrons decreases, which weakens a role of electronic correlations. Long 

range part of Coulomb interaction gives minimal value of energy for a configuration in which 

interparticle distances of localized electrons is maximized. In particular, the lowest energy can be 

achieved when electrons form a two dimensional periodic lattice, crystallize to form Wigner crystal 

[58]. Because of that, incompressible quantum liquids on partially filled flat bands compete with 

Wigner crystals when filling factor is decreased [59-62]. In work [H3] we analyzed possible 

appearance of Wigner crystallization on partially filled topological flat energy bands obtained from 

various lattices: kagome, checkerboard and honeycomb. Within extensive numerical calculations 

(done by B. Jaworowski) using exact diagonalization method we considered wide range of filling 

factors, ranging from 1/3 to 1/11. In that work, I proposed to analyze this problem together with A. 

Wójs and A. D. Guclu, I performed initial calculations of many-body effects using codes implemented 

by me for exact diagonalization method, which were next  improved by P. Kaczmarkiewicz (that time 

a postdoc in A. Wójs group).  

Wigner crystals were characterized using cartesian and angular Fourier transform of pair 

correlation function of the ground state. As one could expect, a degree of crystallization, measured 

by high of Fourier peaks, increased with decrease of particle densities. The results from numerical 

calculations were compared with a model for classical point-like particles obtaining satisfactory 

agreement. Observed crystallization was present for all studied lattice models, in a wide range of 

interaction parameters and filling factors. Because of a small number of particles taken in the 

calculations (between 4 and 7 particles, this restriction comes from exponential growth of Hilbert 

space size with a particle number), we were not able to determine a critical value of filling factor for 

which crystallization occurs, but it was clearly evident that a level of crystallization drastically 

increases below 1/7 filling. Additionally, a type of Wigner crystallization was strongly dependent on 

boundary conditions of chosen plaquette (all calculations were performed on finite fragments of a 

lattice with periodic boundary conditions in both directions). Because of that, it was not possible to 

uniquely determine a type of a crystallized lattice in a thermodynamic limit. Nevertheless, we were 

able to generally conclude that Wigner crystal is mainly independent on an underlying lattice, 

including topology of the bands and reflects behavior of classical point-like particles.  

 

Correlation on flat topological bands in twisted bilayer graphene 

(article [H1])  

 

In work [H1] I studied correlation effects on flat bands in twisted bilayer graphene as a function 

of filling factor. I did not succeed in getting personal statements about contribution to work [H1], but 

confirmation of my significant contribution to this work is that (i) I am the first author of this work, 

(ii) I was PI of the research project related to this work (Research on correlation effects in twisted 

bilayer crystals, NAWA grant,  Bekker’s program), (iii) most of the calculations were done using 

exact diagonalization method (the name of the method is in the title of this work), which is the method 



 

 
used by me in the past, and this method has never been used by the second author, and the last author 

A. H. MacDonald is a group leader, with which this article was created, and he is mainly the person 

standing behind the ideas and do not currently perform numerical calculations (in the past A. H. 

MacDonald used exact diagonalization method, in ’80 and ‘90). M. Xie, the second author, was 

mainly responsible for initial calculations using Hartree-Fock method and preparation of inputs for 

many-body calculations.  

Because of huge sizes of Hilbert spaces in studied system, which is related to additional eight 

degrees of freedom in twisted bilayer graphene flat bands (2 valleys, 2 bands, 2 spins), I performed 

calculations on a discretized Brillouin zone with M=9 momentum states. These states were populated 

by particles and I investigated a behavior of the ground state as a function of filling fraction for every 

possible distribution of particles. Many-body Hamiltonina (2) was diagonalized using Lanczos 

method in subspaces for total spin within valley SK and SK’ (scattering between valleys can be 

neglected in the first approximation because valleys are far in a reciprocal space, thus a number of 

particles within a valley is conserved), and in subspace with total momentum K. We have shown that 

for filling factor  = |3| there is a spontaneous breaking of time-reversal symmetry and only one 

valley is occupied with maximum total spin, obtaining Chern insulator. Spin polarization is 

characteristic of for fillings above critical electronic density on flat bands, where the effect of 

interactions start to dominate over single particle effects due to finite band dispersion of energy bands. 

For fillings  > |3|, valley depolarization is observed, which is in agreement with experimental 

findings of Landau levels degeneracy around filling  = −2 [36-38]. The results obtained using exact 

diagonalization method I compared with mean-field calculations (Hartree-Fock method), which 

allowed me to determine the role of electronic correlations. We have noticed that for integer filling 

 = |3|, correlation energy has the lowest value, which increases when going farther from integer 

fillings. Additionally, the results within Hartree-Fock method were extrapolated to a thermodynamic 

limit, confirming their validity for a finite number of single particle states. We have shown that for 

integer fillings exchange interaction plays a crucial role in the system, which is responsible for spin 

polarization. Spin and valley polarization for filling  = −3  is stable in a range of angles of twisted 

bilayer graphene between 1.06° and 1.15° (in that range an energy band dispersion is not sufficient 

to overcome the energy of exchange interaction).    

 

Summary 

 

The results described in this set of scientific articles present different methods of analysis of 

topological phase properties and their stability with respect to parameters that potentially can be 

controlled experimentally. A common factor of these works is preparation of theoretical tools, 

including mainly appropriate models for numerical calculations on two dimensional lattices, analysis 

of topological properties using various topological invariants or analysis of helical edge states in these 

systems. A set of articles can be divided into two complementary groups. The first group contain 

results about single particle properties, containing studies of electronic properties and topological 

effects in multi-orbital tight-binding models of realistic materials like bismuth Bi and antimony Sb, 

or graphene (articles H1, H2, H4, H5, H7). The second group contains articles about correlations, 

which means including many-body effects (articles H1, H3, H6). In the case of H3 and H6, abstract 

models were considered with parametrically controlled interactions, which allows one to analyze 

phenomena in a wide range of values and creation of appropriate stability phase diagrams. Article H1 

contains research within both groups  

 



 

 
Obtained results can help in practical application of topological effects in modeling and potential 

building of more efficient optoelectronic devices in the future. In articles [H1, H2, H4, H5, H7], we 

have studied properties various realistic materials, which were determined by topological properties 

of energy bands. Articles [H2, H4, H5, H7] are about bismuth and antimony monolayer and mixed 

crystals. In articles [H2], [H4], [H5], stability of topological phases and their potential observation 

when model parameters are changed was analyzed, which can be caused by perturbations present in 

realistic materials (e.g. dopants, crystal deformations), interaction with a substrate, or external fields. 

Antimony dopants effects was considered [H4], deformation of a perfect crystal [H4, H5], or changes 

in spin-orbit coupling constant [H5]. Additionally, in articles [H2, H5] analysis of transport properties 

was performed, in particular describing conditions in which quantized conductance can be observed, 

which is related to a topological character of edge states. In article [H7] it was shown how one can 

use topologically nontrivial properties in practical application – building nanomagnet. Articles [H2] 

and [H4] show how one can use entanglement spectrum to identify topologically nontrivial phases. 

In article [H1] role of correlation effects in a real material, twisted bilayer graphene, was  investigated. 

Research within this set of articles  allowed one to deeper understand nature of topological properties 

in selected systems, by determining conditions for their stability.   
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5. Presentation of significant scientific or artistic activity carried out at more than 

one university, scientific or cultural institution, especially at foreign institutions. 

 
The primary place, where I carry out the scientific activity is Department of Quantum Physics, Faculty 

of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Torun, where I am 

employed as a professor since March 2021. 

 

During years 2012-2020 I was employed at Department of Theoretical Physics, Faculty of 

Fundamental Problems of Technology, Wroclaw University of Science and Technology, where in 



 

 
2002-2007 years I have realized unified master studies in physics, and after finished, I realized in 

2008-2012 years PhD studies, and Council of Institute of Physics of Wroclaw University of Science 

and Technology 7th July 2012 gave me PhD degree. In years 2008-2011, during my PhD studies, I 

realized 4 internships at National Research Council in Ottawa, Canada, with a total length of 12 

months. In years 2012-2017 I had several short term scientific consultations (lasting 1-3 weeks), 

visiting Spain (University of Alicante), Iceland (Reykjavik University), Canada (University of 

Ottawa) and Turkey (Izmir Institute of Technology). I also had 6 months postdoc in Portugal 

(International Iberian Nanotechnology Laboratory (INL), Braga) within Mobilność Plus programm 

from Ministry of Science and Higher Education of Poland. Additionally, in years 2019-2021 I had a 

postdoc in USA, The University of Texas at Austin, Department of Physics, Austin, Texas, with 

financial support for the first year by The Polish National Agency for Academic Exchange NAWA, 

Bekker’s program and for the second year employed by The University of Texas at Austin. As the 

results of these visits and collaborations are following published articles:   

 

Canada (in total 14 publications):  D1-D10, E16-E19, monography M1   

Turkey (1):     E5 

Iceland (1):     E14 

Portugal and Spain (1):   E15 

USA (3):    E1 – E3   

 

Currently, I mainly Focus on maintaining collaboration with A. H. MacDonald from The University 

of Texas at Austin, who is my main co-PI in Opus grant, National Science Centre of Poland (NCN), 

Twistronics - research on new quantum simulators.  

 

 

6. Presentation of teaching and organizational achievementsas as well as 

achievements in popularization of science 
 

6.1. Popularization of physics 

 

8.05.2013 r. Lecture: „Graphene – material of the XXI century. Nobel Prize in Physics in 

2010 r.”, XX set of lectures popularizing physics, Wrocław 

 

19.04.2013 Promotion of Institute of Physics Wroclaw University of Science and 

Technology, presentation  in Zespol Szkół Ponadgimnazjalnych, ul. J. 

Słowackiego 4 57-500 Bystrzyca Kłodzka,  

 

 

6.2. Supervision of students 

 

1. Michał Kupczyński, MSc, the title of the thesis: Topological effects in two dimensional 

systems, period of supervision: 2015-2017, Wroclaw University of Science and Technology  

(supervisor) 

 

 

6.3. Supervision of PhD students 

 



 

 
1. MSc. Błażej Jaworowski, the title of the thesis: Electron correlations in topological flat bands, 

Wroclaw University of Science and Technology (auxiliary supervisor). Date of obtaining the 

doctoral degree: 26.02.2019. 

 

2. MSc. Marta Brzezińska, the title of the thesis: Topological phases and topological phase 

transitions in low-dimensional systems, Wroclaw University of Science and Technology 

(auxiliary supervisor). Date of obtaining the doctoral degree: 21.01.2021. 

 

3. MSc. Maciej Bieniek, the title of the thesis: Electronic and optical properties of two-

dimensional transition metal dichalcogenide crystals, Wroclaw University of Science and 

Technology (auxiliary supervisor). Date of obtaining the doctoral degree: 21.04.2021. 

 

4. MSc. Michał Kupczyński, the title of the thesis: Many-body effects in topological materials and 

structures, Wroclaw University of Science and Technology (auxiliary supervisor). Planning 

date of obtaining the doctoral degree: December 2022. 

 

6.4. Didactics 

 

Courses: 

 

Wroclaw University of Science and Technology: 

 Physics 1 (exercises, 20 semesters, 4h/week) 

 Physics 1 (labs, 2 semesters, 2h/week) 

 Computer modelling (labs, 1 semester, 2h/week) 

 Topological effects in low dimensional systems (lecture, 1 semester, 2h/week) 

 

Nicolaus Copernicus University in Torun: 

 Programming, Matlab (labs, 1 semester, 2h/week) 

 Programming, Fortran (labs, 2 semesters, 1h/week) 

 

 

7. Other information important from the point of view of my professional career 

 
In my opinion, positive impact on my entire scientific achievements during my career had many 

international collaborations, which ended with many scientific articles. I also participated in 

realization of many national grants, from National Science Centre of Poland (NCN), Ministry of 

Science and Higher Education of Poland, as PI (3) and Co-Investigator (4). I was awarded for my 

scientific achievements at local and nationwide level: 

 
7.1. Awards  

 

05.11.2017 Dionizy Smoleński Award for exceptional scientific achievements in 

interdisciplinary sciences, Rector of Wroclaw University of Science and 

Technology  

 

03.11.2016 Rector’s Award for exceptional contribution to university development, Head of 

Wroclaw University of Science and Technology  
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